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Abstract. In the spirit of the Langlands proposal on Beyond Endoscopy,
we discuss the explicit relation between the Langlands functorial transfers
and automorphic L-functions. It is well-known that the poles of the L-

functions have deep impact to the Langlands functoriality. Our discussion
also includes the meaning of the central value of the tensor product L-
functions in terms of the Langlands functoriality. This leads to the theory

of the twisted automorphic descents for cuspidal automorphic represen-
tations of general classical groups.
Keywords: Automorphic representations, L-functions, Langlands func-
toriality, endoscopy, automorphic descent.
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1. Introduction

Let G be a reductive algebraic group defined over a number field F . Denote
by Acusp(G) the set of all equivalence classes of irreducible unitary represen-
tations of G(A), where A is the ring of adeles of F , occurring in the cuspidal
spectrum of G. Let LG be the L-group of G. For any irreducible admissible
representations ρ of LG in a complex vector space Vρ, Langlands [47] defines
the automorphic L-function

(1.1) L(s, π, ρ) :=
∏
ν

Lν(s, π, ρ)

for any π belonging to Acusp(G). Note that at the ramified local places ν
of π, the local L-function Lν(s, π, ρ) should be defined by means of the local
Langlands conjecture of G over Fν . It is a theorem of Langlands that the
eulerian product in (1.1) converges absolutely for the real part of s large. It
is a conjecture of Langlands [47] that this family of automorphic L-functions
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have meromorphic continuation to the whole complex plane C and satisfy the
functional equation

L(s, π, ρ) = ϵ(s, π, ρ) · L(1− s, π∨, ρ).

Moreover, L(s, π, ρ) has finitely many poles on s ≥ 1
2 . When π = ⊗νπν is of

Ramanujan type, i.e. at every local place ν, πν is tempered, the possible poles
of L(s, π, ρ) are at s = 1. In this case, the Langlands proposal for Beyond
Endoscopy [49] predicts that the order of the pole at s = 1 of L(s, π, ρ) when ρ
runs over all irreducible representations of LG should determine the source of
the Langlands functorial transfers of π (Problem 2.1). This is one of the most
fundamental problems in the modern theory of automorphic forms.

Inspired by the idea of Langlands, we show in [27] that the Langlands pro-
posal for beyond endoscopy may also detect the structure of endoscopy for
cuspidal automorphic representations of Ramanujan type. Our objective of
this paper is to explain the idea of [27] on one hand, and on the other hand,
to explain the relation of the tensor product L-functions (their poles or central
values) with the Langlands functoriality.

Let τ ∈ Acusp(GLN ) be an irreducible cuspidal automorphic representation
of GLN (A). The tensor product L-functions of π and τ are defined by

(1.2) L(s, π × τ) :=
∏
ν

Lν(s, π × τ).

We will restrict ourselves to the case when G is a classical group defined over
F . When G is a classical group defined over F , the theory of endoscopic
classification of Arthur [2,54] and [43] shows that the location of the poles and
their orders of L(s, π×τ) determine the endoscopic structure of π, or the global
Arthur parameter of π. Hence it is much elementary, based on the endoscopic
classification theory, to explain the relation of the poles of the tensor product
L-functions with Langlands functoriality. However, it is much more delicate to
explain the relation of the central value of the tensor product L-functions with
Langlands functoriality. The theory of twisted automorphic descents developed
in [31, 38] and [40] is for the first time to address this important relation. As
explained below, this important relation is philosophically connected to the
global Gan-Gross-Prasad conjecture [14].

