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Abstract. We study R-groups for p-adic inner forms of quasi-split spe-
cial unitary groups. We prove Arthur’s conjecture, the isomorphism be-

tween the Knapp-Stein R-group and the Langlands-Arthur R-group, for
quasi-split special unitary groups and their inner forms. Furthermore, we
investigate the invariance of the Knapp-Stein R-group within L-packets
and between inner forms. This work is applied to transferring known

results in the second-named author’s earlier work for quasi-split special
unitary groups to their non-quasi-split inner forms.
Keywords: Invariance of Knapp-Stein R-groups, tempered spectrum,
Arthur’s conjecture on R-groups, p-adic inner forms of special unitary

groups.
MSC(2010): Primary: 22E50; Secondary: 11F70, 22E35.

1. Introduction

In the representation theory of p-adic groups, in particular, in the framework
of the local Langlands correspondence for a connected reductive algebraic group
G over a p-adic field F of characteristic zero, it is of great importance to study
the reducibility of parabolically induced representations. This study yields in-
formation on constructing tempered L-packets of G from discrete L-packets
of its F -Levi subgroups. The determination of reducibility has been develop-
ing over decades via several approaches, for example, by means of harmonic
analysis from investigation of poles or zeros of residues of intertwining oper-
ators, Plancherel measures, and local L-functions, [31, 32, 35]. The method
we address here is in terms of the Knapp-Stein R-group, which provides a
combinatorial description of the tempered dual of G(F ) as well as its elliptic
tempered spectrum. Further, as conjectured by Arthur, the isomorphism of
the Knapp-Stein and Langlands-Arthur R-groups, via the endoscopic R-group,
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plays a significant role in the comparison of trace formulas and the endoscopic
classification of automorphic representations [3, 20, 25].

While there has been a great deal of progress on the theory of Knapp-SteinR-
groups for F -quasi-split groups G, little is known for non F -quasi-split groups
G′. In [10], we investigated the behavior of R-groups between F -inner forms
SL′

n of SLn, and determined the Knapp-Stein R-groups for SL′
n from those of

the split SLn . We also proved the Knapp-Stein R-group for SL′
n embeds as a

subgroup of the R-group for SLn, and we characterized the quotient. Another
approach to this case was carried out in [8] and an example was discovered for
which the Knapp-Stein R-group for SL′

n is strictly smaller than that of SLn .
In [11], we further showed the invariance of R-groups between F -inner forms
of quasi-split classical groups SO2n+1, Sp2n, SO2n, or SO∗

2n, and transferred
all known, relevant facts developed by the second-named author in the quasi-
split classical groups to their non-quasi-split inner forms. Non-quasi-split inner
forms of Sp4n and SO4n are also treated in [16].

To study the Knapp-Stein R-group for a non-quasi-split group G′ in gen-
eral, as one may notice from our previous works [10, 11], it is natural that we
investigate its behavior between G and G′ and transfer the developed theories
regarding the Knapp-Stein R-group from G to G′. This is due to the notion of
Langlands functoriality. Since G′ is induced from a new Galois action twisted
by a Galois 1-cocycle in the inner automorphisms of G, their L-groups are
isomorphic over the Galois group and the set of L-parameters for G′ is con-
tained in that for G. In this paper, combining this strategy and the restriction
method, we study the Knapp-Stein R-group for non-quasi-split F -inner forms
of quasi-split special unitary groups.

More precisely, we fix a quadratic extension E of a p-adic field F of char-
acteristic zero. Let Gn = SUn be a quasi-split special unitary group over F
with respect to E/F and let G′

n be its non-quasi-split inner form over F . A
simple consequence from the Satake classification or a computation of Galois
cohomology reduces our study to the case when n is even. In fact, there is a
unique non-quasi-split F -inner form G′

n, up to F -isomorphism (see Section 3).
For the rest of the introduction, we assume that n is even, unless otherwise
stated. Let M′ be an F -Levi subgroup of G′

n, which is an F -inner form of
an F -Levi subgroup M of Gn. Then, M = M ∩ Gn and M′ = M′ ∩ G′

n,
where M is an F -Levi subgroup of a quasi-split unitary group Gn = Un over
F with respect to E/F and M′ is an F -Levi subgroup of a non-quasi-split
F -inner form G′

n of Gn. We shall use G for the group G(F ) of F -points of any
connected reductive algebraic group G over F.

Given an elliptic tempered L-parameter ϕ ∈ Φdisc(M), by [24, Théorèm
8.1], we have a lifting φ ∈ Φdisc(M) commuting with the natural projection

M̂ ↠ M̂, where M̂ and M̂ respectively denote the connected components of
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the L-groups of M and M (see Section 2 for the details). Restricting the L-
packet Πφ(M) constructed by Rogawski [28] and Mok [25] (see Section 5.1), we
construct an L-packet Πϕ(M) as the set of isomorphism classes of irreducible
constituents in the restriction from M to M. All the arguments used for M
can be applied to M′, as in Kaletha-Minguez-Shin-White [20] and the details
are described in Section 6.1. For any σ ∈ Πϕ(M), and σ′ ∈ Πϕ(M

′), we prove

Rσ ≃ Rϕ,σ and Rσ′ ≃ Rϕ,σ′ .

In each of the above isomorphisms, the left side is the Knapp-Stein R-group,
and the right side is the Langlands-Arthur R-group, defined in Section 2.2.
This is known as Arthur’s conjecture, predicted in [1], for G and G′ (See
Theorem 6.1). In the course of the proofs, we apply some known results about
R-groups for Gn and G′

n in [14, 20, 25], which are recalled in Section 5. We also
investigate and utilize some relationships between identity components of the

centralizers of the images of φ and ϕ in Ĝ and Ĝ (see Section 3.3 and Lemma
6.2).

We further study the invariance of the Knapp-Stein R-groups for Gn and
G′

n. Namely, given σ1, σ2 ∈ Πϕ(M), and σ′
1, σ′

2 ∈ Πϕ(M
′), we prove Rσ1 ≃

Rσ2 , and Rσ′
1
≃ Rσ′

2
(Theorem 6.6). Moreover, given σ ∈ Πϕ(M) and σ′ ∈

Πϕ(M
′), we prove Rσ ≃ Rσ′ (Theorem 6.8). The crucial idea is to study the

stabilizers W (σ) and W (σ′). Theorem 6.3 shows

(1.1) W (σ) ≃ {w ∈ WM : wΣ ≃ Σλ for some λ ∈ (M/M)D},
where WM is the Weyl group of M in G, Σ ∈ Πφ(M) is a lifting of σ, and
(M/M)D is the group of continuous characters on M which are trivial on
M. The same is true for W (σ′). The isomorphism (1.1) stems from the group
structure of M and M ′ and the description of irreducible representations of M
and M ′, which are discovered in [14, Section 2] and explained in Section 6.3.

As an application, a combination of Theorem 6.8 and the second-named
author’s earlier result [15, Theorem 3.7] shows that the Knapp-Stein R-group,
Rσ′ , for non-quasi-split inner forms G′ can be expressed in terms of a subgroup
in Rσ′ and Zd

2 for some integer d. It follows that Rσ′ is in general non-abelian
(see Remark 6.9).

In Section 2, we recall basic notation and background. In Section 3, we
provide the detailed group structure of Gn, Gn, G′

n, G
′
n, and their F -Levi sub-

groups, and study relations between their L-groups. In Section 4, we describe
Weyl group actions on Levi subgroups and their representations. In Section
5, we revisit the theory of R–groups for Gn and G′

n based on [14, 20, 25]. In
Section 6, we prove the Arthur’s conjecture for Gn and G′

n and the invariance
of their R-groups.
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2. Preliminaries

2.1. Basic notation and background. Let p be a prime. We let F be a
p-adic field of characteristic 0, i.e., a finite extension of Qp. Fix an algebraic
closure F̄ of F. Given a connected reductive algebraic group G defined over F,
we write G(F ) for the group of F -points. Unless otherwise stated, we shall use
G for G(F ) and likewise for other algebraic groups defined over F.

