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To Freydoon Shahidi on his 70th birthday

Abstract. We study the automorphic theta representation Θ
(r)
2n on the

r-fold cover of the symplectic group Sp2n. This representation is ob-
tained from the residues of Eisenstein series on this group. If r is odd,
n ≤ r < 2n, then under a natural hypothesis on the theta representations,

we show that Θ
(r)
2n may be used to construct a globally generic represen-

tation σ
(2r)
2n−r+1 on the 2r-fold cover of Sp2n−r+1. Moreover, when r = n

the Whittaker functions of this representation attached to factorizable

data are factorizable, and the unramified local factors may be computed
in terms of n-th order Gauss sums. If n = 3 we prove these results,
which in that case pertain to the six-fold cover of Sp4, unconditionally.

We expect that in fact the representation constructed here, σ
(2r)
2n−r+1, is

precisely Θ
(2r)
2n−r+1; that is, we conjecture relations between theta repre-

sentations on different covering groups.

Keywords: Symplectic group, metaplectic cover, theta representation,
descent integral, unipotent orbit, generic representation, Whittaker func-
tion.
MSC(2010): Primary: 11F70; Secondary: 11F27, 11F55.

1. Introduction

The classical metaplectic group is a double cover of a symplectic group,
and may be defined over a local field or the ring of adeles of a number field.
This group arises in the study of theta functions, which may be constructed
directly as sums over the global rational points of an isotropic subspace. This
construction of theta functions appears to be special to the double cover case.

To generalize, let r > 1 be any integer, and let F be a number field with a full
set of r-th roots of unity. Then there is an r-fold cover of the symplectic group

Sp2n(A), where A is the ring of adeles of F , denoted Sp
(r)
2n (A). When r > 2
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one may construct theta functions for such a group, but only indirectly – theta
functions are obtained as the multi-residues of the minimal parabolic (Borel)

Eisenstein series on Sp
(r)
2n (A) at the “right-most” (suitably normalized) pole.

(This construction may be carried out when r = 2 as well.) As such, these theta
functions are automorphic forms and realize an automorphic representation

Θ
(r)
2n , called the theta representation.
Since for a general cover the theta functions may only be defined via residues,

it is considerably more challenging to determine basic information such as their
Whittaker or other Fourier coefficients in this situation. Indeed, the Fourier
coefficients of the theta function have not been determined for covers of SL2

of any degree higher than 4. And when n > 1 very little is known. Moreover,
except in the double cover case there are few examples of any automorphic
functions on such a group, there is no information about when their Whittaker
coefficients might be factorizable (one expects rarely), and it is not clear to what
extent one might expect relations between theta functions or other automorphic
forms on different covers of different groups.

In a first example of such information, the authors [7] have established re-
lations between the Whittaker coefficients of certain automorphic functions on
different covering groups in two specific cases, related to the conjectures of
Patterson [17] and Chinta-Friedberg-Hoffstein [5] concerning the Fourier co-
efficients of theta functions on covers of GL2 . The key to doing so was to
adapt descent methods, originally used by Ginzburg-Rallis-Soudry [11] in the
context of algebraic groups or double covers, to higher degree covering groups.
In particular, the treatment of the adelic version of the conjecture of Chinta-
Friedberg-Hoffstein relied on the study of the theta function on the three-fold
cover of Sp4.

In this work we investigate theta functions and descent integrals on covers
of symplectic groups of arbitrary rank. As we shall explain, for r odd a descent

construction allows one to pass from the theta representation Θ
(r)
2n to a repre-

sentation σ
(2r)
2n−r+1 realized inside the space of automorphic square-integrable

functions on Sp
(2r)
2n−r+1(F )\Sp

(2r)
2n−r+1(A). We expect that this representation is

in fact the theta representation Θ
(2r)
2n−r+1 (Conjecture 4.2), and we show that

σ
(2r)
2n−r+1 has non-zero projection to this representation. In Theorem 5.1 below

we establish that if r is odd, n ≤ r < 2n, then the representation σ
(2r)
2n−r+1 is

globally generic, that is, has a non-zero Whittaker coefficient for some generic

character. Moreover, if r = n, we show that the Whittaker coefficients of σ
(2n)
n+1

arising from factorizable inputs are factorizable. As a first new case, this is true
of the Whittaker coefficients of the descent representation on the six-fold cover
of Sp4. Then in Theorem 6.1 we show that the unramified local contributions
to the Whittaker coefficients in the factorizable case may be expressed as sums
of Whittaker coefficients of the theta representation on the n-fold cover of GLn.
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These coefficients are n-th order Gauss sums by the work of Kazhdan and Pat-
terson [14]. Thus we exhibit a new class of automorphic forms on covering
groups whose Whittaker coefficients are factorizable with algebraic factors at
good places.

These results are proved on two conditions. One concerns the specific unipo-

tent orbit attached to Θ
(r)
2n (Conjecture 2.2). This is an object of on-going study

[4]; in the last section we give a sketch of the proof of this conjecture in the
first new case, n = r = 3. A second concerns the precise characters within
a given unipotent orbit which support a nonzero Fourier coefficient (Assump-
tion 5.2). This is not needed in all cases, and in particular is not needed in

the factorizable case σ
(2n)
n+1 . Our results concerning Conjecture 2.2 are thus suf-

ficient to establish unconditionally that the Whittaker function of the descent
to the six-fold cover of Sp4 is Eulerian for factorizable data, and to compute
its unramified local factor in terms of cubic Gauss sums. We expect that this
descent is in fact the theta function on the six-fold cover of Sp4.

The authors thank the referee for his exceptionally careful reading of the
manuscript.

It is the authors’ pleasure to express their admiration to Prof. Freydoon
Shahidi for his many critical contributions to the subject of automorphic forms
(see [18] among many others) and their deep appreciation to him for his kind
and generous support over the years.

2. Definition and properties of the Theta representation

Let n and r be two natural numbers. Let F be a number field containing a
full set µr of r-th roots of unity, and let A be the ring of adeles of F . Let Sp2n
denote the symplectic group consisting of the 2n×2n matrices leaving invariant
the standard symplectic form ⟨x, y⟩ =

∑n
i=1(xiy2n−i+1 − xn+iyn−i+1). Denote

by Sp
(r)
2n (A) the metaplectic r-fold cover of the symplectic group Sp2n(A). This

group consists of pairs (g, ζ) with g ∈ Sp2n(A) and ζ ∈ µr; it may be obtained in
the standard way from covers of the local groups Sp2n(Fν) as ν ranges over the
places of F , identifying the copies of µr. The multiplication in the local group
is determined by a cocyle σ. If σBLS is the 2-cocycle of Banks-Levy-Sepanski
[1] for SL2n(Fν) and w is the permutation matrix such that the conjugate of
Sp2n by w preserves the symplectic form ⟨x, y⟩′ =

∑n
i=1 xiyn+i − yixn+i, then

we take σ(g1, g2) = σBLS(wg1w
−1, wg2w

−1). (This choice simplifies some of
the calculations involving cocycles below.)

We shall be concerned with the theta representation defined on the group

Sp
(r)
2n (A), denoted Θ

(r)
2n . This representation is defined as the space spanned

by the residues of the Borel Eisenstein series on Sp
(r)
2n (A), similarly to the

definition for the general linear group in [14, p. 118]. Our first task is to give
a brief account of this construction.
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Let B2n denote the standard Borel subgroup of Sp2n, and let T2n denote
the maximal torus of Sp2n which is a subgroup of B2n. Working either locally
at a completion of F or globally over A, if H is any algebraic subgroup of

Sp2n, we let H(r) denote its inverse image in Sp
(r)
2n . We will call this inverse

image parabolic if H has this property. Let Z(T
(r)
2n ) denote the center of T

(r)
2n .

Suppose first that r is odd. Given a character µ of T2n, we may use it to define

a genuine character, again denoted µ, of Z(T
(r)
2n ). (The definition of a genuine

representation depends on an embedding of the group of r-th roots of unity µr
into C×. We will fix this and omit it from the notation.) Extending it trivially

to any maximal abelian subgroup of T
(r)
2n and then inducing up, we obtain a

representation of Sp
(r)
2n which we denote by Ind

Sp
(r)
2n

B
(r)
2n

µ. This representation is

determined uniquely by the choice of µ and this procedure may be carried out
both locally and globally. Here we consider unnormalized induction, and shall

include the modular character δ
1/2
B2n

when we require normalized induction.
Let si be complex variables, and let µ be the character of T2n given by

µ(diag(a1, . . . , an, a
−1
n , . . . , a−1

1 )) = |a1|s1 · · · |an|sn .

If this construction is carried out over a local field, then |a| denotes the normal-
ized local absolute value, while if it is carried out over A, then |a| denotes the
product of these over all places of F . One may form the induced representa-

tion Ind
Sp

(r)
2n (A)

B
(r)
2n (A)

µδ
1/2
B2n

, and for each vector in this space, one may construct the

multi-variable Eisenstein series E(h, s1, . . . , sn) defined on the group Sp
(r)
2n (A).

Computing the constant term as in [14, Proposition II.1.2], we deduce that
the poles of the partial intertwining operator associated with the long Weyl
element of Sp2n are determined by

(2.1)

∏
i<j [ζS(r(si − sj))ζS(r(si + sj))]

∏
i ζS(rsi)∏

i<j [ζS(r(si − sj) + 1)ζS(r(si + sj) + 1)]
∏
i ζS(rsi + 1)

.