The paper is orgainzed as follows. Section 2 will review briefly the problem
(Problem 2.1) in the Langlands proposal for beyond endoscopy and explain the
connection with representation theory and invariant theory of complex alge-
braic groups. Section 3 is to review some known results about poles of certain
automorphic L-functions and the endoscopic transfers with particular exam-
ples, and explain the connection with the problem in the Langlands proposal
for beyond endoscopy. Sections 4 and 5 are to discuss the relation of the tensor
product L-functions and the Langlands functoriality. In Section 4, we discuss
the poles of the tensor product L-functions with connection to the structure
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of the global Arthur parameters, which leads to the (τ, b)-theory as outlined
in [28]. The (τ, b)-theory for cuspidal automorphic representations π of classi-
cal groups is to detect the occurrence of the simple global Arthur parameter
(τ, b) in the global Arthur parameter of π by means of other basic invariants
associated to π. This discussion includes the our recent progress in this di-
rection. In Section 5, we explain how the central value of the tensor product
L-functions can be used to detect the structure of the generalized Jacquet-
Langlands correspondences between pure inner forms of classical groups, via
the theory of twisted automorphic descents as recently developed by the author
and his collaborators [31,38,39], and [40].

Freydoon Shahidi has made substantial contributions to the modern theory
of automorphic forms, in particular, to the theory of automorphic L-functions
and the Langlands functoriality. The author wish this paper is proper for the
special volume dedicated to him at the occasion of his seventieth birthday. The
author would also like to take this opportunity to thank him for his constant
encouragement and support.

2. On the Langlands proposal for beyond endoscopy

We review briefly a main problem in the Langlands proposal for beyond
endoscopy and try to understand the problem from representation theory and
invariant theory of complex algebraic reductive groups.

2.1. The problem. Let F be a number field, and A the ring of adeles of F .
Take G to be a reductive algebraic group defined over F . Denote by Acusp(G)
the set of equivalence classes of irreducible unitary representations of G(A)
that occur in the cuspidal spectrum of G(A). More precisely, we take the
closed subgroup G(A)1 of G(A) given by

(2.1) G(A)1 := {x ∈ G(A) | |χ(x)|A = 1, ∀χ ∈ X(G)F },
where X(G)F is the group of all F -rational characters of G. We consider the
space of all square integrable functions on G(F )\G(A)1, which is denoted by
L2(G(F )\G(A)1). As right G(A)1-invariant Hilbert subspaces, we have

(2.2) L2
cusp(G(F )\G(A)1) ⊂ L2

disc(G(F )\G(A)1) ⊂ L2(G(F )\G(A)1),

where L2
disc(·) denotes the discrete spectrum of G(A)1 and L2

cusp(·) denotes the
cuspidal spectrum of G(A)1. We denote by A2(G) the set of irreducible unitary
representations of G(A) whose restriction to G(A)1 are irreducible constituents
of the discrete spectrum L2

disc(G(F )\G(A)1). A similar definition applies to
Acusp(G). It is clear that Acusp(G) ⊂ A2(G). A π ∈ Acusp(G) is called of
Ramanujan type if in the restricted tensor product decomposition, π = ⊗νπν ,
all the local components πν are tempered. We denote by Ar

cusp(G) the subset of
Acusp(G) consisting of all cuspidal representations of G(A) of the Ramanujan
type. For π ∈ Acusp(G), the partial L-functions LS(s, π, ρ) with ρ running
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through the finite dimensional complex representations of the L-group LG are
well defined for the real part of s large and form a family of analytic invariants
of π. It is natural to ask how the family of the analytic invariants LS(s, π, ρ)
determine the basic structure of π in the sense of the Langlands functoriality.
When π ∈ Ar

cusp(G), the partial L-functions LS(s, π, ρ) are holomorphic for
the real part of s greater than one and may have a pole at s = 1. Hence the
order of the pole at s = 1 of LS(s, π, ρ) becomes sensitive to the structure of
π.

R. Langlands formulates the following problem in [49], which addresses the
relation between poles of automorphic L-functions and the basic functorial
structure of automorphic representations. This functorial structure is carried
by a mysterious closed subgroup of the Langlands dual group LG of G, which
may be denoted by Hπ. We note that in [49], this group was denoted by λHπ.
It is not known how to define Hπ precisely for a given π. In general, the group
Hπ may not be the Langlands dual group of a reductive algebraic group over
F .