Fix a minimal F -parabolic subgroup P0 of G with Levi decomposition P0 =
M0N0, where M0 denotes a Levi factor and N0 denotes the unipotent radical.
We denote by A0 the split component of M0, that is, the maximal F -split torus
in the center of M0, and by ∆ the set of simple roots of A0 in N0. We say an
F -parabolic subgroup P of G is standard if it contains P0.

Given an F -parabolic subgroup P with Levi decomposition P = MN, there
exist a subset Θ ⊆ ∆ such that M equals MΘ, the Levi subgroup generated
by Θ. Note that M ⊇ M0 and N ⊆ N0. We write AMΘ for the split com-
ponent AM of M = MΘ. It follows that AM equals the identity component
(∩α∈Θ kerα)◦ in A0, so that M = ZG(AM), where ZG(AM) is the centralizer
of AM in G. We refer the reader to [7, Proposition 20.4] and [36, Section 15.1]
for the details.

We let Φ(P,AM ) denote the set of reduced roots of P with respect to AM.
Denote by WM = W (G,AM) := NG(AM)/ZG(AM) the Weyl group of AM

in G, where NG(AM) is the normalizer of AM in G. For simplicity, we write
A0 = AM0

.
For any topological group H, we write Z(H) for the center of H. Denote by

H◦ the identity component of H and by π0(H) the group H/H◦ of connected
components of H. We write HD for the group, Hom(H,C×), of all continuous
characters and by 1 the trivial character. We say a character is unitary if its
image is in the unit circle S1 ⊂ C×. For any Galois module J, we denote by
Hi(F, J) := Hi(Gal(F̄ /F ), J(F̄ )) the Galois cohomology of J for i ∈ N.

Let G be a connected reductive algebraic group over F. We denote by Irr(G)
the set of isomorphism classes of irreducible admissible complex representations
of G. If there is no confusion, we do not make a distinction between each
isomorphism class and its representative. For any σ ∈ Irr(M), we write iG,M (σ)

for the normalized (twisted by δ
1/2
P ) induced representation, where δP denotes

the modulus character of P. We denote by σ∨ the contragredient of σ.
Denote by Πdisc(G) and Πtemp(G) the subsets of Irr(G) which respectively

consist of discrete series and tempered representations, where, a discrete se-
ries representation is an irreducible, admissible, unitary representation whose
matrix coefficients are square-integrable modulo the center of G, that is, in
L2(G/Z(G)), and a tempered representation is an irreducible, admissible, uni-
tary representation whose matrix coefficients are in L2+ϵ(G/Z(G)) for all ϵ > 0.
It is clear that Πdisc(G) ⊂ Πtemp(G).
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We denote by WF the Weil group of F and by Γ the absolute Galois group
Gal(F̄ /F ). By fixing Γ-invariant splitting data, the L-group of G is defined as

a semi-direct product LG := Ĝ⋊WF (see [6, Section 2]). Following [6, Section
8.2], an L-parameter for G is an admissible homomorphism

ϕ : WF × SL2(C) → LG.

Two L-parameters are said to be equivalent if they are conjugate by Ĝ. We
denote by Φ(G) the set of equivalence classes of L-parameters for G.

We denote by Cϕ(Ĝ) the centralizer of the image of ϕ in Ĝ. The center of
LG is the Γ-invariant group Z(Ĝ)Γ. Note that Cϕ ⊃ Z(Ĝ)Γ. We say that ϕ

is elliptic if the quotient group Cϕ(Ĝ)/Z(Ĝ)Γ is finite, and ϕ is tempered if
ϕ(WF ) is bounded. We denote by Φell(G) and Φtemp(G) the subset of Φ(G)
which respectively consist of elliptic and tempered L-parameters of G. We set
Φdisc(G) = Φell(G) ∩ Φtemp(G).

The local Langlands conjecture for G predicts that there is a surjective
finite-to-one map from Irr(G) to Φ(G). Given ϕ ∈ Φ(G), we write Πϕ(G) for
the L-packet attached to ϕ, and then the local Langlands conjecture implies
that

Irr(G) =
⊔

ϕ∈Φ(G)

Πϕ(G).

It is expected that Φdisc(G) and Φtemp(G) respectively parameterize Πdisc(G)
and Πtemp(G).

Given two connected reductive algebraic groups G and G′ over F, G′ is said
to be an F -inner form of G with respect to an F̄ -isomorphism φ : G′ ∼→ G
if φ ◦ τ(φ)−1 is an inner automorphism (g 7→ xgx−1) defined over F̄ for all
τ ∈ Gal(F̄ /F ) (see [6, 2.4(3)] or [23, p. 280]). If there is no confusion, we often
omit the references to F and φ. It is well known from [23, p. 280] that there is
a bijection between H1(F,Gad) and the set of isomorphism classes of F -inner
forms of G, where Gad := G/Z(G). We note that, when G and G′ are inner
forms of each other, we have LG ≃ LG′ [6, Section 2.4(3)].

2.2. R-groups. We review the definitions of Knapp-Stein, Langlands-Arthur,
and endoscopic R–groups. Let G be a connected reductive algebraic group over
F, and let M be an F -Levi subgroup of G. Given σ ∈ Irr(M) and w ∈ WM , we
write wσ for the representation given by wσ(x) = σ(w−1xw). Note that, for the
purpose of studying R–groups, we do not distinguish the representative of w,
since the isomorphism class of wσ is independent of the choices of representa-
tives in G of w ∈ WM . Assume that σ lies in Πdisc(M), we define the stabilizer
of σ in WM

W (σ) := {w ∈ WM : wσ ≃ σ}.
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Write ∆′
σ for {α ∈ Φ(P,AM ) : µα(σ) = 0}, where µα(σ) is the rank one

Plancherel measure for σ attached to α [13, p. 1108]. The Knapp-Stein R-
group is defined by

Rσ := {w ∈ W (σ) : wα > 0, ∀α ∈ ∆′
σ}.

We denote by W ◦
σ the subgroup of W (σ), generated by the reflections in the

roots of ∆′
σ. Then, for any σ ∈ Πdisc(M), we have

W (σ) = Rσ ⋉W ◦
σ ,

which yields another description of the Knapp-Stein R-group

Rσ ≃ W (σ)/W ◦
σ .

We refer to [21, 33, 34] for the details.
Given an L-parameter ϕ ∈ Φ(M), we also consider ϕ as an L-parameter for

G via the inclusion M̂ ↪→ Ĝ. Fix a maximal torus Tϕ in Cϕ(Ĝ)◦. We set

W ◦
ϕ := NCϕ(Ĝ)◦(Tϕ)/ZCϕ(Ĝ)◦(Tϕ), Wϕ := NCϕ(Ĝ)(Tϕ)/ZCϕ(Ĝ)(Tϕ).

The endoscopic R-group Rϕ is defined as follows

Rϕ := Wϕ/W
◦
ϕ .

We identify Wϕ with a subgroup of WM (see [1, p. 45]). For σ ∈ Πϕ(M), we
set

W ◦
ϕ,σ := W ◦

ϕ ∩W (σ), Wϕ,σ := Wϕ ∩W (σ).

The Langlands-Arthur R-group Rϕ,σ is defined as follows

Rϕ,σ := Wϕ,σ/W
◦
ϕ,σ.

3. Structure theory of Levi subgroups

We discuss the group structure of Un, SUn, their F -inner forms, and their
F -Levi subgroups. We mainly refer to [14, 15, 20, 25, 29]. Fix a quadratic
extension E/F with ¯ the non-trivial Galois element. For any positive integer
n, we let

Jn :=


0 1

−1
1

. .
.

(−1)n−1 0

 ∈ Matn×n(Z).