Here S is a finite set of all places including the archimedean places and all finite
places ν such that |r|ν ̸= 1 and ζS(s) is the partial global zeta function.

The expression (2.1) has a multi-residue at the point

sn =
1

r
, r(si − si+1) = 1.

From this we deduce that the Eisenstein series E(h, s1, . . . , sn) has a multi-

residue at that point, and we denote the residue representation by Θ
(r)
2n . If µ0

denotes the character of T2n defined by

µ0(diag(a1, . . . , an, a
−1
n , . . . , a−1

1 )) = |a1|
n
r · · · |an−1|

2
r |an|

1
r ,
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then it follows that Θ
(r)
2n is a subquotient of the induced representation

Ind
Sp

(r)
2n (A)

B
(r)
2n (A)

µ0δ
1/2
B2n

. From this we deduce that Θ
(r)
2n is also a subrepresentation

of the induced representation Ind
Sp

(r)
2n (A)

B
(r)
2n (A)

χ
Sp

(r)
2n ,Θ

where

χ
Sp

(r)
2n ,Θ

(diag(a1, . . . , an, a
−1
n , . . . , a−1

1 )) = |a1|
n(r−1)

r · · · |an−1|
2(r−1)

r |an|
r−1
r .

We turn to even degree coverings. We shall only be concerned with the covers
of degree 2r where r is an odd integer. (This is the only case we consider here
since the analogue of Conjecture 2.2 below is not yet formulated when r is even.)

If r is odd, the definition of the theta representation for Sp
(2r)
2m is similar. There

is a small difference since the maximal parabolic subgroup of Sp2m whose Levi
part is GLm splits under the double cover. Because of this, when computing
the intertwining operator corresponding to the long Weyl element, one finds
that its poles are determined by∏

i<j [ζS(r(si − sj))ζS(r(si + sj))]
∏
i ζS(2rsi)∏

i<j [ζS(r(si − sj) + 1)ζS(r(si + sj) + 1)]
∏
i ζS(2rsi + 1)

.

Accordingly we define Θ
(2r)
2m to be the multi-residue of the Eisenstein series at

the point

sm =
1

2r
, r(si − si+1) = 1.

Then the representation Θ
(2r)
2m is a subquotient of the induced representation

Ind
Sp

(2r)
2m (A)

B
(r)
2m(A)

µeδ
1/2
B2m

where µe denotes the character of T2m defined by

µe(diag(a1, . . . , am, a
−1
m , . . . , a−1

1 )) = |a1|
2m−1

2r · · · |am−1|
3
2r |am| 1

2r .

It follows that the representation Θ
(2r)
2m is also a subrepresentation of the in-

duced representation Ind
Sp

(2r)
2m (A)

B
(r)
2m(A)

χ
Sp

(2r)
2m ,Θ

where

χ
Sp

(2r)
2n ,Θ

(diag(a1, . . . , am, a
−1
m , . . . , a−1

1 )) =

|a1|
2mr−(2m−1)

2r · · · |am−2|
6r−5
2r |am−1|

4r−3
2r |am|

2r−1
2r .

We now develop some properties of the theta representations that follow
from induction in stages, or, equivalently, by taking an (n − 1)-fold residue
of E(h, s1, . . . , sn) to obtain a maximal parabolic Eisenstein series attached to
theta representations of lower rank groups. Let 1 ≤ a ≤ n. Denote by P2n,a

the maximal parabolic subgroup of Sp2n whose Levi part is GLa × Sp2(n−a),
and let L2n,a denote its unipotent radical. We write i for the inclusion of
GLa in P2n,a in this paragraph but we suppress i afterwards. From the block
compatibility of the cocycle σBLS (Banks-Levy-Sepanski [1]) and a short com-
putation it follows that if g1, g2 ∈ GLa over a local field then σ(i(g1), i(g2)) =
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σGLa(g1, g2)
2(det g1, det g2)

−1, where σGLa is the metaplectic 2-cocycle of [1]
for GLa and ( , ) is the r-th order Hilbert symbol. Thus for both the r and

2r-fold covers, i determines an r-fold cover of GLa. We write this cover GL
(r)
a

(which case we are in will always be clear from context).

Suppose first that r is odd. Let Θ
(r)
GLa

denote the theta representation of the

groupGL
(r)
a (A), as constructed in [14] (or the corresponding character if a = 1).

Let Ea(g, s) denote the Eisenstein series of Sp
(r)
2n (A) associated with the induced

representation Ind
Sp

(r)
2n (A)

P
(r)
2n,a(A)

(Θ
(r)
GLa

⊗Θ
(r)
2(n−a))δ

s
P2n,a

. (For the construction of such

Eisenstein series more generally, see Brubaker and Friedberg [2].) Then it

follows from induction in stages that the representation Θ
(r)
2n is a residue of

Ea(g, s) at the point s = (r + 1)/2r. Of course, this can also be verified
directly by studying the corresponding intertwining operators.

In the case of a cover of degree 2r, r odd, the situation is roughly similar. Let
Ea(g, s) denote the Eisenstein series associated with the induced representation

Ind
Sp

(2r)
2m (A)

P
(r)
2m,a(A)

(Θ
(r)
GLa

⊗Θ
(2r)
2(m−a))δ

s
P2n,a

. Then once again from induction in stages

we deduce that Θ
(2r)
2m is the residue of Ea(g, s) at the point s = (r+1)(2m−a)+r

2r(2m−a+1) .

From these observations, we will deduce the following proposition. Here and
below, matrices are embedded in metaplectic groups by the trivial section with-
out additional notation, and we call metaplectic elements diagonal or unipotent
when their projections to the linear group are.

Proposition 2.1. Suppose that r is odd. Let θ
(r)
2n be in the space of Θ

(r)
2n . Then

there exist functions θ
(r)
GLa

∈ Θ
(r)
GLa

, θ
(r)
2(n−a) ∈ Θ

(r)
2(n−a) such that for all diagonal

g in GL
(r)
a (A) which lies in the center of the Levi part of the parabolic group

P
(r)
2n,a(A) and for all unipotent h ∈ Sp

(r)
2(n−a)(A), v ∈ GL

(r)
a (A), one has

(2.2)

∫
L2n,a(F )\L2n,a(A)

θ
(r)
2n (u(gv, h))du = χ

Sp
(r)
2n ,Θ

(g) θ
(r)
GLa

(v) θ
(r)
2(n−a)(h).

A similar identity holds in the even-degree cover case.

The requirement that h, v be unipotent could be dropped at the expense of
a cocyle; being unipotent guarantees that it is 1.

Proof. Since Θ
(r)
2n is the residue of the Eisenstein series Ea(·, s), we first consider

the constant term

(2.3)

∫
L2n,a(F )\L2n,a(A)

Ea(u(gv, h), s) du.
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For Re(s) large we can unfold the Eisenstein series and deduce that (2.3) is
equal to
(2.4) ∑
w∈P2n,a(F )\Sp2n(F )/P2n,a(F )

∫
Lw

2n,a(F )\L2n,a(A)

∑
γ∈(w−1P2n,a(F )w∩P2n,a(F ))\P2n,a(F )

fs(wγu(gv, h)) du.

Here Lw2n,a = w−1L2n,aw ∩ L−
2n,a where L−

2n,a is the conjugate of L2n,a by the

long Weyl element. Also, we have fs ∈ Ind
Sp

(r)
2n (A)

P
(r)
2n,a(A)

(Θ
(r)
GLa

⊗ Θ
(r)
2(n−a))δ

s
P2n,a

.

Notice that all elements in P2n,a(F )\Sp2n(F )/P2n,a(F ) can be chosen to be
Weyl elements. Similarly to [15, Section 1.2], one can check that for all Weyl
elements in P2n,a(F )\Sp2n(F )/P2n,a(F ) which are not the long Weyl element,
the inner summation is a certain Eisenstein series or product of such series.
Moreover, one can also check that the Eisenstein series in the corresponding
summand in (2.4) is holomorphic at s = (r + 1)/2r. Hence, taking the residue
in (2.3) and (2.4) at s = (r+1)/2r, we are left only with the long Weyl element,
and for that element we obtain the identity∫

L2n,a(F )\L2n,a(A)

θ
(r)
2n (u(gv, h))du = Ress=(r+1)/2rMwfs(gv, h)

where Mw is the intertwining operator attached to w. From this identity (2.2)
follows. □

Similar statements for other groups are established in [3, Proposition 3.4]
and [7, Proposition 1].

We end this section with a general conjecture about the unipotent orbit

attached to the representation Θ
(r)
2n , and give a consequence of this conjecture.