Problem 2.1 (Langlands [49]). Let G be a reductive algebraic group defined
over a number field F , and let π be an irreducible unitary cuspidal automorphic
representation of G(A). Assume that π is of Ramanujan type. There exists a
closed subgroup Hπ of the Langlands dual group LG of G such that for all finite-
dimensional complex representations ρ of LG, the multiplicity mHπ (ρ) of the
trivial representation of Hπ occurring in the restriction of ρ to Hπ is equal to
the order mπ(ρ) of the pole at s = 1 of the Langlands automorphic L-function
L(s, π, ρ) associated to the pair (π, ρ).

We are going to understand this problem in terms of the conjectural Lang-
lands group LF . As described by Arthur in [2], the theory of automorphic
representations suggests the existence of the hypothetical Langlands group LF ,
whose complex representations are the global Langlands parameters that should
classify the automorphic representations of G(A) up to global L-packets. As-
sume that a π ∈ Acusp(G) has a hypothetical global Langlands parameter

ϕ : LF × SL2(C) → LG.

Then one may take Hπ to be the closure of the image ϕ(LF × SL2(C)) in LG,
as a topological group with the topology given by the semi-direct product of
the complex dual group G∨(C) and a finite Galois group. In this situation, one
may define a function

ρ ∈ R(LG) 7→ mHπ
(ρ) ∈ Z

where R(LG) denotes the set of equivalence classes of all irreducible complex
representations of LG, and Z is the ring of all integers. One may call this
function the dimension datum of Hπ and denote it by DHπ . It follows that
the dimension data DHπ of Hπ can be viewed as elements in the product space
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ZR(LG) endowed with the product topology. In general, this produces a map
from the set of closed subgroups H of the Langlands dual group LG to the

product space ZR(LG) by

D : H 7→ DH.

Hence one would like to understand the structure of the image of the map D

in the product space ZR(LG) and the structure of the fibers of the map D. It is
easy to check that if two subgroups, H1 and H2, of

LG are conjugate to each
other, then DH1 = DH2 . Thus the structure of the fibers of the map D is given
up to conjugation.

If G is F -split, one may replace the Langlands dual group LG by the com-
plex dual group G∨(C). The dimension datum problems turn to be problems in
representations and invariants of complex Lie groups and hence can be reformu-
lated in terms of the representations of compact Lie groups. We may abuse the
notation and assume that G∨ is a compact semisimple Lie group here. In [49],

Langlands suggests that for a given dimension datum n ∈ ZR(G∨), the fiber
D−1(n) consists of finitely many conjugate classes of closed subgroups of G∨.
The dimension datum problems have been investigated by M. Larsen and R.
Pink [50] and by Song Wang [63] and [64], and more systematically by Jinpeng
An, Jiu-Kang Yu and Jun Yu [1] and by Jun Yu [65] and [66]. It is important
to point out that [1, Theorem 3.4] provides a criterion for when a dimension

datum DH is an isolated point in the image I(D) of the map D inside ZR(G∨).
This isolation property of the dimension datum DH is equivalent to the prop-
erty that the dimension datum DH is completely determined by a finite subset
of irreducible representations in R(G∨). In such a circumstance, dimension
datum problem turns to be a finite problem in representations and invariants
of the compact Lie group G∨, which will be important for the understanding
of the Langlands functoriality in such a situation.

2.2. The source of functoriality and observable groups. The source
group Hπ of the functoriality may also be understood in terms of the notion
of observable subgroups of G∨(C) when G is assumed to be F -split. We recall
our discussion of this issue from [27, Section 4].

We may assume that the Langlands conjecture holds, that is, all Langlands
automorphic L-functions L(s, π, ρ) have meromorphic continuation to C and
satisfy the standard functional equation.