We denote by ResE/F the Weil restriction of scalars of E/F (see [38, Chapter
1] and [27, 2.1.2]). For g = (gij) ∈ ResE/F GLn, we let ḡ = (ḡij) and set

εn(g) = Jn
tḡ

−1
J−1
n , where g 7→ tg is the transpose. If there is no confusion, we

often use ε instead of εn. We note that ε defined in [15, Section 1] is identical
to that defined here, since the matrix un used in loc. cit. is equal to (−1)nJn.
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3.1. Un and its inner forms. Let G = Gn denote the quasi-split unitary
group Un with respect to E/F and Jn. Thus,

G = {g ∈ ResE/FGLn : gJn
tḡ = Jn}

(cf., [15, Section 1] and [25, Chapter 1]). We denote by M an F -Levi subgroup
of G. Then, M is of the form

(3.1) ResE/FGLn1 × · · · × ResE/FGLnk
× Gm,

where
∑k

i=1 2ni+m = n with ni ≥ 0 and m ≥ 0. By convention, we note that,
G0 = 1 for n even, G1 = U1 for n odd, and GL0 = 1. The group of F -points,
AM, of the split component AM is of the form

(3.2) {diag(x1In1 , · · · , xkInk
, Im, x−1

k Ink
, · · · , x−1

1 In1) : xi ∈ F×}.

We let G′ = G′
n denote an F -inner form of G. By the Satake classification

in [29, Section 3.3], for n odd, there is no non-quasi-split F -inner form of Gn.
On the other hand, for n even, there is a unique non-quasi-split F -inner form
G′

n, up to F -isomorphism. The Γ-diagram of the connected, simply-connected,
semi-simple type of such G′ is

(3.3) ��	�

�� ��	�

�� ��	�

�� ��	�

��
•��	�

�� ��	�

�� ��	�

�� ��	�

�� OOO

OOO

oooooo

OO

��

OO

��

OO

��

OO

��

(see the table in [29, p. 119]). In the diagram above, the arrow indicates the
non-trivial Galois action. Furthermore, the black vertex indicates a root in the
set of simple roots of a fixed minimal F -Levi subgroupM′

0 of G
′. So, we remove

only a subset (denoted by ϑ) of pairs (Gal(E/F )-orbits) of white vertices to
obtain an F -Levi subgroup M′ (see [29, Section 2.2] and [6, Section I.3]). As
discussed in Section 2.1, the F -Levi subgroup M′, corresponding to Θ = ∆\ϑ,
is the centralizer in G′ of the split component AM′ = (∩α∈Θ kerα)◦. Then, M′

is of the form

(3.4) ResE/FGLn′
1
× · · · × ResE/FGLn′

k′
× G′

m′ ,

where
∑k′

i=1 2n
′
i+m′ = n with n′

i ≥ 0 and m′ ≥ 2. Notice here that m′ is always
even. Considering the forms (3.1) and (3.4), it is obvious that, if ni = n′

i for
all i, k = k′, and m = m′, then M′ is an F -inner form of M. In this case,
furthermore, two split components AM and AM′ are isomorphic over F.

Remark 3.1. Since there is a bijection between H1(F, (Gn)ad) and the set of
isomorphism classes of F -inner forms of Gn (see Section 2.1), using the fact
([17, Lemma 1.2.1(ii) and p. 657]) that

H1(F, (Gn)ad) =

{
1, if n is odd,
Z/2Z, if n is even,
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it follows that, when n is odd, there is no non-quasi-split F -inner form of Gn,
and when n is even, there is a unique non-quasi-split F -inner form, G′

n, of Gn,
up to F -isomorphism, as we discussed above.

3.2. SUn and its inner forms. We let G = Gn denote the quasi-split special
unitary group SUn with respect to E/F and Jn. Thus,

G = G ∩ ResE/FSLn = {g ∈ ResE/FSLn : gJn
tḡ = Jn}.

We denote by M an F -Levi subgroup of G. Then, M is of the form M ∩ G
and AM is of the form AM ∩G.

Due to (3.2), the F -points AM of the split component AM thus equals

{diag(x1In1 , · · · , xkInk
, Im, x−1

k Ink
, · · · , x−1

1 In1) : xi ∈ F×}.

Especially, when m ≥ 2, from (3.1) and [15, Lemma 2.8] we have a useful
isomorphism

(3.5) M ≃ (GLn1(E)× · · · ×GLnk
(E))⋊Gm,

where
∑k

i=1 2ni + m = n with ni ≥ 0. More precisely, for (g, h) with g ∈
GLn1(E)×· · ·×GLnk

(E) and h ∈ Gm, the isomorphism (3.5) from (GLn1(E)×
· · · ×GLnk

(E))⋊Gm to M is given by

(3.6) (g, h) 7−→

 g
αm(g)−1h

ε(g)

 ∈ M∩ SUn(F ) = M,

where αm(g) = αm(det g) and for a ∈ E×,

(3.7) αm(a) :=

 a
Im−2

ā−1

 ∈ GLm(E).

By convention, we note that G0 = G1 = 1. Given (g, h) with g ∈ GLn1(E) ×
· · · ×GLnk

(E) and h ∈ Gm, the action of g on h is given by

g ◦ h = αm(g) · h · αm(g)−1.

Next, we let G′ = G′
n denote an F–inner form of G. As discussed in Section

3.1, for n odd, there is no non-quasi-split F -inner form of Gn. On the other
hand, for n even, there is a unique non-quasi-split F -inner form G′

n, up to
F -isomorphism, whose Γ-diagram is (3.3). Any F -Levi subgroup M′ of G′ is
of the form M′ ∩G′. Thus, from (3.4) and (3.5), we have an isomorphism

(3.8) M ′ ≃ (GLn′
1
(E)× · · · ×GLn′

k′
(E))⋊G′

m′ ,

where
∑k′

i=1 2n
′
i +m′ = n with n′

i ≥ 0 and m′ ≥ 2. Notice as before that m′ is
always even. To explain (3.8) more precisely, for (g′, h′) with g′ ∈ GLn′

1
(E)×
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· · · × GLn′
k
(E) and h′ ∈ G′

m′ , the isomorphism (3.8) from (GLn′
1
(E) × · · · ×

GLn′
k′
(F ))⋊G′

m′ to M ′ is given by

(g′, h′) 7−→

 g′

αm′(g′)−1h′

ε(g′)

 ∈ M′ ∩G′
n = M ′,

where αm′(g′) = αm′(det g′) and for a ∈ E×,

αm′(a) :=

 a
Im′−2

ā−1

 ∈ GLm′(E).

By convention, we note that, G′
0 = 1. Given (g′, h′) ∈ M ′ with g′ ∈ GLn′

1
(E)×

· · · ×GLn′
k
(E) and h′ ∈ G′

m′ , the action of g′ on h′ is given by

g′ ◦ h′ = αm′(g′) · h′ · αm′(g′)−1.

Like the unitary case in Section 3.1, it is obvious from (3.5) and (3.8) that, if
ni = n′

i for all i, k = k′, and m = m′, then M′ is an F -inner form of M. In this
case, there is an F–isomorphism AM ≃ AM′ between two split components.

We have following exact sequences of algebraic groups

1 −→ G −→ G det−→ U1 −→ 1,

and

1 −→ G′ −→ G′ det−→ U1 −→ 1.

Applying Galois cohomology, since H1(F,G) = H1(F,G′) = 1 due to [27,
Theorem 6.4], we have following exact sequences of their F -points

1 −→ G −→ G det−→ E1 −→ 1,

and

1 −→ G′ −→ G′ det−→ E1 −→ 1,

where E1 = {x ∈ E : NE/K(x) = xx̄ = 1}. All above exact sequences are

true for F -Levi subgroups. In particular, H1(F,M) = H1(F,M′) = 1 since
H1(F,M) ↪→ H1(F,G) = 1 and H1(F,M′) ↪→ H1(F,G′) = 1 (see [26, p. 95,
footnote], [23, p. 270], and [10, Remark 2.5]). We further have

Gder = Gder = G, G′
der = G′

der = G′,

Mder = Mder ⊂ M, M′
der = M′

der ⊂ M′.
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3.3. L-groups. We describe L-groups of G = Un,G = SUn, their inner forms
G′,G′, and the L–groups of their F -Levi subgroups M,M′,M, and M′. Fur-
thermore, we explain a relationship between L-groups of M and M, and inves-

tigate a connection between two Γ-split components AM̂ and A
M̂

of M̂ and

M̂, defined as follows

AM̂ := (Z(M̂)Γ)◦ and A
M̂

:= (Z(M̂)Γ)◦.