Recall that if π denotes an automorphic representation of a reductive group,
then the set O(π) was defined in [9]. It is the largest unipotent orbit that
supports a nonzero coefficient for this representation. The extension of the
definition of this set to the metaplectic groups is clear. In this paper we are

interested in the set O(Θ
(r)
2n ). The conjecture regarding this set is given as

follows. Assume that r < 2n. Write 2n = an,rr + bn,r where an,r and bn,r
are both nonnegative numbers such that 0 ≤ bn,r ≤ r − 1. We recall that a
partition is a symplectic partition if any odd number in the partition occurs
with even multiplicity. As defined in [6], given a partition λ of 2n, we define
the Sp collapse of λ to be the greatest symplectic partition which is smaller
than λ. We have

Conjecture 2.2. Let r be an odd number. If r < 2n, then the set O(Θ
(r)
2n )

consists of the partition which is the Sp collapse of the partition (ran,rbn,r). If

r > 2n, then the representation Θ
(r)
2n is globally generic.
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The conjecture, and the analogous local conjecture, are studied in [4]. We
shall write Conjecture 2.2r,n for this statement for a specific pair (r, n). We
remark that an extension to even degree covers has not been formulated at this
time.

To give a consequence of this conjecture, let r be odd, let a be an integer
with 1 ≤ a ≤ n − (r − 1)/2, and let b = n − (r − 1)/2 − a. Let U2n,n−b be
the unipotent radical of the standard parabolic subgroup of Sp2n whose Levi
part is GLn−b1 ×Sp2b. (In particular, U2n,n is the standard maximal unipotent
subgroup of Sp2n.) Let U2n,n−b,1 be the subgroup of U2n,n−b which consists of
all matrices u = (ui,j) ∈ U2n,n−b such that un−b,i = 0 for all n− b+1 ≤ i ≤ n.
Let α = (α1, . . . , αa−1) where for all i we have αi ∈ {0, 1}. Let ψ be a nontrivial
character of F\A, which will be fixed throughout this paper. Let ψU2n,n−b,1,α

be the character of U2n,n−b,1 given by

ψU2n,n−b,1,α(u) = ψ

a−1∑
i=1

αiui,i+1 +
n−b∑
j=a

uj,j+1

 .

Then we have the following result, which will be used later.

Lemma 2.3. Suppose r is odd, r < 2n, and Conjecture 2.2r,n−i0 holds for all
0 ≤ i0 ≤ a− 1. Then the integral

(2.5)

∫
U2n,n−b,1(F )\U2n,n−b,1(A)

θ
(r)
2n (ug)ψU2n,n−b,1,α(u) du

is zero for all choices of data, that is, for all θ
(r)
2n ∈ Θ

(r)
2n .

Proof. Consider first the case where αi = 1 for all i. Then the Fourier coefficient
(2.5) is the Fourier coefficient which corresponds to the unipotent orbit ((2n−
2b)12b). From Conjecture 2.2r,n we have that O(Θ

(r)
2n ) consists of the partition

which is the Sp collapse of the partition (ran,rbn,r). Hence ((2n − 2b)12b) is

greater than or not related to O(Θ
(r)
2n ). Indeed, this follows from the relation

2b = 2n − 2a − r + 1 which implies that ((2n − 2b)12b) = ((r + 2a − 1)12b).
Thus, if αi = 1 for all i, then the integral (2.5) is zero for all choices of data.

Next assume that at least one of the scalars αi is zero. Let i0 ≤ a − 1 be
the largest index such that αi0 = 0. Then the integral (2.5) is equal to

(2.6)

∫
H(F )\H(A)

∫
L2n,i0 (F )\L2n,i0 (A)

∫
U2(n−i0),n−i0−b,1(F )\U2(n−i0),n−i0−b,1(A)

θ
(r)
2n (luhg)ψU2(n−i0),n−i0−b,1

(u)ψH,α(h) du dl dh.

Here H is a certain unipotent subgroup of GLi0 which will not be important
to us. Notice that the integration over L2n,i0(F )\L2n,i0(A) is the constant term
along this unipotent group.Therefore, it follows from Proposition 2.1 above that
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the integration along the quotient space U2(n−i0),n−i0−b,1(F )\U2(n−i0),n−i0−b,1(A)
is the coefficient of the representation Θ

(r)
2(n−i0) corresponding to the unipotent

orbit ((2(n − i0 − b))12b). Thus the vanishing of the integral (2.6) will follow

if this unipotent orbit is greater than or not related to the orbit O(Θ
(r)
2(n−i0)).

From Conjecture 2.2r,n−i0 , this is the case if 2(n − i0 − b) > r. Since this
inequality follows from the relations 2(n− a− b) = r− 1 and a > i0, the result
is proved. □

3. The descent construction

Recall that U2m,k denotes the unipotent radical of the standard parabolic
subgroup of Sp2m whose Levi part is GLk1 × Sp2(m−k). The quotient group
U2m,k−1\U2m,k may be identified with the Heisenberg group in 2(m − k) + 1
variables,H2(m−k)+1. Indeed, there is a homomorphism l : U2m,k 7→ H2(m−k)+1

which is onto, and whose kernel is the group U2m,k−1.
For the rest of this section we suppose that r > 1 is odd. Set r′ = (r− 1)/2.

For α ∈ F ∗ let ψU,α be the character of Ur−1,r′(F )\Ur−1,r′(A) given by

ψU,α(u) = ψ(u1,2 + u2,3 + · · ·+ ur′−1,r′ + αur′,r′+1) u = (ui,j).

From now on we shall suppose that Conjecture 2.2r,r′ holds, that is, that

the representation Θ
(r)
r−1 is globally generic. This is known if r = 3 [14]. Thus

there is an α ∈ F ∗ and a choice of data, i.e. an automorphic function θ
(r)
r−1 in

the space of Θ
(r)
r−1, such that the integral

(3.1)

∫
Ur−1,r′ (F )\Ur−1,r′ (A)

θ
(r)
r−1(ug)ψU,α(u) du

is not zero.

Remark 3.1. In fact we expect that for all α ∈ F ∗, the integral (3.1) will be
nonzero for some choice of data.

Fix α ∈ F ∗ such that (3.1) is nonzero, and let ψα be the additive character

ψα(x) = ψ(αx). Let Θψ
α,ϕ

2m denote the theta representation attached to the
Weil representation and the additive character ψα and defined on the double
cover of Sp2m(A). Here ϕ is a Schwartz function on Am. See for example
[13, p. 8]. Since r is odd, using the isomorphism µ2r

∼= µ2 × µr we may

map g ∈ Sp
(2r)
2n−r+1(A) to its image in the double and r-fold covers; we will

not introduce separate notation for this. To define the descent construction,

consider the function of g ∈ Sp
(2r)
2n−r+1(A) given by

(3.2) f(g) =

∫
U2n,r′ (F )\U2n,r′ (A)

θψ
α,ϕ

2n−r+1(l(u)g) θ
(r)
2n (ug)ψU2n,r′ (u) du.
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Here θψ
α,ϕ

2n−r+1 and θ
(r)
2n are vectors in the spaces of the representations Θψ

α,ϕ
2n−r+1

and Θ
(r)
2n (resp.), ψU2n,r′ is the character of U2n,r′(A) given by ψU2n,r′ (ui,j) =

ψ(u1,2 + u2,3 + · · ·+ ur′−1,r′), and g ∈ Sp2n−r+1 is embedded in Sp2n as

g 7→

Ir′ g
Ir′

 .

(One could also consider descent integrals similar to (3.2) if r is even but we
shall not do so here.) Then f(g) is a genuine automorphic function defined on

Sp
(2r)
2n−r+1(A). Let σ

(2r)
2n−r+1 denote the representation of Sp

(2r)
2n−r+1(A) generated

by all the functions f(g).

4. Computation of the constant term of the descent integral

Let V denote any standard unipotent subgroup of Sp2n−r+1, and let ψV
be a character of V (F )\V (A), possibly trivial. In this paper we will compute
integrals of the type

(4.1)

∫
V (F )\V (A)

f(vg)ψV (v) dv,

where f(g) is given by (3.2).
Using (3.2), we arrive at an iterated integral. We first unfold the theta

function θψ
α,ϕ

2n−r+1. Collapsing summation and integration, and then using the
formulas for the action of the Weil representation ωψα , the integral (4.1) is
equal to

(4.2)∫
An−r′

∫
V (F )\V (A)

∫
U2n,r′,1(F )\U2n,r′,1(A)

ωψα (g)ϕ(x) θ
(r)
2n (uvj(x)g)ψU2n,r′,1,α

(u)ψV (v) du dv dx.

Here x = (x1, . . . , xn−r′) ∈ An−r′ is embedded in Sp2n via the map j(x) =
I2n + x1e

∗
r′,r′+1 + x2e

∗
r′,r′+2 + · · · + xn−r′e

∗
r′,n, where ei,j denotes the (i, j)-th

elementary matrix and e∗i,j = ei,j−e2n−j+1,2n−i. Recall that the group U2n,r′,1

is the subgroup of U2n,r′ consisting of all matrices u = (ui,j) ∈ U2n,r′ such
that ur′,k = 0 for all r′ + 1 ≤ k ≤ n. The character ψU2n,r′,1,α(u) is defined

as the product of ψU2n,r′ (u) and the character ψ0
U2n,r′,1,α

of U2n,r′,1 given by

ψ0
U2n,r′,1,α

(u) = ψ(αur′,2n−r′+1).

At this point we consider the case when V = L2n−r+1,a where 1 ≤ a ≤
n− r′ and ψV is the trivial character. Thus, V is the unipotent radical of the
standard maximal parabolic subgroup of Sp2n−r+1 whose Levi part is GLa ×
Sp2n−2a−r+1. We recall that 2b = 2n− 2a− r + 1.
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Let wa denote the Weyl group element of Sp2n defined by

wa =


Ia

In−a−b
I2b

In−a−b
Ia

 .