For π ∈ Ar
cusp(G), we define

(2.3) Rπ =: {ρ ∈ R(G∨(C)) | mπ(ρ) ≥ 1},
and

(2.4) Nπ =: {mπ(ρ) | ρ ∈ Rπ}.
It is clear that Nπ is closely related to the dimension data DHπ , with the
assumption of the existence of the algebraic subgroup Hπ of G∨. Assume that
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Problem 2.1 has an affirmative solution, and one has

(2.5) mHπ (ρ) = mπ(ρ)

for all ρ ∈ R(G∨(C)). For any ρ ∈ Rπ, denote by Vρ the space of the represen-
tation ρ of G∨. It follows that

mπ(ρ) = mHπ (ρ) = dimC V
Hπ
ρ ∈ Nπ.

Take linearly independent vectors v1, · · · , vmπ(ρ) ∈ V Hπ
ρ and denote by G∨

vj the
stabilizer of vj , i.e.

G∨
vj = {g ∈ G∨(C) | ρ(g)(vj) = vj}.

By [24, Theorem 1.2], these groups are observable subgroups of G∨(C). In
general, one may call an algebraic subgroup A of G∨(C) observable if G∨(C)/A
is quasi-affine following the definition in [6] or [56, Page 172]). Following [24,
Chapter 1], one has the following definition.

Definition 2.2. Let A be an algebraic subgroup of G∨(C). Define

A′′ = {g ∈ G∨(C) | f(xg) = f(x) for all f ∈ C[G∨(C)]A}
where C[G∨(C)]A denotes the A-invariants in C[G∨(C)]. Then the algebraic
subgroup A′′ containing A is called the observable hull of A. If A = A′′, then
A is called observable.

By [24, Theorem 2.1], an algebraic subgroup A of G∨(C) is observable if
and only if there is a finite-dimensional complex representation ρ of G∨(C)
and a vector v ∈ Vρ such that A is the stabilizer of v in G∨(C). Hence the
above two definitions are equivalent. Since G∨

vj are observable, it follows that

Aρ := ∩mπ(ρ)
j=1 G∨

vj is observable. It is clear that Hπ ⊂ Aρ for all ρ ∈ Rπ, and

hence we have Hπ ⊂ ∩ρ∈RπAρ. The following is proved in [27].

Proposition 2.3 ([27, Proposition 4.4]). With notation as above, ∩ρ∈Rπ
Aρ is

the observable hull of Hπ.

In general, the algebraic subgroup Hπ may not be observable, i.e.

Hπ = ∩ρ∈RπAρ

may not hold. However, in [27], we prove

Proposition 2.4 ( [27, Proposition 4.5]). Set Aπ = ∩ρ∈RπAρ. For any ρ ∈
R(G∨(C)), the following holds:

V Aπ
ρ = V Hπ

ρ .

In particular, mAπ
(ρ) = mHπ

(ρ) is true for all ρ ∈ R(G∨(C)).

In the next section, we consider the situation of endoscopic transfers in
the framework of the Langlands proposal for beyond endoscopy, which yields
interesting examples of isolated dimension data.
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3. Poles of certain L-functions and endoscopy

We will restrict ourselves here to the case of F -split classical groups G and
explain how the endoscopy structures of cuspidal automorphic representations
of G(A) can be detected by the information on poles of certain L-functions
following the formulation of the Langlands proposal for beyond endoscopy.

3.1. Endoscopic classification of discrete spectrum. Let Gn be the F -
split special orthogonal group SO2n+1, the symplectic group Sp2n, or the F -
quasisplit even special orthogonal group SO2n. We may follow [2, Chapter 1]
and also [28, Section 2] for the notation. Recall from the work of Arthur [2]
the endoscopic classification of the discrete spectrum of Gn.

Define N = NG∨
n
to be 2n if Gn is either SO2n+1 or SO2n, and to be 2n+1 if

Gn = Sp2n. The set of global Arthur parameters for Gn is denoted by Ψ̃2(Gn).