These will be used in Section 6. Based on [25], we set

LG = LG′ = GLn(C)⋊WF ,

where WE acts trivially on GLn(C), and the action of wc ∈ WF \ WE on
ĝ ∈ GLn(C) is given by

(3.9) wc(ĝ) = J−1
n

tĝ−1Jn.

For G and G′, the L-group is

LG = LG′ = PGLn(C)⋊WF ,

where WE acts trivially on PGLn(C), and the action of wc ∈ WF \ WE on
ĝ ∈ PGLn(C) is given by (3.9).

Let M, M′, M, and M′ be F–Levi subgroups of G, G′, G, and G′, respec-
tively, such that M′ is an F–inner form of M, and M′ is an F–inner form of
M. We have

M̂ = M̂′ ⊂ Ĝ = Ĝ′, LM = LM′ = M̂⋊WF ,

M̂ = M̂ ′ ⊂ Ĝ = Ĝ′, LM = LM ′ = M̂ ⋊WF .

Considering (3.1) and (3.4), we set

M = ResE/FGLn1 × · · · × ResE/FGLnk
× Gm,

M′ = ResE/FGLn1 × · · · × ResE/FGLnk
× G′

m,

where G′
m is an F -inner form of Gm,

∑k
i=1 2ni + m = n with ni ≥ 0, and

m ≥ 0. Then, we have

M̂ = M̂′ = (GLn1(C)×GLn1(C))
× · · · × (GLnk

(C)×GLnk
(C))×GLm(C).

WE acts trivially on M̂, and the action of wc ∈ WF \WE on

((ĝ11, ĝ12), (ĝ21, ĝ22), · · · , (ĝk1, ĝk2), ĥ) ∈ M̂

is given by

wc((ĝ11, ĝ12),(ĝ21, ĝ22), · · · , (ĝk1, ĝk2), ĥ)(3.10)

= ((ĝ12, ĝ11), (ĝ22, ĝ21), · · · , (ĝk2, ĝk1), J−1
m

tĥ−1Jm).
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Next, we note that, since Mder and Mder are simply connected, we have

M̂der = (M̂)ad = M̂/Z(M̂), M̂der = (̂M)ad = M̂/Z(M̂).

Further, from [22, (1.8.1) p. 616], the exact sequence of algebraic groups

1 −→ M −→ M −→ U1 −→ 1

yields an exact sequence

(3.11) 1 −→ Û1 = C× −→ Z(M̂) ≃ (C×)2k+1 −→ Z(M̂) −→ 1.

We thus have the following commutative diagram of L-groups (cf., [10, Remark
2.4])

1 1y y
1 −−−−→ Û1 = C× ≃−−−−→ ker −−−−→ 1y y y
1 −−−−→ Z(M̂) = (C×)2k+1 −−−−→ M̂ −−−−→ M̂der −−−−→ 1y y ∥∥∥
1 −−−−→ Z(M̂) = (C×)2k+1/C× −−−−→ M̂ −−−−→ M̂der −−−−→ 1y y y

1 1 1.
The middle vertical exact sequence becomes

(3.12) 1 −→ Û1 = C× −→ M̂ = M̂′ −→ M̂ = M̂ ′ −→ 1.

We also have

(3.13) 1 −→ Û1 = C× −→ Ĝ = Ĝ′ −→ Ĝ = Ĝ′ −→ 1.

Note that Û1 in (3.12) and (3.13) equals Z(Ĝ) = Z(Ĝ′). Furthermore, Û1

is diagonally embedded into Ĝ in (3.13) and the action of WF on Û1 = C× is
obtained from (3.9). The action of WF can be also obtained from (3.10), since

it is diagonally embedded into Z(M̂) in (3.11) as well. It thus follows that the
subgroups of Γ = Gal(F̄ /F )-invariants satisfy

(3.14) Z(Ĝ)Γ = Z(Ĝ′)Γ = Û1

Γ
= {±1}.

Moreover, using the action of WF on M̂ = M̂′ in (3.10) and the surjective map

M̂ = M̂′ ↠ M̂ = M̂ ′ in (3.12), the action of WF on M̂ = M̂ ′ can be obtained.
From (3.10), we have

AM̂ := (Z(M̂)Γ)◦ ≃ ((C×)k × {±1})◦ = (C×)k.
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We note that

AM̂/Z(Ĝ)Γ ≃ (AM̂ · Z(Ĝ))/Z(Ĝ) ⊂ Ĝ.

Then, we have the following lemmas.

Lemma 3.2. The quotient AM̂/Z(Ĝ)Γ is connected.

Proof. Since AM̂ = (Z(M̂)Γ)◦ by definition and since Z(Ĝ) ⊂ AM̂, we have

AM̂/Z(Ĝ)Γ = (Z(M̂)Γ)◦/(Z(Ĝ)Γ ∩ (Z(M̂)Γ)◦)

which is isomorphic to Z(M̂)Γ/Z(Ĝ)Γ by [2, Lemma 1.1]. We note that Z(M̂)Γ/

Z(Ĝ)Γ is connected due to the proof of [2, Lemma 1.1]. □

From (3.11) and (3.14), we have the following exact sequence

1 −→ AM̂/Z(Ĝ)Γ −→ Z(M̂)Γ −→ H1(F,Z(Ĝ)).

The following lemma proves that the embedding AM̂/Z(Ĝ)Γ ↪→ Z(M̂)Γ is in
fact an equality.

Lemma 3.3. With the notation above, we have

A
M̂

= Z(M̂)Γ and A
M̂

= AM̂/Z(Ĝ)Γ.

Proof. We note from [2, Lemma 1.1] that

Z(M̂)Γ = Z(Ĝ)Γ · (Z(M̂)Γ)◦.

Since Z(Ĝ) = 1 and A
M̂

= (Z(M̂)Γ)◦, the first equality is verified (hence,

Z(M̂)Γ is connected). We note that

AM̂/Z(Ĝ)Γ ⊂ Z(M̂)Γ = A
M̂

and AM̂/Z(Ĝ)Γ is connected by Lemma 3.2. Thus, AM̂/Z(Ĝ)Γ is a torus in

Z(M̂)Γ having the same dimension with A
M̂

(cf., Lemma 6.2 in Section 6.1).

Since Z(M̂)Γ = A
M̂
, it follows that AM̂/Z(Ĝ)Γ = A

M̂
. □

4. Weyl group actions

For an F -Levi subgroup M of a connected reductive algebraic group G, we
recall from 2.1 that the Weyl groups areWM=W (G,AM):=NG(AM)/ZG(AM),

WM ′ = W (G′,AM′) := NG′(AM′)/ZG′(AM′), and W
M̂

= W (Ĝ, A
M̂
) :=

NĜ(AM̂
)/ZĜ(AM̂

). Through the duality

sα 7→ sα∨

between simple reflections for α ∈ ∆, we have

WM ≃ W
M̂

W
M̂ ′ ≃ WM ′ .
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We thus identify

(4.1) WM = W
M̂

= W
M̂ ′ = WM ′ .

4.1. On Levi subgroups. For simplicity, in Sections 4.1 and 4.2, we will write
G for both quasi-split unitary groups Un and its non-quasi-split F–inner forms
G′, andG for both quasi-split special unitary groups SUn and its non-quasi-split
F–inner forms G′.