Since θ
(r)
2n is left-invariant under rational points, we may conjugate by wa from

left to right. Doing so, we see that the integral (4.2) is equal to

(4.3)

∫
An−r′

∫
Mat(n−a−b−1)×a(F )\Mat(n−a−b−1)×a(A)

∫
V0(F )\V0(A)

∫
U0(F )\U0(A)

ωψα(g)ϕ(x) θ
(r)
2n (u0v0k(y)waj(x)g)ψV0,α(v0) du0 dvo dy dx.

The notations are defined as follows. Recall that L2n,a denotes the unipotent
radical of the standard maximal parabolic subgroup of Sp2n whose Levi part is
GLa×Sp2(n−a). The group U0 is defined to be the subgroup of L2n,a consisting
of all matrices in Sp2n of the form

Ia 0 ∗ ∗ ∗
In−a−b 0 0 ∗

I2b 0 ∗
In−a−b 0

Ia

 .

The embedding of Mat(n−a−b−1)×a into Sp2n is given by

k(y) =


Ia
y In−a−b

I2b
In−a−b
y∗ Ia

 ,

where y∗ is chosen to make the matrix symplectic. Here the embedding of y is
such that it consists of all matrices of size (n− a− b)× a such that its bottom
row is zero. Finally V0 is equal to the group U2(n−a),n−a−b,1, defined similarly
to the definition of U2n,a,1 reviewed after (4.2) (in particular, the group V0 is a
subgroup of Sp2(n−a)), and the character ψV0,α := ψU2(n−a),n−a−b,1,α as defined

there. In coordinates, ψV0,α(v) = ψ(va+1,a+2 + va+2,a+3 + · · · + vn−b−1,n−b +
αvn−b,n+b+1).

The next step is to carry out some root exchanges. The notion of root
exchange is formulated abstractly in Ginzburg-Rallis-Soudry [13, Section 7.1];
a similar local statement may also be found in their paper [11, Section 2.2],
and a global version also appears in the authors’ paper [7, Section 2.2]. In our
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context, we perform the following root exchange. For z ∈ Mata×(n−a−b), let
m(z) in Sp2n be given by

m(z) =


Ia z

In−a−b
I2b

In−a−b z∗

Ia

 .

We embed the group Mata×(n−a−b−1)(A) inside Sp2n(A) by considering all
matrices m(z) as above such that the first column of z is zero. Expand the
integral (4.3) along the group so obtained. Performing the root exchange with
the group of all matrices k(y) such that y ∈Mat(n−a−b−1)×a(A), one sees that
the integral (4.3) is equal to

(4.4)

∫
An−r′

∫
Mat(n−a−b−1)×a(A)

∫
V0(F )\V0(A)

∫
L0

2n,a(F )\L0
2n,a(A)

ωψα(g)ϕ(x) θ
(r)
2n (uv0k(y)waj(x)g)ψV0,α(v0) du dv0 dy dx.

Here L0
2n,a is the subgroup of L2n,a which consists of all matrices u = (ui,j) ∈

L2n,a such that ui,a+1 = 0 for all 1 ≤ i ≤ a.
Consider the quotient space of L0

2n,a\L2n,a. This quotient may be naturally
identified with the column vectors of size a. This group embeds in Sp2n as
the group of all matrices of the form I2n+ z1e

∗
1,a+1 + z2e

∗
2,a+1 + · · ·+ zae

∗
a,a+1.

Expand the integral (4.4) along this group. The group GLa(F ) acts on this
expansion with two orbits.

The contribution of the nontrivial orbit to the integral (4.4) is the expression

(4.5)

∫
An−r′

∫
Mat(n−a−b−1)×a(A)

∫
V0(F )\V0(A)

∫
L2n,a(F )\L2n,a(A)

ωψα(g)ϕ(x) θ
(r)
2n (uv0k(y)waj(x)g)ψV0,α(v0)ψL2n,a(u) du dv0 dy dx,

where for u = (ui,j) ∈ L2n,a(F )\L2n,a(A), ψL2n,a(u) = ψ(ua,a+1). We claim
that the integral (4.5) is zero for all choices of data.

To prove this, we carry out similar expansions repeatedly. To start, consider
the quotient space L2n,a−1\L2n,a. This space may be identified with the column
vectors of size a−1, embedded in Sp2n as the group of all matrices of the form
I2n + z1e

∗
1,a + z2e

∗
2,a + · · · + za−1e

∗
a−1,a. Expand the integral (4.5) along this

group. The group GLa−1(F ) acts on this expansion with two orbits. If a−1 > 1
we continue in this way. Then the vanishing of the integral (4.5) for all choices
of data then follows from Lemma 2.3 above.
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We conclude that the integral (4.1) with V = U2n−r+1,a and ψV = 1 is equal
to

(4.6)

∫
An−r′

∫
Mat(n−a−b−1)×a(A)

∫
V0(F )\V0(A)

∫
L2n,a(F )\L2n,a(A)

ωψα(g)ϕ(x) θ
(r)
2n (uv0k(y)waj(x)g)ψV0,α(v0) du dv0 dy dx.

We shall prove momentarily that (4.6) is nonzero for some choice of data.
Supposing this for the moment, let us analyze this integral when g = diag(tIa,
I2n−r−2a+1, t

−1Ia) is an element in the center of the Levi part of the maximal
parabolic subgroup of Sp2n−r+1 whose Levi part is GLa × Sp2n−r−2a+1, em-
bedded in the r-fold metaplectic group via the trivial section. Suppose also
that t is an r-th power. Inserting g into (4.6), we move it from right to left in

the function θ
(r)
2n . Moving it past j(x) and making the corresponding variable

change in x gives a factor of |t|−a, as well as a factor of γ(ta)|t|a/2 from the
action of the Weil representation. Then moving it past k(y) we obtain a factor
of |t|−a(n−a−b−1) from the corresponding change of variables in y. Clearly, g
commutes with V0, and finally, applying Proposition 2.1 above we also get a
factor of

δ
r−1
2r

P2n,a
(diag(tIa, I2(n−a), t

−1Ia)) = |t|a(r−1)(2n−a+1)/2r

(here, recall that P2n,a is the maximal parabolic subgroup of Sp2n whose unipo-
tent radical is L2n,a).

We conclude that, for g = diag(tIa, I2(n−a), t
−1Ia) as above and for V =

U2n−r+1,a, we have ∫
V (F )\V (A)

f(vg) dv = |t|β
∫

V (F )\V (A)

f(v) dv,

where

β =
a(r − 1)(2n− a+ 1)

2r
− a

2
− a(n− a− b− 1).

It follows from Section 2 that χ
Sp

(2r)
2n−r+1,Θ

(g) = |t|β .
Finally, we prove that the integral (4.6) is not zero for some choice of data.

This will also imply that the representation σ
(2r)
2n−r+1 is not zero. Suppose

instead that (4.6) is zero for all choices of data. Arguing as in [7, Lemma 1],
we may ignore the integration over the x and y variables, and deduce that the
integral ∫

V0(F )\V0(A)

∫
L2n,a(F )\L2n,a(A)

θ
(r)
2n (uv0)ψV0,α(v0) du dv0
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is zero for all choices of data. From Proposition 2.1 we deduce that the integral

(4.7)

∫
V0(F )\V0(A)

θ
(r)
2(n−a)(v0h)ψV0,α(v0) dv0

is zero for all choice of data. Here h ∈ Sp
(r)
2(n−a)(A).

To derive a contradiction, we will use the non-vanishing of the integral (3.1).
Indeed, since 2b = 2n− 2a− r+1, the vanishing of (4.7) for all choices of data
implies that the integral

(4.8)

∫
L2b,b(F )\L2b,b(A)

∫
V0(F )\V0(A)

θ
(r)
2b+r−1(v0l)ψV0,α(v0) dv0 dl

is zero for all choices of data. We recall that L2b,b is the unipotent radical of
the maximal parabolic subgroup of Sp2b whose Levi part is GLb. Arguing as
in the computation of (4.2), we obtain that the vanishing of (4.8) implies the
vanishing of the integral
(4.9) ∫

Ur−1,r′ (F )\Ur−1,r′ (A)

∫
L2b+r−1,b(F )\L2b+r−1,b(A)

θ
(r)
2b+r−1(lv0)ψV0,α(v0) dl dv0.

But the vanishing of (4.9) for all choice of data implies that (3.1) is zero for all
choice of data, by Proposition 2.1. This is a contradiction.

Since the constant terms have been bounded and the descent is a compact
integral of an automorphic form, the descent and its derivatives have uniformly
moderate growth. Then from truncation as in the Corollary in [16, I.2.12],
together with the above calculations, one obtains the following result.

Proposition 4.1. Let r be odd, r < 2n, and suppose that Conjecture 2.2r,i

holds for all i with r′ ≤ i ≤ n. Then the representation σ
(2r)
2n−r+1 is not zero

and it is a sub-representation of L2(Sp
(2r)
2n−r+1(F )\Sp

(2r)
2n−r+1(A)). Moreover its

projection to the residual spectrum is nonzero.