In order to explicate the structure of the parameters in Ψ̃2(Gn), we first recall
from [2] the description of the self-dual, elliptic, global Arthur parameters for

GLN , which is denoted by Ψ̃ell(N). We refer to [2] for detailed discussion about

general global Arthur parameters. The elements of Ψ̃ell(N) are denoted by ψN ,
which have the form

(3.1) ψN = ψN1
1 ⊞ · · ·⊞ ψNr

r

with N =
∑r
i=1Ni. The formal summands ψNi

i are simple parameters of the
form

ψNi
i = µi ⊠ νi

with Ni = aibi, where µi = τi ∈ Acusp(GLai) and νi is a bi-dimensional rep-
resentation of SL2(C). Following the notation used in our previous paper [28],
we also denote

ψNi
i = (τi, bi)

for i = 1, 2, · · · , r. The global parameter ψN is called elliptic if the decom-
position of ψN into the simple parameters is of multiplicity free, i.e. ψNi

i and

ψ
Nj

j are not equivalent if i ̸= j in the sense that either τi is not equivalent

to τj or bi ̸= bj . The global parameter ψN is called self-dual if each simple

parameter ψNi
i occurs in the decomposition of ψN is self-dual in the sense that

τi is self-dual. A global parameter ψN in Ψ̃ell(N) is called generic if bi = 1 for
i = 1, 2, · · · , r. The set of the generic, self-dual, elliptic, global Arthur param-

eters for GLN is denoted by Φ̃ell(N). Hence elements ϕ in Φ̃ell(N) are of the
form:

(3.2) ϕN = (τ1, 1)⊞ · · ·⊞ (τr, 1).

The sets of simple parameters are denoted by Ψ̃sim(N) and Φ̃sim(N), respec-

tively. It is clear that the set Φ̃sim(N) is in one-to-one correspondence with
the set of equivalence classes of the self-dual, irreducible cuspidal automorphic
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representations of GLN (A). A self-dual τ ∈ Acusp(GLa) is called of symplec-
tic type if the (partial) exterior square L-function LS(s, τ,∧2) has a (simple)
pole at s = 1; otherwise, τ is called of orthogonal type. In the latter case,
the (partial) symmetric square L-function LS(s, τ, sym2) has a (simple) pole at
s = 1.

From [2, Section 1.4], for any parameter ψN in Ψ̃ell(N), there is a twisted

elliptic endoscopic datum (G, s, ξ) ∈ Ẽell(N) such that the set of the global

parameters Ψ̃2(G) = Ψ̃2(G, ξ) can be identified as as a subset of Ψ̃ell(N). We
refer to [2, Section 1.4] for more constructive description of the parameters in

Ψ̃2(G). The elements of Ψ̃2(Gn) are of the form

(3.3) ψ = (τ1, b1)⊞ · · ·⊞ (τr, br).

Here N = N1+ · · ·+Nr and Ni = ai ·bi, and τi ∈ Acusp(GLai) and bi represents
the bi-dimensional representation of SL2(C). Note that each simple parameter

ψi = (τi, bi) belongs to Ψ̃2(Gni) with ni = [Ni

2 ], for i = 1, 2, · · · , r; and for
i ̸= j, ψi is not equivalent to ψj . The parity for τi and bi is discussed as above.

The subset of generic elliptic global Arthur parameters in Ψ̃2(Gn) is denoted

by Φ̃2(Gn), whose elements are in the form of (3.1).

Theorem 3.1 ([2]). For any π ∈ A2(Gn), there is a global Arthur parameter

ψ ∈ Ψ̃2(Gn), such that π belongs to the global Arthur packet, Π̃ψ(Gn), attached
to the global Arthur parameters ψ. Moreover, if π ∈ Ar

cusp(Gn) is of Ramanujan

type, then π ∈ Π̃ϕ(Gn) with a generic global Arthur parameter ϕ ∈ Φ̃2(Gn).

If we denote by AΦ̃2
cusp(Gn) the subset of Acusp(Gn) consisting of all cuspidal

representations of Gn(A) with generic global Arthur parameters, then one has

Ar
cusp(Gn) ⊂ AΦ̃2

cusp(Gn).