Let M and M be F -Levi subgroups of G and G, respectively. We recall
from Section 3 that

M ≃ GLn1
(E)× · · · ×GLnk

(E)× Gm,

M ≃ (GLn1(E)× · · · ×GLnk
(E))⋊Gm,

where
∑k

i=1 2ni +m = n with ni ≥ 0 and m ≥ 0. Notice here that m ≥ 2 and
is always even for non-quasi-split inner forms. We describe the action of Weyl
group on Levi subgroups M and M as well as irreducible representations of
M and M, based on the results in [14, 15]. We denote by Sk the symmetric
group in k letters. From [14, 15], we have

(4.2) WM = WM ⊂ Sk ⋉ Zk
2 .

More precisely, WM ≃ S ⋉ C, where S = ⟨(ij)|ni = nj⟩, and C = Zk
2 . For

g ∈ M, write

g = (g1, . . . gi, . . . , gj , . . . , gk, h) ∈ GLn1(E)×GLn2(E)× · · · ×GLnk
(E)× Gm.

The permutation (ij) acts on g ∈ M by

(4.3) (ij) : (g1, . . . gi, . . . , gj , . . . , gk, h) 7→ (g1, . . . , gj , . . . , gi, . . . , gk, h).

The finite 2-group Zk
2 is generated by “block sign changes” Ci which acts on

g ∈ M by

(4.4) Ci : (g1, . . . , gi, . . . , gk, h) 7→ (g1, . . . , ε(gi), . . . , gk, h).

4.2. On representations of Levi subgroups. Set Σ to be Σ1 ⊗ Σ2 ⊗ · · · ⊗
Σk ⊗Υ. From (4.3) and (4.4), we have

(ij)Σ = Σ1 ⊗ · · · ⊗ Σj ⊗ · · · ⊗ Σi ⊗ · · · ⊗ Σk ⊗Υ;

CiΣ = Σ1 ⊗ · · · ⊗ ε(Σi)⊗ · · · ⊗ Σk ⊗Υ,

where ε(Σi)(gi) = Σi(ε(gi)), and these describe the action of WM on Σ.
Now we turn to the case of M. Note that, since G0 = G1 = 1, WM acts on

M and an irreducible representation of M in the same manner for m = 0, 1. In
particular, when m = 0 (thus, n is even), from the proof of [15, Lemma 2.4],
M is of the form

M = {
(

g
ε(g)

)
: det(g) det(ε(g)) = 1,

g ∈ GLn1(E)×GLn2(E)× · · · ×GLnk
(E)},
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which implies M ≃ {g ∈ GLn1(E)×GLn2(E)× · · · ×GLnk
(E) : det g ∈ F×}.

Whenm = 1 (thus, n is odd), sinceM ≃ GLn1(E)×GLn2(E)×· · ·×GLnk
(E)×

U1(F ), we have

M ≃ GLn1
(E)×GLn2

(E)× · · · ×GLnk
(E).

Note U1(F ) = E1 = {x ∈ E : xx̄ = 1}. Further, for any Σ ≃ Σ1 ⊗ Σ2 ⊗ · · · ⊗
Σk ⊗ Ω ∈ Irr(M), we have

ResMn

Mn
(Σ) ≃ Σ1 ⊗ Σ2 ⊗ · · · ⊗ Σk ⊗ ΩΩε,

which is always irreducible (see the proof of [15, Lemma 2.5]). Let us move to
the case of m ≥ 2. For g ∈ M, from (3.8), we write

g = (g0, h) = (g1, . . . gi, . . . , gj , . . . , gk, h)

∈ (GLn1(E)×GLn2(E)× · · · ×GLnk
(E))⋊Gm.

Denote wgw−1 by (wg0, h) for w ∈ WM. Following arguments in [15, p. 353],
the permutation (ij) acts on g ∈ M

(ij) :(g1, . . . gi, . . . , gj , . . . , gk, h)(4.5)

7→ (g1, . . . , gj , . . . , gi, . . . , gk, αm(g0)
−1αm((ij)g0)h)

= (g1, . . . , gj , . . . , gi, . . . , gk, h),

since αm(g0)
−1αm((ij)g0) = Im. That is, the permutation (ij) acts trivially on

Gm.
The finite 2-group Zk

2 is generated by “block sign changes” Ci which acts on
g ∈ M
(4.6)

Ci : (g1, . . . , gi, . . . , gk, h) 7→ (g1, . . . , ε(gi), . . . , gk, αm(g0)
−1αm(Cig0)h).

Note from the definition of αm in (3.7) that

αm(g0)
−1αm(Cig0)

:=

 (det(gi) det(ḡi))
−1

Im−2

det(gi) det(ḡi)

 ∈ SUm(F ).

Given σ ∈ Irr(M) whose component of the tensor product coming fromGm is
τ, we fix a lift Σ ∈ Irr(M). Set Σ ∈ Irr(M) to be Σ1⊗Σ2⊗· · ·⊗Σk⊗Υ, and Υ to

be a lift in Irr(Gm) with τ ↪→ ResGm

Gm
(Υ). Denote by Vσ the C-vector space which

σ acts on. It follows from [12, Lemma 2.1(c)] and [15, p. 353] that, for (g0, h) =
(g1, . . . gi, . . . , gj , . . . , gk, h) ∈ (GLn1(E)×GLn2(E)×· · ·×GLnk

(E))⋊Gm, and
(v1, v2, · · · , vk, v0) ∈ Vσ, we have

σ(g0, h)(v1, v2, · · · , vk, v0)
= Σ1(g1)(v1)⊗ Σ2(g2)(v2)⊗ · · · ⊗ Σk(gk)(vk)⊗Υ(αm(g0)

−1)τ(h)(v0).
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Further, Vσ has the following decomposition

Vσ1 ⊗ Vσ2 ⊗ · · · ⊗ Vσk
⊗ Vτ ,

as C-vector spaces. We then note that

σi = Σi and Vσi = VΣi

for each i = 1, . . . , k. Here, Vσi , VΣi for i = 1, . . . , k, and Vτ are the correspond-
ing representation vector spaces over C.

From (4.5) and [15, p. 353], we thus have

(ij)σ(g0, h) =σ1(g1)⊗ · · · ⊗ σj(gi)⊗ · · · ⊗ σi(gj) · · · ⊗ σk(gk)

⊗Υ(αm((ij)g0)
−1)τ(αm(g0)

−1αm((ij)g0)h)

=σ1(g1)⊗ · · · ⊗ σi(gj)⊗ · · · ⊗ σj(gi) · · · ⊗ σk(gk)

⊗Υ(αm(g0)
−1)τ(h).

Likewise, using (4.6), we have

Ciσ(g0, h) =σ1(g1)⊗ · · · ⊗ ε(σi)(gi)⊗ · · · ⊗ σk(gk)

⊗Υ(αm(Cig0)
−1)τ(αm(g0)

−1αm(Cig0)h)

=σ1(g1)⊗ · · · ⊗ σi(ε(gi))⊗ · · · ⊗ σk(gk)

⊗Υ(αm(g0)
−1)τ(h).

Therefore, WM acts non-trivially only on σ1, σ2, . . . , σk, but trivially on τ.

5. Revisiting R–groups for Un and their inner forms

Based on some known results in [4, 14, 20, 25] regarding R-groups for Un

and its F -inner form, we discuss Arthur’s conjecture for Un and its inner forms,
behavior of R-groups within L-packets of Un and its inner forms, and behavior
of R-groups between Un and its inner forms.

5.1. L-packets for Un and its inner forms. Let G = Gn denote the quasi-
split unitary group Un with respect to E/F and Jn, andM an F -Levi subgroup
of G. For our purpose of studying R-groups, we focus on Φtemp(G). In [25, The-
orem 2.5.1.(b)], Mok generalized Rogawski’s results [28] in the case of unitary
groups in three variables as follows. There is a surjective finite-to-one map

Πtemp(G) −→ Φtemp(G),
and for φ ∈ Φtemp(G), the tempered L-packet Πφ(G) is constructed. The same
is true for an F -inner form G′ of G by Kaletha-Minguez-Shin-White [20, Section
1.6.1].