One could also deduce this following [7, Propositions 4 and 5], by a sequence
of expansions along abelian unipotent radicals. We omit the details, as in fact
we expect that a stronger statement holds (compare [7, Conjecture 1]).

Conjecture 4.2. The representation σ
(2r)
2n−r+1 is equal to Θ

(2r)
2n−r+1.

5. The Whittaker coefficient of the descent

In this section we study those cases in which the descent representation

σ
(2r)
2n−r+1 is globally generic. Let us explain how these cases are predicted by
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the dimension equation of the second author [10]. It follows from this equa-
tion together with (3.2) that the following equation should hold, where the
dimension of a representation means its Gelfand-Kirillov dimension:

(5.1) dim Θψ
α,ϕ

2n−r+1 + dim Θ
(r)
2n = dim U2n,r′ + dim σ

(2r)
2n−r+1.

Since Θψ
α,ϕ

2n−r+1 is the minimal representation of Sp
(2)
2n−r+1(A), its dimension is

1
2 (2n−r+1). An easy computation shows that dim U2n,r′ =

1
4 (r−1)(4n−r+1).

If we want the representation σ
(2r)
2n−r+1 to be globally generic, its dimension

should equal 1
4 (2n− r + 1)2. Using these values, (5.1) gives

(5.2) dim Θ
(r)
2n = n2 − n+

1

2
(r − 1).

It is not hard to check that for a representation Θ
(r)
2n which satisfies both equa-

tion (5.2) and Conjecture 2.2r,n, we must have n ≤ r < 2n. If n = 2k, then for
all 0 ≤ i ≤ k − 1 the dimension of the unipotent orbit ((4k − 2i − 2)(2i + 2))
is equal to n2 − n+ 1

2 (r − 1) with r = 4k − 2i− 1. If n = 2k + 1, then for all
0 ≤ i ≤ k−1 the dimension of the unipotent orbit ((4k−2i)(2i+2)) is equal to
n2 − n+ 1

2 (r− 1) with r = 4k− 2i+1. In this case we also have the unipotent

orbit ((2k + 1)2) whose dimension is n2 − n + 1
2 (r − 1) with r = 2k + 1. The

above argument motivates the following result.

Theorem 5.1. Suppose that r is odd, n ≤ r < 2n. Suppose that Conjecture
2.2r,i holds for r′ ≤ i ≤ n. If r ̸= n, n + 1, suppose that Assumption 1 below

holds as well. Then the representation σ
(2r)
2n−r+1 is globally generic. Moreover,

in the special case where r = n, the Whittaker coefficient of σ
(2n)
n+1 attached to

factorizable data θ
(n)
2n ∈ Θ

(n)
2n and ϕ is factorizable.

We shall see below that the hypotheses concerning Conjecture 2.2r,i are
satisfied when r = n = 3. Also, shortly after this paper was completed Prof.
Fan Gao released a preprint [8] establishing that the local theta representation
when r = n has a unique Whittaker model. His result shows that Conjecture 4.2
is consistent with Theorem 5.1.

Proof. The proof is based on a computation of the integral (4.1) with V the
maximal unipotent subgroup of Sp2n−r+1 and ψV the Whittaker character of
V .

According to Conjecture 2.2r,n the unipotent orbit attached to the repre-

sentation Θ
(r)
2n is computed as follows. Let r = 2n− 2l+1 for convenience, and

write 2n = an,r(2n − 2l + 1) + bn,r. Then an,r = 1 and bn,r = 2l − 1. Thus,

the unipotent orbit attached to the representation Θ
(r)
2n is the Sp collapse of

((2n− 2l + 1)(2l − 1)). This is ((2n− 2l)(2l)) unless n = 2l − 1, in which case
it is ((2l − 1)2). This latter is the case n = r.
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We consider first the case where the unipotent orbit attached to the repre-

sentation Θ
(r)
2n is of the form ((2n − 2l)(2l)). (In the above notations we have

l = i + 1.) We first describe the set of Fourier coefficients attached to this
unipotent orbit. Let P ′

l denote the standard parabolic subgroup of Sp2n whose

Levi part is GLn−2l
1 ×GLl2. We embed this group in Sp2n as the group of all ma-

trices of the form diag(a1, . . . , an−2l, g1, . . . , gl, g
∗
l , . . . , g

∗
1 , a

−1
2n−l, . . . , a

−1
1 ). Here

ai ∈ GL1 and gj ∈ GL2 and the starred entries are determined by the require-
ment that the matrix be in Sp2n. Let U ′

l denote the unipotent radical of P ′
l .

Then the Fourier coefficients of an automorphic function φ attached to the
unipotent orbit ((2n− 2l)(2l)) are given by

(5.3)

∫
U ′

l (F )\U ′
l (A)

φ(ug)ψU ′
l ,a,b

(u) du

where a, b ∈ F ∗ and the character ψU ′
l ,a,b

is defined by

(5.4) ψU ′
l ,a,b

(u) = ψ

n−2l∑
i=1

ui,i+1 +

n−2∑
j=n−2l+1

uj,j+2 + aun−1,n+2 + bun,n+1

 .

Thus, to assert that the unipotent orbit ((2n − 2l)(2l)) is attached to a
certain representation, means first that there is a choice of a and b such that
the Fourier coefficient (5.3) is not zero for some choice of data, and second
that for all orbits which are greater than or not related to ((2n − 2l)(2l)) all
corresponding Fourier coefficients are zero. However, Conjecture 2.2r,n does
not specify for which values of a and b the integral (5.3) is nonzero for some
choice of data. To prove the theorem, we will need a compatibility assumption
which is stated as follows.

Assumption 5.2. Suppose that r ̸= n, n+1. Then there is a choice of vector φ

in the space of Θ
(r)
2n such that the integral (5.3) with a = α is not zero.

This assumption, which will not be needed when the orbit is of the form
(n2), is used to guarantee the non-vanishing of the Whittaker coefficient of the
descent.

At this point we begin the computation of the Whittaker coefficient when
n ̸= r; the case n = r will be treated separately. We compute the integral (4.1)
with V = U2n−r+1,n−r′ , that is,

(5.5)

∫
U2n−r+1,n−r′ (F )\U2n−r+1,n−r′ (A)

f(ug)ψU,b(u) du.

As above r′ = (r − 1)/2 and the character ψU,b, b ∈ F ∗, is given by

ψU,b = ψ(u1,2 + u2,3 + · · ·+ un−r′−1,n−r′ + bun−r′,n−r′+1).
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Similarly to the analysis of (4.1) and (4.2), the integral (5.5) is equal to

(5.6)

∫
An−r′

∫
U2n−r+1,n−r′ (F )\U2n−r+1,n−r′ (A)

∫
U2n,r′,1(F )\U2n,r′,1(A)

ωψα(g)ϕ(x) θ
(r)
2n (uvj(x)g)ψU2n,r′,1,α(u)ψU,b(v) du dv dx.

Define the following Weyl element w0 of Sp2n. First, let w denote the Weyl

element of GLn given by w =

(
In−2l+1

ν

)
with l = n − r′ and ν = (νi,j) ∈

GL2l−1 defined as follows. Let νi,j = 1 for the pairs (i, j) = (1, l); (3, l +
1); (5, l + 2); . . . ; (2l − 1, 2l − 1) and (i, j) = (2, 1); (4, 2); (6, 3) . . . (2l − 2, l − 1)

and νi,j = 0 otherwise. For example if l = 2 then ν =
(

0 1 0
1 0 0
0 0 1

)
. Then let

w0 =

(
w

w∗

)
where the star indicates that the matrix is in Sp2n.

Since θ
(r)
2n is left-invariant under w0, inserting w0 into θ

(r)
2n and moving it

rightward, the integral (5.6) is equal to
(5.7)∫
An−r′

∫
V1(F )\V1(A)

∫
U ′

l,1(F )\U ′
l,1(A)

ωψα(g)ϕ(x) θ
(r)
2n (uvw0j(x)g)ψU ′

l ,α,b
(u) du dv dx.

Here U ′
l,1 is the subgroup consisting of u = (ui,j) ∈ U ′

l such that u2m,2k+1 = 0
for all 1 ≤ m ≤ l − 1 and m ≤ k ≤ l − 1. Also, the group V1 is the unipotent
subgroup of Sp2n consisting of all matrices of the form I2n+

∑
i,j ri,je

∗
i,j where

the sum is over all pairs (i, j) = (2k + 1, 2m) with 1 ≤ m ≤ l − 1 and m− 1 ≤
k ≤ l − 2.

Let Zl denote the unipotent subgroup of U ′
l consisting of all matrices of the

form I2n +
∑
i,j ri,je

∗
i,j where the sum is over all pairs (i, j) = (2m, 2k + 1)

with 1 ≤ m ≤ l − 1 and m ≤ k ≤ l − 1. Then Zl is a subgroup of U ′
l which

satisfies the condition that U ′
l = Zl · U ′

l,1. We perform a root exchange in the

integral (5.7). Expanding the integral (5.7) along the quotient Zl(F )\Zl(A)
and exchanging roots with the group V1, we deduce that this integral is equal
to

(5.8)

∫
An−r′

∫
V1(A)

∫
U ′

l (F )\U ′
l (A)

ωψα(g)ϕ(x) θ
(r)
2n (uvw0j(x)g)ψU ′

l ,α,b
(u) du dv dx.