The Generalized Ramanujan Conjecture asserts that the equality

Ar
cusp(Gn) = AΦ̃2

cusp(Gn)

holds. We note that for the problem (Problem 2.1) in the Lanlands proposal for
beyond endoscopy and the discussion in the rest of this paper can be formulated

for cuspidal automorphic representations in the set AΦ̃2
cusp(Gn).

3.2.Twisted endoscopy for GLN .We recall the relation between the (twisted)
endoscopic structure [45] and [2] of irreducible unitary cuspidal automorphic
representation τ of GLN (A) and poles of certain types of automorphic L-
functions.We illustrate this relation for the exterior squareL-functionsL(s, τ,∧2).

We recall from [27, Theorem 2.2].

Theorem 3.2. Let τ be an irreducible, unitary, self-dual, cuspidal automorphic
representation of GL2n(A).
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(1) The exterior square L-function L(s, τ,∧2) is holomorphic for the real
part of s greater than one, as in [44, Theorem 3.1].

(2) L(s, τ,∧2) has at most a simple pole at s = 1.
(3) L(s, τ,∧2) has a simple pole at s = 1 if and only if τ is a Langlands

functorial lifting from an irreducible generic cuspidal automorphic rep-
resentation π of SO2n+1(A).

(4) Let S be a finite set of local places of F including all archimedean places.
The complete exterior square L-function L(s, τ,Λ2) has a simple pole at
s = 1 if and only if the partial exterior square L-function LS(s, τ,Λ2)
has a simple pole at s = 1.

(5) The partial exterior square L-function LS(s, τ,Λ2) has a simple pole at
s = 1 if and only if τ has a nontrivial Shalika model, as proved in [26].

We refer to [27, p. 7] for the discussion of the proof of Theorem 3.2. We note
that the relation between the pole at s = 1 of the exterior square L-function
and the existence of the (twisted) endoscopic transfer is closely related to the
period condition and also note that the complete exterior square L-function
discussed in Theorem 3.2 is given by the Langlands-Shahidi method [58]. The
Langlands functorial transfer from SO2n+1 to GL2n was first established by
the work of J. Cogdell, H. Kim, I. Piatetski-Shapiro and F. Shahidi in [11], at
almost all local places. It is proved in [33, Theorem 6.1] and [34, Theorem 5.1],
and in [12, Theorem 7.1] that the transfer from π to τ(π) is Langlands functorial
at all local places. By [22] and also [23], the image of the Langlands functorial
transfer from all irreducible generic cuspidal automorphic representations σ of
SO2n+1(A) is completely characterized.

Theorem 3.3 ([22, Theorem A]). An irreducible unitary automorphic repre-
sentation τ of GL2n(A) is the weak Langlands functorial transfer of an irre-
ducible generic unitary cuspidal automorphic representation π of SO2n+1(A) if
and only if τ is equivalent to the following isobaric representation

(3.4) τ ∼= τ1 ⊞ · · ·⊞ τr

where τj ∈ Acusp(GL2nj ) for j = 1, 2, · · · , r, with the properties that

(a) n =
∑r
j=1 nj is a partition of n with nj > 0;

(b) τi ̸∼= τj if i ̸= j;
(c) the partial exterior square L-function LS(s, τj ,Λ

2) has a pole at s = 1.

We remark that the above theorems work well for all F -quasisplit classi-
cal groups and are now established for all irreducible cuspidal automorphic
representations with generic global Arthur parameters through the theory of
endoscopic classifications of the discrete spectrum [2,54], and [43] and the work
of Mœglin [51].
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3.3. Endoscopy for classical groups. We discuss how to formulate the char-

acterization of endoscopic structure of members in the set AΦ̃2
cusp(Gn) along the

idea from the Langlands proposal for beyond endoscopy, as in Problem 2.1.
For simplicity, we consider in this section Gn to be an F -split classical group

of type SO2n+1, Sp2n, or SO2n. Let ω1, ω2, · · · , ωn be the fundamental weights
of G∨(C), following the notation of N. Bourbaki ( [7]). We denote by ρωi

the corresponding irreducible fundamental representation of G∨(C) with the
highest weight ωi. We define

(3.5) ρ2 =

{
ρω2 , if Gn = SO2n+1;

ρ2·ω1 , if Gn = Sp2n or SO2n.