Let M and M′ be F -Levi subgroups of G and G′, respectively, which are
F -inner forms of each other. Then, from (3.1) and (3.4), we recall

M ≃ ResE/FGLn1 × · · · × ResE/FGLnk
× Gm,
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M′ ≃ ResE/FGLn1 × · · · × ResE/FGLnk
× G′

m,

where G′
m is an F -inner form of Gm,

∑k
i=1 2ni+m = n with ni ≥ 0, and m ≥ 0.

Let φ ∈ Φdisc(M) be given. Then, φ isM-relevant (see [6, Section 8.2]) and lies
in Φdisc(M′) as well. We note that φ is of the form φ1⊕φ2⊕· · ·⊕φk⊕φ−, where
φi ∈ Φdisc(GLni(E)) and φ− ∈ Φdisc(Gm) = Φdisc(G′

m). For each φi, due to
[18, 19, 30], we construct L-packets Πφi(GLni(E)) consisting of discrete series
representations of GLni(E). Note that Πφi(GLni(E)) is a singleton. For φ−,
due to [20, 25, 28], we construct L-packets Πφ−(Gm) and Πφ−(G

′
m) consisting

of discrete series representations of Gm and G′
m, respectively. By taking the

tensor product of members in packets for each φi and φ−, we thus construct
L-packets Πφ(M) of M and Πφ(M′) of M′, associated to the elliptic tempered
L-parameter φ.

5.2. Invariance of R-groups between Un and its inner forms.

Theorem 5.1. (Goldberg, [14, Theorem 3.4]) Let M be an F -Levi subgroup
of G. Given Σ ≃ Σ1 ⊗ Σ2 ⊗ · · · ⊗ Σk ⊗Υ ∈ Πdisc(M), we have

RΣ ≃ Zd
2,

where d is the number of inequivalent Σi such that the induced representation
iGni+m, GLni

(E)×Gm
(Σ⊗Υ) is reducible. □

Theorem 5.2. Let φ ∈ Φdisc(M) be given. Under the identity (4.1), for any
Σ ∈ Πφ(M) and Σ′ ∈ Πφ(M′), we have

W (Σ) = Wφ = W (Σ′).

and

(5.1) W ◦
Σ = W ◦

φ = W ◦
Σ′ .

Therefore, we have

RΣ ≃ Rφ,Σ ≃ Rφ ≃ Rφ,Σ′ ≃ RΣ′ .

Proof. For quasi-split cases, the arguments, W (Σ) = Wφ, W ◦
Σ = W ◦

φ, and
RΣ ≃ Rφ,Σ ≃ Rφ immediately follow from [4, Lemma 11], its proof, and [5,
Lemma 4.1]. Another proof for them can be found in [25, Section 7.6]. For
non-quasi-split cases, RΣ′ ≃ Rφ,Σ′ ≃ Rφ is proved in [20, Lemma 4.6.5]. The
equality W (Σ′) = Wφ is verified in the second paragraph after the proof of
[20, Lemma 4.6.3]. The argument W ◦

Σ′ = W ◦
φ is a consequence of (4.6.3) and

Lemma 4.6.5 in [20]. This completes the proof of Theorem 5.2. □

We have following corollaries to Theorems 5.1 and 5.2.

Corollary 5.3. Let φ ∈ Φdisc(M) be given. For Σ ∈ Πφ(M) and Σ′ ∈
Πφ(M′), we have iG,M(Σ) is irreducible if and only if iG′,M′(Σ′) is irreducible.

□
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Corollary 5.4. Let M′ be an F -Levi subgroup of G′. Given Σ′ ≃ Σ′
1 ⊗ Σ′

2 ⊗
· · · ⊗ Σ′

k ⊗Υ′ ∈ Πdisc(M′), we have

RΣ′ ≃ Zd
2,

where d is the number of inequivalent Σ′
i such that the induced representation

iG′
ni+m, GLni

(E)×G′
m
(Σ′ ⊗Υ′) is reducible. □

Corollary 5.5. Suppose w ∈ RΣ′ and w = sc, with s ∈ S and c ∈ C. Then
s = 1.

Proof. This is a consequence of [14, Lemma 3.2] and Theorem 5.2. □
Let Σ′ ∈ Πdisc(M′) be given. Denote by C[RΣ′ ]η the group algebra of RΣ′

twisted by a 2-cocycle η, and by C(Σ′), known as the commuting algebra of
iG′,M′(Σ′), the algebra EndG′(iG′,M′(Σ′)) of G′-endomorphisms of iG′,M′(Σ′).
Then, we have

C(Σ′) ≃ C[RΣ′ ]η

as group algebras (see [21, 33, 34]).

Proposition 5.6. With the above notation, we have

C(Σ′) ≃ C[RΣ′ ].

Proof. The proof is similar to [14, Proposition 4.1], due to Theorem 5.2 and
Corollaries 5.4 and 5.5. □

As consequence of Proposition 5.6, we have the following corollary.

Corollary 5.7. Let Σ′ ∈ Πdisc(M′) be given. Then, each constituent of
iG′,M′(Σ′) appears with multiplicity one. □
Proposition 5.8. Let Σ′ ∈ Πdisc(M′) be given. Then, iG′,M′(Σ′) has an
elliptic constituent if and only if all constituents of iG′,M′(Σ′) are elliptic if
and only if

RΣ′ ≃ Zk
2 .

Proof. The proof is similar to [14, Theorem 4.3], due to Corollary 5.5 and
Proposition 5.6. □
Corollary 5.9. Let φ ∈ Φdisc(M) be given. For any Σ ∈ Πφ(M) and Σ′ ∈
Πφ(M′), there is an elliptic constituent in iG,M(Σ) if and only if there is an
elliptic constituent in iG′,M′(Σ′).

Proof. This is a consequence of [14, Theorem 4.3] and Proposition 5.8. □

6. Behavior of R–groups for SUn and its inner forms

In this section, we prove Arthur’s conjecture for both quasi-split special
unitary groups SUn and its inner forms. Furthermore, we study the behavior
of R-groups within L-packets and between inner forms of SUn . We will use the
notation in Sections 3, 4, and 5.
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6.1. L-packets for SUn and its inner forms. We discuss tempered L-
packets of G = SUn and its F -inner form G′. It is natural to construct L-
packets for G and G′, by restricting L-packets for G = Un and its F -inner
form G′ which has been done by Rogawski [28], Mok [25], and Kaletha-Minguez-
Shin-White [20] (see Section 5.1). Thus, given ϕ ∈ Φ(G), from [24, Théorèm
8.1], there exists a lifting φ ∈ Φ(G) such that

ϕ = pr ◦ φ,

where pr is the projection Ĝ ↠ Ĝ in (3.13). Note that the homomorphism

pr is compatible with Γ-actions on Ĝ and Ĝ (see Section 3.3) and the lifting

φ ∈ Φ(G) is chosen uniquely up to a 1-cocycle of WF in (̂G/G) (see [24, Section
7] and [8, Theorem 3.5.1]).

For our purpose, we are interested in ϕ ∈ Φtemp(G) and the lifting φ lies
in Φtemp(G). Using the L-packet Πφ(G) for φ ∈ Φtemp(G) in Section 5.1, we
construct an L-packet Πϕ(G) for ϕ ∈ Φtemp(G) as the set of isomorphism classes
of irreducible constituents in the restriction from G to G as follows:

Πϕ(G) := {σ ↪→ ResGG(Σ), Σ ∈ Πφ(G)}/ ≃ .

Likewise, given ϕ ∈ Φdisc(M), we construct an L-packet Πϕ(M) for ϕ ∈
Φdisc(M) as follows:

Πϕ(M) := {σ ↪→ ResMM (Σ), Σ ∈ Πφ(M)}/ ≃,

where φ lies in Φdisc(M) such that ϕ = pr◦φ, with the projection pr : M̂ ↠ M̂
in (3.12).

All the above arguments apply verbatim to F -inner forms G′ and their F -
Levi subgroups M′.