Using [7, Lemma 1], we deduce that the integral (5.8) is not zero for some choice
of data if and only if the integral (5.3) with a = 1 is not zero for some choice
of data. When r ̸= n + 1, i.e. n ̸= 2l, we use Assumption 5.2 to deduce the
nonvanishing of integral (5.8), or equivalently, the nonvanishing of a Whittaker

coefficient of σ
(r)
2n−r+1.
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When r = n + 1, so n = 2l, we may deduce the nonvanishing of the in-
tegral (5.8) without requiring an analogue of Assumption 5.2. Indeed, this
situation is essentially the same as the cases studied in Ginzburg-Rallis-Soudry
[11, 12]. In those works, the residue representation is defined on the linear
group Sp2n(A) rather than a covering group. In our case, we are concerned
with the r = (n + 1)-fold cover, and the representation we use to define the

descent is Θ
(n+1)
2n . However, the crucial ingredient for the computations of the

Whittaker coefficients is the unipotent orbit attached to the residue representa-
tions. In both cases it is the orbit (n2). Since the computations for the proof of
the theorem involve only manipulations of unipotent groups, the cover does not
enter. Since the notations in those references are different, for the convenience
of the reader we sketch the argument.

Starting with the integral (5.8), we choose b = −α/4. Let γ =

(
1

−1 1

)(
1 1

2

1

)
,

and define γ0 = diag(γ, . . . , γ, γ∗, . . . , γ∗) ∈ Sp2n(F ). This is analogous to the

matrix a defined in [11, (4.8)]. Since θ
(n+1)
2n is invariant under γ0, inserting it

in the integral (5.8) and moving it rightward we obtain

(5.9)∫
An−r′

∫
V1(A)

∫
U ′

l (F )\U ′
l (A)

ωψα(g)ϕ(x) θ
(n+1)
2n (uγ0vw0j(x)g)ψU ′

l ,α
(u) du dv dx

where ψU ′
l ,α

is given by

ψU ′
l ,α

(u) = ψ(u1,3 + u2,4 + u3,5 + u4,6 + · · ·+ un−3,n−1 + un−2,n + αun−1,n+1).

Define the following Weyl element w′
0 of Sp2n. If w

′
0 = (w′

0,i,j) then w
′
0,i,2i−1

= 1 for all 1 ≤ i ≤ n. All other entries are 0,±1 and are determined uniquely
such that w′

0 ∈ Sp2n. This Weyl element was denoted by ν in [11, p. 881].
Inserting w′

0 in the integral (5.9), we obtain

(5.10)

∫
An−r′

∫
V1(A)

∫
Y (F )\Y (A)

∫
U2n,n,0(F )\U2n,n,0(A)

ωψα(g)ϕ(x) θ
(n+1)
2n (uyw′

0γ0vw0j(x)g)ψU2n,n,α(u) du dy dv dx.

Here Y is the unipotent group consisting of all matrices in Sp2n of the form(
In
y In

)
such that yi,j = 0 if i ≥ j. The group U2n,n,0 is the subgroup of

U2n,n such that ui,j = 0 for all 1 ≤ i ≤ n and n + 1 ≤ j ≤ n + i. Finally, the
character ψU2n,n,α is the character of U2n,n defined by ψU2n,n,α(u) = ψ(u1,2 +
u2,3 + · · ·+ un−2,n−1 + αun−1,n).

At this point we carry out a sequence of root exchanges. This process is
described in detail in [11, Section 5] so we will omit the details here. Carrying
out this process, we deduce that the integral (5.8) is equal to
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(5.11)∫
An−r′

∫
V1(A)

∫
Y (A)

∫
U2n,n(F )\U2n,n(A)

ωψα (g)ϕ(x) θ
(n+1)
2n (uyw′

0γ0vw0j(x)g)ψU2n,n,α(u) du dy dv dx.

Then once again [7, Lemma 1], implies that integral (5.11) is not zero for
some choice of data if and only if the inner integration along the quotient
U2n,n(F )\U2n,n(A) is not zero for some choice of data. The nonvanishing of
this integral follows from Proposition 2.1 with a = n and the global genericity

of the representation Θ
(n+1)
GLn

[14].
To complete the proof of the theorem we need to consider the case when n

is odd and r = n. In this case we have l = (n + 1)/2. To use formulas from
the previous case, we change the notation, and now let P ′

l be the standard

parabolic subgroup of Sp2n whose Levi part is GL1 ×GL
(n−1)/2
2 and U ′

l be its
unipotent radical. (Above we would have written P ′

l−1, U
′
l−1.) We again start

with the integral (5.5), define w0 as above, and after conjugation we obtain the
integral (5.7), with the groups U ′

l,1 and V1 changed as follows. Now U ′
l,1 is the

subgroup of U ′
l consisting of u = (ui,j) ∈ U ′

l such that u2m−1,2k = 0 for all
1 ≤ m ≤ l − 1 and m ≤ k ≤ l − 1, and V1 is the unipotent subgroup of Sp2n
consisting of all matrices of the form I2n +

∑
i,j ri,je

∗
i,j where the sum ranges

over all pairs (i, j) = (2k, 2m− 1) where 1 ≤ m ≤ l− 1 and m− 1 ≤ k ≤ l− 2.
Let Zl now be the subgroup of U ′

l consisting of all matrices of the form
I2n +

∑
i,j ri,je

∗
i,j where the sum is over all pairs (i, j) = (2m − 1, 2k) where

1 ≤ m ≤ l − 1 and m ≤ k ≤ l − 1 together with the condition that r1,2 = 0.
Notice that in this case it is not true that U ′

l = Zl · U ′
l,1. Performing root

exchange similarly to our treatment of the integral (5.7) we obtain∫
An−r′

∫
V1(A)

∫
U ′

l,0(F )\U ′
l,0(A)

ωψα(g)ϕ(x) θ
(n)
2n (uvw0j(x)g)ψU ′

l ,α,b
(u) du dv dx.

Here, U ′
l,0 is the subgroup of U ′

l consisting of all matrices u = (ui,j) ∈ U ′
l such

that u1,2 = 0, and the character ψU ′
l ,1,b

is given by

ψU ′
l ,1,b

(u) = ψ

(
n−2∑
i=1

ui,i+2 + αun−1,n+2 + bun,n+1

)
.

Expand the above integral along the group z(y) = I2n + ye∗1,2. We obtain∫
An−r′

∫
V1(A)

∑
β∈F

∫
F\A

∫
U′

l,0
(F )\U′

l,0
(A)

ωψα (g)ϕ(x) θ
(n)
2n (z(y)uvw0j(x)g)ψU′

l
,α,b(u)ψ(βy) du dy dv dx.

Assume that b = −α/4. Then it is not hard to check that if β ̸= −α/2 then
the two inner integrations give a coefficient which is associated to the unipotent
orbit ((n+ 1)(n− 1)). Since n is odd this is a symplectic partition. However,

it follows from Conjecture 2.2n,n that the unipotent orbit associated with Θ
(n)
2n
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is (n2). Therefore, the only nonzero contribution to the above integral is from

β = −α/2. Let γ =

(
1
1 1

)(
1 −1

2
1

)
and let γ0 = diag(γ, . . . , γ, γ∗, . . . , γ∗) ∈

Sp2n(F ). Using the invariance of θ
(n)
2n by this element and moving it rightward,

we obtain the integral

(5.12)

∫
An−r′

∫
V1(A)

∫
U ′

l (F )\U ′
l (A)

ωψα(g)ϕ(x) θ
(n)
2n (uγvw0j(x)g)ψU ′

l ,α
(u) du dv dx,

where ψU ′
l ,α

is given by

ψU ′
l ,α

(u) = ψ(u1,2 + u2,4 + u3,5 + · · ·+ un−3,n−1 + un−2,n + αun−1,n+1).

Next we introduce the Weyl element w∗
0 ∈ Sp2n defined by

w∗
0 =

1
w′

0

1

 .

(Here w′
0 was defined following (5.9).) Using invariance by w∗

0 and moving this
element rightward, (5.12) is equal to∫

An−r′

∫
V1(A)

∫
Y0(F )\Y0(A)

∫
U2n,n,0(F )\U2n,n,0(A)

ωψα(g)ϕ(x) θ
(n)
2n (uy0w

∗
0γ0vw0j(x)g)

× ψU2n,n,α(u) du dy0 dv dx.

Here U2n,n,0 is now the subgroup of U2n,n of u = (ui,j) ∈ U2n,n such that
ui,j = 0 for 2 ≤ i ≤ n and n + 1 ≤ j ≤ n + i − 1, and Y0 is the group of all
matrices of the form

y0 =

1
y′

1


such that y′ ∈ Y (where Y , as well as the character ψU2n,n , was defined following
(5.10)).

Carrying out root exchanges similarly to our treatment of (5.10), we obtain
the integral

(5.13)∫
An−r′

∫
V1(A)

∫
Y0(A)

∫
U2n,n(F )\U2n,n(A)

ωψα (g)ϕ(x) θ
(n)
2n (uy0w

∗
0γ0vw0j(x)g)ψU2n,n,α(u) du dy0 dv dx.