We formulate the following conjecture.

Conjecture 3.4. Assume that π ∈ AΦ̃2
cusp(Gn) has a generic global Arthur

parameter
ϕ = (τ1, 1)⊞ (τ2, 1)⊞ · · ·⊞ (τr, 1),

and ρ2 is defined as in (3.5). The following hold.

(1) Order of Pole: r − 1 is equal to the order of the pole at s = 1 of the
automorphic L-function LS(s, π, ρ2).

(2) Multiplicity: Define Hρ2
π = H∨

1 × · · · ×H∨
r . Then

dimC HomHπ (ρ2, 1) = r − 1 = mπ(ρ2),

where mπ(ρ2) is the order of the pole at s = 1 of the automorphic
L-function LS(s, π, ρ2), and Hi is the twisted endoscopic group deter-
mined by the simple global Arthur parameter ϕi = (τi, 1).

Conjecture 3.4 has been proved in [27] for Gn = SO2n+1. The proof for
Sp2n and SO2n is similar, and we will omit it here. In fact, the results in [27]
are stronger and more precise. First, we prove the Langlands conjecture for
analytic properties of automorphic L-functions for L(s, π, ρ2).

Theorem 3.5 ([27, Theorem 2.1]). For π ∈ AΦ̃2
cusp(SO2n+1) and for ρ2 as

defined in (3.5), the second fundamental automorphic L-function L(s, σ, ρ2)
enjoys following properties.

(1) There exists an irreducible admissible automorphic representation τ of
GL2n(A) such that

L(s, π, ρ2) =
L(s, τ,∧2)

ζF (s)

holds for the real part of s large.
(2) The eulerian product defining the L-function L(s, σ, ρ2) converges abso-

lutely for the real part of s greater than one, has meromorphic continu-
ation to the whole complex plane, and satisfies the functional equation

L(s, σ, ρ2) = ϵ(s, σ, ρ2)L(1− s, σ∨, ρ∨2 )
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with ϵ(s, σ, ρ2) = ϵ(s, π,∧2), the ϵ-factor for the exterior square L-
function L(s, π,∧2).

(3) The L-function L(s, σ, ρ2) has possible poles at s = 0, 1, besides other
possible poles in the open interval (0, 1).

We note that [27, Theorem 2.1] was proved for π generic. It is clear that the

proof in [27] can be extended to all π in AΦ̃2
cusp(SO2n+1) based on the endoscopic

classification of Arthur in [2], since each global Arthur packet with a generic
global Arthur parameter contains a generic member by the automorphic descent
of Ginzburg-Rallis-Soudry in [23]. The same argument applies to other results
stated here.

Then we characterize the stability of cuspidal automorphic representations

in the set AΦ̃2
cusp(SO2n+1) by means of the order of the pole at s = 1 of the

L-function L(s, σ, ρ2). We recall from [2] that an irreducible cuspidal repre-
sentation π of classical group Gn(A) is called stable if it is not a non-trivial
endoscopic transfer, or equivalently, it has a simple global Arthur parameter.

Theorem 3.6 ([27, Theorem 3.2]). For π ∈ AΦ̃2
cusp(SO2n+1) and for ρ2 as

defined in (3.5), the following hold.

(1) Stability: The partial L-function LS(s, π, ρ2) has a pole of order r−1
at s = 1 if and only if there exists a partition n =

∑r
j=1 nj with

nj > 0 such that π is an endoscopic transfer from an irreducible, stable,
cuspidal automorphic representation π1 ⊗ · · · ⊗ πr of

SO2n1+1(A)× · · · × SO2nr+1(A).

In particular, π is stable if and only if the full L-function L(s, π, ρ2)
or equivalently, the partial L-function LS(s, π, ρ2) is holomorphic at
s = 1.