6.2. Arthur’s conjecture for SUn and its inner forms. The purpose of
the section is to prove Arthur’s conjecture, predicted in [1], for G and G′.

Theorem 6.1. Given ϕ ∈ Φdisc(M), σ ∈ Πϕ(M), and σ′ ∈ Πϕ(M
′), we have

Rσ ≃ Rϕ,σ and Rσ′ ≃ Rϕ,σ′ .

The rest of the section is devoted to the proof of Theorem 6.1. Since all the
following techniques apply to both M and M′, we shall state the proof for M.

Let ϕ ∈ Φdisc(M) and σ ∈ Πϕ(M) be given. Identifying Wϕ with a subgroup
of WM (see Section 2.2), we claim that

(6.1) W (σ) ⊂ Wϕ.

To see this, we let w ∈ WM be given such that wσ ≃ σ. Let Σ ∈ Irr(M) be a

lifting of σ such that σ ↪→ ResMM (Σ) (see [12, Lemma 2.3] and [37, Proposition
2.2]). Since wσ ≃ σ, it follows from [12, Lemma 2.4] and [37, Corollary 2.5]
that wΣ ≃ Σχ for some character χ of M/M. Due to the construction of L-
packets in Section 6.1, one can choose a lifting φ ∈ Φdisc(M) of ϕ such that
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Σ ∈ Πφ(M) and ϕ = pr ◦φ (see [24, Théorèm 8.1]), where pr is the projection

M̂ ↠ M̂ in (3.12). We then have

Σχ ∈ Πφχ(M) and wΣ ∈ Πwφ(M),

where χ is considered as a 1-cocycle of WF in ̂(M/M) by the local class field
theory (cf., [24, Section 7] and [8, Theorem 3.5.1]). Due to the disjointness in
[25, Theorem 2.5.1(b)] for L-packets of Un, it follows from the isomorphism
wΣ ≃ Σχ that wφ ≃ φχ. Through the projection pr : M̂ ↠ M̂, we have
wϕ ≃ ϕ. Since the elements of Wϕ stabilize A

M̂
by definition (cf., [25, p. 60]),

it thus follows that w lies in Wϕ.
From the inclusion (6.1), we have

(6.2) W (σ) = Wσ,ϕ = Wϕ ∩W (σ).

Denote by φ ∈ Φdisc(M) a lifting of ϕ as in Section 6.1. For any Σ ∈ Φφ(M),
we have

W ◦
Σ = W ◦

σ ,

since the Plancherel measure is compatible with restriction (see [9, Proposition
2.4], [15, Lemma 2.3], for example) and Φ(P,AM ) = Φ(P, AM) (see Section
2.1). Using (5.1), we have

(6.3) W ◦
σ = W ◦

φ.

To prove Theorem 6.1, from (6.2) and (6.3), it is thus enough to show that

(6.4) W ◦
φ = W ◦

ϕ .

Indeed, if so, then we have

W ◦
σ,ϕ

definition
= W ◦

ϕ ∩W (σ)
(6.4)
= W ◦

φ ∩W (σ)
(6.3)
= W ◦

σ ∩W (σ) = W ◦
σ .

In what follows, we prove (6.4). From [25, Chapter 3.4] we set a maximal

torus Tφ in Cφ(Ĝ)◦ to be the identity component

AM̂ = (Z(M̂)Γ)◦

of the Γ–invariants of the center Z(M̂). So, we have M̂ = ZĜ(Tφ). Likewise,

we set Tϕ = A
M̂

⊂ Cϕ(Ĝ)◦, and M̂ = ZĜ(Tϕ). Here, we put

C̄◦
φ := Cφ(Ĝ)◦/Z(Ĝ)Γ, T̄φ := Tφ/Z(Ĝ)Γ.

Note that C̄◦
φ ⊂ Cϕ(Ĝ)◦ ⊂ Ĝ and T̄φ ⊂ Tϕ ⊂ M̂. Using an equality in [25, p.

64], we have

W ◦
φ

definition
= NCφ(Ĝ)◦(Tφ)/Tφ = NC̄◦

φ
(T̄φ)/T̄φ.

Thus, it suffices to show that

NC̄◦
φ
(T̄φ) = NCϕ(Ĝ)◦(Tϕ).
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With above notation, the following lemma holds.

Lemma 6.2.

C̄◦
φ = Cϕ(Ĝ)◦

Proof. We first consider the following commutative diagram

1 1y y
1 −−−−→ Z(Ĝ)Γ −−−−→ Cφ(Ĝ)◦ −−−−→ C̄◦

φ = Cφ(Ĝ)◦/Z(Ĝ)Γ −−−−→ 1∥∥∥ y y
1 −−−−→ Z(Ĝ)Γ −−−−→ Cφ(Ĝ) −−−−→ Cφ(Ĝ)/Z(Ĝ)Γ −−−−→ 1y y

π0(Cφ(Ĝ)) π0(Cφ(Ĝ)) −−−−→ 1.

It follows from the right vertical exact sequence above that

C̄◦
φ = Cφ(Ĝ)◦/Z(Ĝ)Γ ⊂ (Cφ(Ĝ)/Z(Ĝ)Γ)◦ ⊂ Cφ(Ĝ)/Z(Ĝ)Γ.

Note that the index [Cφ(Ĝ)/Z(Ĝ)Γ : C̄◦
φ] is finite and so is [(Cφ(Ĝ)/Z(Ĝ)Γ)◦ :

C̄◦
φ]. Since C̄

◦
φ is connected due to the isomorphism Cφ(Ĝ)◦/Z(Ĝ)Γ ≃ (Cφ(Ĝ)◦ ·

Z(Ĝ))/Z(Ĝ), we have

(6.5) C̄◦
φ = (Cφ(Ĝ)/Z(Ĝ)Γ)◦.

From the proof of [8, Lemma 5.3.4] and the fact that Cφ(Ĝ)/Z(Ĝ)Γ ⊂ Cϕ(Ĝ),
we have the exact sequence

1 −→ Cφ(Ĝ)/Z(Ĝ)Γ −→ Cϕ(Ĝ) −→ XG(φ) −→ 1,

where XG(φ) := {a ∈ H1(WF , Û1) : aφ ≃ φ}. Since XG(φ) is finite, we have

(Cφ(Ĝ)/Z(Ĝ)Γ)◦ = Cϕ(Ĝ)◦.

Therefore, from (6.5), Lemma 6.2 is proved. □

Combining Lemmas 3.3 and 6.2, we have proved (6.4). This completes the
proof of Theorem 6.1.

6.3. Invariance of R-groups within L-packets and between inner forms.
Let ϕ ∈ Φdisc(M) be given. In this section, we will discuss the behavior of
Knapp-Stein R-groups within L-packets and between inner forms. We first
provide the following theorem that is crucial to the invariance (Theorems 6.6
and 6.8).
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Theorem 6.3. Fix a lift φ ∈ Φdisc(M) and Σ ∈ Πφ(M). Then, we have

W (σ) ≃ {w ∈ WM : wΣ ≃ Σλ for some λ ∈ (M/M)D}.

Proof. It suffices to consider the case of m ≥ 2, since the equality is already
true for the case m = 1 due to [15, Lemma 2.5]. Let m ≥ 2. We then recall
from (3.5) that

M ≃ (GLn1(E)× · · · ×GLnk
(E))⋊ SUm(F ).

Since Σ is of the form

Σ1 ⊗ Σ2 ⊗ · · · ⊗ Σk ⊗Υ,

we set Σ = Σ0 ⊗ Υ. Denote by τ is an irreducible constituent in ResUm

SUm
(Υ).

Write VΣ, VΣ0 = ⊗k
i=1VΣi , VΥ, Vτ for the corresponding representation C-vector

spaces.
Given (g, h) ∈ M with g = (g1, · · · , gk) ∈ GLn1(E) × · · · × GLnk

(E) and
h ∈ SUm(F ), v′0 = v1 ⊗ · · · ⊗ vk ∈ VΣ0 , and v0 ∈ Vτ , we define a representation
σ∗ of M

(6.6) σ∗((g, h))(v′0 ⊗ v0) = Σ0(g)v
′
0 ⊗Υ(αm(g)−1)τ(h)v0.