It is not hard to check that the integral (5.13) is not zero for some choice
of data. To complete the proof of the theorem, observe that Proposition 2.1

allows us to express the integral of ψU2n,n,α times any right translate of θ
(n)
2n

over U2n,n(F )\U2n,n(A) in terms of the Whittaker function of the represen-

tation Θ
(n)
GLn

. Since the Whittaker functional of this representation is unique
up to scalars (see Kazhdan-Patterson [14, Theorem II.2.1]), we conclude that
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the integral (5.13) is factorizable provided the data θ
(n)
2n ∈ Θ

(n)
2n and ϕ are

factorizable. □

6. Some local computations

We have just seen that for factorizable data the Whittaker coefficient of

σ
(2n)
n+1 , n odd, can be expressed as a product of local Whittaker functionals. We

now analyze the corresponding local integral in the unramified case. Consider
a place ν where all data is unramified. In this Section, F denotes the corre-
sponding local field, and in all integrals we understand that we are taking the
F -valued points of the algebraic groups that are shown. We continue to use
the convention that all matrices are embedded in the corresponding metaplectic
groups via the trivial section, unless otherwise noted.

In this section, let T
(n)
2n denote the inverse image in the local n-fold metaplec-

tic group of the standard maximal torus of Sp2n(F ), and let Z(T
(n)
2n ) denote

its center. Let p be a generator of the maximal ideal in the ring of integers O
of F . Since n is odd, −1 is an n-th power and hence (p, p) = 1. This implies

that (pk1 , pk2) = 1 for all integers k1, k2. The subgroup of T
(n)
2n generated

by Z(T
(n)
2n ) and by all matrices diag(pk1 , . . . , pkn , p−kn , . . . , p−k1) is a maximal

abelian subgroup of T
(n)
2n . Denote this subgroup by T

(n)
2n,0. For a diagonal matrix

t = diag(a, a∗) ∈ Sp2n(F ) we shall denote t0 = a ∈ GLn(F ). Also, recall that
since we are in the unramified case the maximal compact subgroup Sp2n(O)
of Sp2n(F ) splits under the n-fold cover; fix an injection ι of Sp2n(O) into

Sp
(n)
2n (F ).

Let f
(n)
W be the function on Sp2n(F ) defined as follows. First, it is right-

invariant under ι(Sp2n(O)). Second, f
(n)
W (ug) = ψU2n,n,α(u)f

(n)
W (g) for all u ∈

U2n,n(F ). (The character ψU2n,n,α was defined before (5.11) above.) Recall
that α ∈ F ∗ was defined in (3.1). For almost all places α is a unit. Hence, after
a suitable conjugation by a torus element we may replace ψU2n,n,α by ψU2n,n,1

which we write simply ψU2n,n . In doing so we make use of the right ι(Sp2n(O))-
invariance of fW . So from now on we set α = 1 without loss. Finally, for all

(t, ζ) ∈ T
(n)
2n,0 (t = diag(a, a∗) ∈ Sp2n(F ), ζ ∈ µn) we have f

(n)
W ((t, ζ)) =

ζ δ
n−1
2n

Q (t)W
(n)
GLn

((t0, 1)). Here W
(n)
GLn

is the normalized Whittaker function for

the local theta representation of GL
(n)
n that is unramified with respect to the

subgroup GLn(O) embedded in GL
(n)
n (F ) in a way that is compatible with ι,

and Q = P2n,n is the maximal parabolic subgroup of Sp2n whose Levi part is
GLn. (Recall from [14] that the space of Whittaker functionals for the theta

function of GL
(n)
n (F ) is one dimensional.)
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Consider the integral

(6.1) W
(2n)
Spn+1

(g) =

∫
Fn−r′

∫
V1

∫
Y0

ωψ(g)ϕ(x) f
(n)
W (y0w

∗
0γ0vw0j(x)g) dy0 dv dx,

where the function ϕ is the normalized unramified Schwartz function.

It may be desirable to compute W
(2n)
Spn+1

(g) for an arbitrary torus element;

however, a general formula would be quite complicated. We will concentrate
on a special case (though for n = 3 it is general) where the computations,
though not trivial, are simpler. Let n1, n2 be non-negative integers, a = pn1

and b = pn2 , and let

g = diag(ab, b, In−3, b
−1, a−1b−1).

Substituting this element in (6.1), changing variables in x and using the invari-
ant properties of the functions involved, we obtain

γ(a) |ab2|−1/2

∫
V1

∫
Y0

f
(n)
W (y0w

∗
0γ0vw0g) dy0 dv.

Here γ(a) is the Weil factor and the factor γ(a) |ab2|−1/2 is obtained from the
change of variables in x together with the properties of the Weil representa-
tion. We can ignore the integration over x since ϕ is the unramified Schwartz
function.

The matrices γ0 and γ were defined before (5.12) above. We have the factor-

ization γ =

(
1 1

1

)(
−1

1

)(
1 1

2
1

)
, and this induces a factorization of γ0:

γ0 = γ′0w
′
0γ

′′
0 . Changing variables in V1 we may ignore the matrix γ′′0 . Moving

γ′0 to the left and using the left transformation of f
(n)
W by matrices in U2n,n, we

obtain the integral

γ(a) |ab2|−1/2

∫
V1

∫
Y0

f
(n)
W (y0w

∗
0w

′
0vw0g)ψY0(y0) dy0 dv.

Here we recall that n is odd and that Y0 consists of all matrices of the form

y0 =


1

In−1

y In−1

1

 with y ∈ Mat(n−1)×(n−1), yi,j = 0 for all i ≥ j;

we have ψY0(y0) = ψ(yn−1
2 ,n+1

2
).

Next we move the matrix g to the left and the Weyl element w∗
0w

′
0w0 to the

right. Doing so, we obtain the integral

(6.2) γ(a) |ab2|−
n−2
2

∫
V2

∫
Y0

f
(n)
W (ty0v2)ψY0(y0) dy0 dv2
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with t = diag(ab, b, I2n−4, b
−1, a−1b−1). The group V2 consists of all matrices

of the form
(
In
v In

)
where v =

∑
i,j ri,j(ei,j + en−j+1,n−i+1) and the sum is

over all pairs (i, j) such that 1 ≤ i ≤ n−3
2 and 1 ≤ j ≤ i+ 1. The extra factor

of |ab2|−n−3
2 is obtained from the change of variables in V1.

Integral (6.2) is the analogous to the integral that appears on the right hand
side of Ginzburg-Rallis-Soudry [12, p. 255], Eqn. (3.7). Indeed, the matrices
y0 and v2 can be viewed as matrices of Sp2n−2 embedded in Sp2n in the obvi-
ous way. This comparison enables us to proceed as in [12, pp. 256–260], and
conclude that integral (6.2) is a sum of two terms. First we have

γ(a) |ab2|−
n−2
2 f

(n)
W (t) = γ(a)|ab2|

2n−1
2n W

(n)
GLn

(t0).

This corresponds to the term which is denoted as Case 1 in [12, p. 260]. The
second term we obtain is the one corresponding to Case 2 in that reference. It
is equal to

(6.3) γ(a)|ab2|−
n−2
2

∫
|h|>1

f
(n)
W (ty(h))ψ(h) |h|

(n−1)(n−3)
2 dh,

with y(h) = diag(I2, h
−1In−2, hIn−2, I2). Write h = p−mϵ where ϵ is a unit.

Then (6.3) is equal to

γ(a) |ab2|−
n−2
2

∞∑
m=1

qm(1+
(n−1)(n−3)

2 )
∫

|ϵ|=1

f
(n)
W (ty(p−mϵ))ψ(p−mϵ) dϵ.

The factorization y(p−mϵ) = y(p−m)y(ϵ) contributes, via the cocycle defining

the metaplectic group, the factor (ϵ, p)
m(n−2)
n . Hence the above integral is equal

to
(6.4)

γ(a) |ab2|−
n−2
2

∞∑
m=1

qm(1+
(n−1)(n−3)

2 )f
(n)
W (ty(p−m))

∫
|ϵ|=1

(ϵ, p)m(n−2)
n ψ(p−mϵ) dϵ.

The inner integral is zero unless m = 1, and when m = 1 it is equal to

q−1/2G
(n)
n−2(p) where the last term is a normalized n-th order Gauss sum, as in

[7, Section 6]. Substituting this into (6.4) we obtain

γ(a) |ab2|−
n−2
2 q−

(n−2)(2n−1)
2n )W

(n)
GLn

(t0y(p)0).

Thus we have established the following result, relating the Whittaker co-
efficients of the descent on a suitable cover of the symplectic group to the
Whittaker coefficients of the theta function on a cover of the general linear
group.



Theta functions on covers of symplectic groups 112

Theorem 6.1. Let n ≥ 3 be an odd integer. Let a = pn1 , b = pn2 , with
n1, n2 ≥ 0. Let

t = diag(ab, b, In−3, b
−1, a−1b−1) ∈ Spn+1(F ),

t0 = diag(ab, b, In−2) ∈ GLn(F ), t1 = diag(ab, b, pIn−2) ∈ GLn(F ).

Suppose that Conjecture 2.2n,i holds for (n− 1)/2 ≤ i ≤ n. Then we have the
identity

(6.5) W
(2n)
Spn+1

(t) = γ(a) |ab2|
2n−1
2n

(
W

(n)
GLn

(t0) + q−
(n−2)(2n−1)

2n W
(n)
GLn

(t1)
)
.

7. A case of Conjecture 2.2

Suppose n = 3. Then Conjecture 13,i is known for i = 1 ([14, Corollary
II.2.6]) and i = 2 ([7, Proposition 3]). In this section we sketch the proof of
Conjecture 13,3.

Proposition 7.1. Conjecture 2.23,3 holds. That is, O(Θ
(3)
6 ) = (32).

As a consequence, the hypotheses of Theorem 6.1 are satisfied for n = 3,
and we conclude unconditionally the Whittaker function for the descent on the
6-fold cover of Sp4 is Eulerian, and given at unramified places by formula (6.5).

Proof. To prove the Proposition we need to prove that the representation Θ
(3)
6

has no nonzero Fourier coefficients corresponding to the unipotent orbits (6)
and (42). Once we do so, an argument similar to the one given in Ginzburg [9,
Theorem 3.1], will imply that this representation also has no nonzero Fourier

coefficients corresponding to the orbit (412). We also need to show that Θ
(3)
6

has a nonzero Fourier coefficient corresponding to the unipotent orbit (32).
This last follows from Proposition 2.1. So the critical step is the vanishing of
Fourier coefficients attached to the two unipotent orbits (6) and (42).

For convenience, we drop the prior notation for unipotent subgroups and
characters, and will introduce the ones needed anew.

To prove this claim for Θ
(3)
6 we make use of the fact that this representation

can be obtained as a residue of an Eisenstein series induced from a suitable
theta function of a smaller rank group. This is explained in Section 2 above.

First we consider the unipotent orbit (6). Since Θ
(3)
6 is a residue of E

(3)
Θ4

(g, s),

in order to prove that Θ
(3)
6 is not globally generic it is enough to prove that

E
(3)
Θ4

(g, s) is not globally generic. Moreover, let U denote the standard maximal
unipotent of Sp6, and let ψU denote a Whittaker character of U ; without loss
we take ψU (u) = ψ(u1,2+u2,3+au3,4) with a ∈ F ∗. Then a standard unfolding
argument shows that the integral∫

U(F )\U(A)

E
(3)
Θ4

(ug, s)ψU (u) du
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is not zero for some choice of data if and only if the representation Θ
(3)
4 is

globally generic. However, it follows from Friedberg-Ginzburg [7, Lemma 2],
that this representation is not globally generic. Hence, for Re(s) large, the
above integral is zero for all choices of data, and by continuation it follows that

Θ
(3)
6 is not globally generic.
Next we consider the Fourier coefficients corresponding to the unipotent

orbit (42). Let V ⊆ U denote the subgroup V = {u = (ui,j) ∈ U : u2,3 =
u4,5 = 0}. This is the unipotent radical of the parabolic subgroup of Sp6
whose Levi part is L = GL1 × GL2. The embedding of L into Sp6 is given
by L = {diag(g1, g2, g∗2 , g−1

1 ) : g1 ∈ GL1; g2 ∈ GL2}. Let α1, α2 ∈ F and
α3, α4 ∈ F ∗. Consider the Fourier coefficient defined by

(7.1)

∫
V (F )\V (A)

φ(vg)ψV,αi(v) dv,

where ψV,αi
(v) = ψ(α1v1,2 +α2v1,3 +α3v3,4 +α4v2,5). This Fourier coefficient

is associated with the unipotent orbit (42) provided the connected component
of the stabilizer of ψV,αi

inside L(F ) is trivial (see for example Ginzburg [9]).
If α3α4 = −ϵ2 for some ϵ ∈ F ∗, then one can find a suitable γL ∈ L(F ) and
α ∈ F ∗ such that the integral (7.1) is equal to

(7.2)

∫
V (F )\V (A)

φ(vγLg) ψ̃V,α(v) dv,

where ψ̃V,α(v) = ψ(αv1,2 + v1,3 + v2,4). We will say that the Fourier coefficient
(7.1) is of split type if α3α4 = −ϵ2 for some ϵ ∈ F ∗, and non-split otherwise.

Since at half of the places ν we have the condition α3α4 = −ϵ2 for some
ϵ ∈ F ∗

ν , to complete the proof it is enough to prove that for every finite local

unramified place, the Jacquet module JV,ψ̃V,α
(Θ

(3)
6 ) is zero for all characters

ψ̃V,α with α ∈ F ∗, where Θ
(3)
6 now denotes the local theta representation at

ν. To do so we consider the Jacquet module associated with the unipotent
orbit (32). Let R denote the subgroup of U defined by R = {u ∈ U : u1,2 =
u3,4 = u5,6 = 0}. Then R is the unipotent radical of the maximal parabolic
subgroup of Sp6 whose Levi part is GL2 × SL2. Let ψR denote the character
ψR(r) = ψ(r1,3 + r2,4) of R (that is, of R(Fν); from now on we take the Fν
points of the algebraic groups in question without changing the notation).
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Next, we compute JRN,ψRψα(Θ
(3)
6 ), where N is the unipotent radical of SL2

embedded in Sp6 as the group of all matrices

n(x) =


1 x

1
1 x

1
1 −x

1

 ,

and ψα is the character of N defined by ψα(n(x)) = ψ(αx), with α ∈ Fν . Using
the one-parameter subgroups {z(k) = I6 + ke3,4} and {y(m) = I6 +me2,3 −
me4,5}, we perform root exchanges using the Lemma in [11, Section 2]. This
gives the isomorphism of vector spaces (and as modules for a suitable unipotent
group)

(7.3) JRN,ψRψα(Θ
(3)
6 ) ∼= JV,ψ̃V,α

(Θ
(3)
6 ).

Thus, to prove Proposition 7.1, it is enough to prove that for all α ̸= 0, the

Jacquet module JRN,ψRψα(Θ
(3)
6 ) is zero.

It is not hard to check that the stabilizer of ψR inside GL2 × SL2 is SL2

embedded diagonally. Note that the restriction of the 3-fold cover to SL2, em-

bedded diagonally, is a trivial cover. Thus, JR,ψR
(Θ

(3)
6 ), if not zero, defines an

unramified representation of SL2. Let σ be an irreducible unramified quotient

of JR,ψR
(Θ

(3)
6 ). Then there is a nonzero mapping

JR,ψR
(Θ

(3)
6 ) → σ → IndSL2

B χδ
1/2
B .

By Frobenius reciprocity, this implies that the space

HomGL1(JRN,ψR(Θ
(3)
6 ), χ)

is not zero. We shall show below that GL1 acts trivially on JRN,ψR(Θ
(3)
6 ).

Knowing this, it follows that GL1 must also act trivially on its quotient χ.
It follows that χ = 1, and so σ = 1. Since the Jacquet module is always of

finite length, we then conclude that all Jacquet modules JRN,ψRψα(Θ
(3)
6 ) with

α ̸= 0 are zero. Thus once we have established that GL1 acts trivially on

JRN,ψR
(Θ

(3)
6 ), the Proposition will be proved.

To do so, we use the isomorphism (7.3) above with α = 0. If α = 0, then

the Jacquet module JRN,ψRψ0(Θ
(3)
6 ) = JRN,ψR

(Θ
(3)
6 ) ∼= JV,ψV

(Θ
(3)
6 ), if not zero,

defines an unramified character of GL1, which is embedded in Sp6 as the group

of all matrices {t(a)}, with t(a) = diag(a, a−1, a, a−1, a, a−1). Here ψV = ψ̃V,α
with α = 0. For 1 ≤ i ≤ 3, let wi denote the three simple reflections of the
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Weyl group of Sp6. In matrices we have

w1 =


1

1
1

1
1

1

 ; w2 =


1

1
1

1
1

1

 ; w3 =


1

1
1

−1
1

1

 .

Let Y = {y1(m1) = I6 +m1e4,3}, and let U1 be the subgroup of the maximal
unipotent subgroup U of Sp6 consisting of all matrices u = (ui,j) ∈ U such
that u2,4 = u3,5 = u3,4 = 0. Let ψU1(u1) = ψ(u1(1, 2) + u1(2, 3)). Then

U1Y = (w3w2)V (w3w2)
−1. Hence, JV,ψV

(Θ
(3)
6 ) is isomorphic to JU1,ψU1

(Θ
(3)
6 ).

Let X = {I6 + ke2,4 + ke3,5}, and perform a root exchange of this unipotent

subgroup with the group Y . Then, since Θ
(3)
6 is not (locally) generic, we

obtain that JU1,ψU1
(Θ

(3)
6 ) is isomorphic to JU,ψ′

U
(Θ

(3)
6 ), with ψ′

U (u) = ψ(u1,2+

u2,3). This Jacquet module is not zero. Indeed, using an argument similar
to [3, Theorem 2.3] the nonvanishing of this Jacquet module follows from the

genericity of the theta representation of GL
(3)
3 . From this we deduce that

the Jacquet module JRN,ψR(Θ
(3)
6 ) is not zero. Moreover, the Jacquet module

JU,ψ′
U
(Θ

(3)
6 ) acts by the character |a|4 under the torus diag(aI3, a

−1I3) ∈ Sp6.
Taking into an account the various root exchanges, we deduce that the group

GL1 = {t(a)} acts trivially on the Jacquet module JRN,ψR(Θ
(3)
6 ), as claimed.

This completes the proof of the Proposition. □
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