It turns out from [15, p. 353] that σ∗ is an irreducible constituent in ResUn

SUn
(Σ).

In what follows, using the idea in the proof of [15, Proposition 2.9], we will
show

(6.7) W (σ∗) = {w ∈ WM : wΣ ≃ Σλ for some λ ∈ (M/M)D}.

The inclusion ⊂ is obvious. Suppose that wΣ ≃ Σλ for some λ ∈ (M/M)D.
From (4.2), we set w = sc with s ∈ Sk and c ∈ Zk

2 . From Sections 4.1 and 4.2,
we have

wΣ ≃
k⊗

i=1

εi(Σs(i))⊗Υ,

where εi is either ε or trivial. Since wΣ ≃ Σλ, we have εi(Σs(i)) ≃ Σiλ
for each i, and Υ ≃ Υλ. We fix intertwining maps Ti : VΣs(i)

→ VΣi
with

ΣiλTi = Tiεi(Σs(i)), and Tλ : VΥ → VΥ with ΥλTλ = TλΥ. Write

T =
k⊗

i=1

Ti ⊗ Tλ.



Behavior of R-groups for p-adic inner forms of SUn 138

Note that ΣT = TwΣ. Then, from the definition (6.6) of σ∗, we have

Twσ∗(g, h)(v′0 ⊗ v0)

=
k⊗

i=1

Tiεi(Σs(i))(gi)vi ⊗ TλΥ(αm(wg)−1)τ(αm(g)−1αm(wg)h)v0

=

k⊗
i=1

Tiεi(Σs(i))(gi)vi ⊗ TλΥ(αm(g)−1)τ(h)v0

=

k⊗
i=1

Σi(gi)λ(gi)Ti(vi)⊗Υ(αm(g)−1)λ(αm(g)−1)τ(h)Tλ(v0)

= σ∗λ(g, h)T (v′0 ⊗ v0)

= σ∗T (v′0 ⊗ v0),

since

λ(g, h)
(3.6)
= λ(

 g
αm(g)−1h

ε(g)

) = 1.

Thus, we have w ∈ W (σ∗), which implies (6.7). From the proof of [10, Theorem
4.19], we note

W (σ) ≃ W (σ∗),

since both are in the same restriction ResUn

SUn
(Σ). Therefore, we proved the

theorem. □

Remark 6.4. The difference between W (σ) and W (Σ) turns out to be whether
the twisting by a character in (M/M)D is allowed or not. We also refer to [15,
Theorem 3.7] for another description of this difference.

Remark 6.5. We note that Theorem 6.3 holds for F -inner forms M′ as well.
To be precise, given σ′ ∈ Πϕ(M

′), we fix Σ′ ∈ Πφ(M′). Then, we have

W (σ′) ≃ {w ∈ WM ′ : wΣ′ ≃ Σ′λ for some λ ∈ (M′/M ′)D}.

Theorem 6.6. Given σ1, σ2 ∈ Πϕ(M), we have

Rσ1 ≃ Rσ2 .

Furthermore, given σ′
1, σ′

2 ∈ Πϕ(M
′), we have

Rσ′
1
≃ Rσ′

2
.

Proof. Since W ◦(σ1) = W ◦(σ2), it is enough to show that

W (σ1) ≃ W (σ2).

Fix Σ1 and Σ2 in Πφ(M) such that σ1 ↪→ ResUn

SUn
(Σ1) and σ2 ↪→ ResUn

SUn
(Σ2).

Suppose that wΣ1 ≃ Σ1λ for some λ ∈ (M/M)D. From (4.2), we write w = sc
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with s ∈ Sk and c ∈ Zk
2 . Set Σ

1 ≃ Σ1
1⊗Σ1

2⊗· · ·⊗Σ1
k⊗Υ1. Then Σ1

i ≃ εi(Σ
1
s(i))λ

for each i, and Υ1 ≃ Υ1λ. Set

λ′ :=

{
λ, on GLn1(E)× · · · ×GLnk

(E),
1, on Um(F ),

which is a character on M/M. Moreover, λ′ satisfies

wΣ2 ≃ Σ2λ′,

which implies, from Theorem 6.3, that W (σ1) ↪→ W (σ2). In the same manner,
one can verify W (σ2) ↪→ W (σ1). Thus, we have Rσ1 ≃ Rσ2 . Since the method
is the same, we omit the proof for Rσ′

1
≃ Rσ′

2
. □

Remark 6.7. The trivial character 1 in the definition of λ′ can be replaced by
a character λ0 on Um(F ) such that Υ2 ≃ Υ2λ0, where Υ2 is the representation
of Um(F ) in the decomposition Σ2 ≃ Σ2

1 ⊗ Σ2
2 ⊗ · · · ⊗ Σ2

k ⊗Υ2.

Theorem 6.8. Given σ ∈ Πϕ(M) and σ′ ∈ Πϕ(M
′), we have

Rσ ≃ Rσ′ .

Proof. The proof is similar to Theorem 6.6. □

Remark 6.9. Due to [15, Theorem 3.7], Theorem 6.8 shows that the Knapp-
Stein R-group Rσ′ is of the form

Γσ′ ⋉ Zd
2,

for some subgroup Γσ′ in Rσ′ defined in loc. cit. and some integer d in Corollary
5.4. This implies that Rσ′ is in general non-abelian from the argument in [14,
Remark p. 359].
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163–184.

[25] C.P. Mok, Endoscopic classification of representations of quasi-split unitary groups,
Mem. Amer. Math. Soc. 235 (2015), no. 1108, 248 pages.

[26] S. Morel, On the Cohomology of Certain Noncompact Shimura Varieties, with an ap-
pendix by R. Kottwitz, Ann. of Math. Stud. 173, Princeton Univ. Press, Princeton, NJ,
2010,

[27] V. Platonov and A. Rapinchuk, Algebraic Groups and Number Theory, Pure Appl.

Math. 139, Academic Press, Boston, MA, 1994.
[28] J.D. Rogawski, Automorphic Representations of Unitary Groups in Three Variables,

Ann. of Math. Stud. 123, Princeton Univ. Press, Princeton, NJ, 1990.



141 Choiy and Goldberg

[29] I. Satake, Classification Theory of Semi-Simple Algebraic Groups, with an appendix by

M. Sugiura, Notes prepared by D. Schattschneider, Lecture Notes in Pure and Applied
Mathematics 3, Marcel Dekker Inc. New York, 1971.

[30] P. Scholze, The local Langlands correspondence for GLn over p-adic fields, Invent. Math.
192 (2013), no. 3, 663–715.

[31] F. Shahidi, A proof of Langlands’ conjecture on Plancherel measures; complementary
series for p-adic groups, Ann. of Math. (2) 132 (1990), no. 2, 273–330.

[32] F. Shahidi, The notion of norm and the representation theory of orthogonal groups,
Invent. Math. 119 (1995), no. 1, 1–36.

[33] A.J. Silberger, The Knapp-Stein dimension theorem for p-adic groups, Proc. Amer.
Math. Soc. 68 (1978), no. 2, 243–246.

[34] A.J. Silberger, Correction: “The Knapp-Stein dimension theorem for p-adic groups”,
Proc. Amer. Math. Soc. 68 (1978), no. 2, 243–246; Proc. Amer. Math. Soc. 76 (1979),

no. 1, 169–170.
[35] A.J. Silberger, Introduction to Harmonic Analysis on Reductive p-Adic Groups, Based

on lectures by Harish-Chandra at the Institute for Advanced Study, 1971–1973, Mathe-
matical Notes 23, Princeton Univ. Press, Princeton, NJ. 1979.

[36] T.A. Springer, Linear Algebraic Groups, Progr. Math. 9, Birkhäuser, 2nd edition,
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