(2) Multiplicity: Letmπ(ρ2) be the order of the pole at s = 1 of L(s, π, ρ2)
and let mH[n1···nr ]

(ρ2) be the dimension of

HomH[n1···nr ](C)(ρ2, 1)

where H[n1···nr] = Sp2n1
× · · · × Sp2nr

. Then

mπ(ρ2) = mH[n1···nr ]
(ρ2).

We note that the order of the pole at s = 1 of the second fundamental L-
function L(s, π, ρ2) only detects the number r that is the number of the simple
global Arthur parameters in the global Arthur parameter ϕ of π. In order
to determine precisely the size of each simple global Arthur parameters in ϕ,
we need information from more L-functions, i.e. more information from the
dimension data associated to ϕ or π. As proved in [27, Theorem 4.10], we have
the following conjecture.
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Conjecture 3.7. For π ∈ AΦ̃2
cusp(SO2n+1), assume that the automorphic L-

functions L(s, π, ρ) attached to the fundamental representations

ρ = ρ3, ρ4, · · · , ρn
are analytic for the real part of S greater than one. The structure of the al-
gebraic subgroup H[n1,··· ,nr] or the partition n =

∑r
i=1 ni is completely de-

termined by the order of the pole at s = 1 of the L-function L(s, σ, ρ) for
ρ ∈ {ρ2, ρ4, · · · , ρ2[n2 ]} of the complex dual group Sp2n(C). Moreover, the L-

function L(s, σ, ρ) is holomorphic at s = 1 for ρ ∈ {ρ1, ρ3, · · · , ρ2[n2 ]+1}.

This conjecture was proved in [27, Theorem 4.10], assuming that the Lang-
lands conjecture holds for all fundamental L-functions L(s, σ, ρ) with ρ ∈
{ρ3, ρ4, · · · , ρn} plus a mild assumption on invariants. Hence it suggests that
the dimension datum DH[n1,··· ,nr ]

is completely determined by the finite subset

{ρ2, ρ4, · · · , ρ2[n2 ]}

in R(Sp2n(C)), and therefore, the dimension datum DH[n1,··· ,nr ]
is an isolated

point in the image ℑ(D) in ZR(Sp2n(C)). Also we mention that the charac-
terization of the stability or the endoscopic structure of cuspidal automorphic
representations with generic global Arthur parameters can be given in terms
of family of periods as introduced and discussed by Ginzburg and the author
in [16]. Finally, we expect that the similar results hold for Sp2n and SO2n.

4. On tensor product L-functions: poles

Let Gn be either Sp2n or any special orthogonal group SOn defined over F
with n = 2n or 2n+ 1. We consider the family of tensor product L-functions:

(4.1) LS(s, π × τ) =
∏
ν

Lν(s, πν × τν).

where π = ⊗νπν ∈ Acusp(Gn) and τ = ⊗ντν ∈ Acusp(GLm). At unramified
local places, Denote by cπν the Satake parameter associated to the unramified
πν , which is a semi-simple conjugacy class in G∨

n(C), and the same for cτν . The
local L-factors at unramified local places are given by

Lν(s, πν × τν) = (det(I − (cπν
⊗ cτν )q

−s
ν ))−1.

Langlands proves that the (partial) L-functions LS(s, π×τ) converge absolutely
for the real part of s large and have meromorphic continuation to the whole
complex plane C. It is a conjecture of Langlands that L(s, π × τ) satisfies a
functional equation relating s to 1 − s and has finitely many poles at s > 1

2 .
This conjecture has been verified by the Langlands-Shahidi method [58], and by

the Rankin-Selberg method [21] for π to be generic. When π ∈ AΦ̃2
cusp(Gn) and

Gn is F -quasisplit, this conjecture has been proved by Arthur in [2] using the
theory of endoscopic classification of the discrete spectrum of Gn. For general
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classical groups, this follows from [54] and [43]. When π has a non-generic
global Arthur parameter, the situation becomes more complicated. We refer
to the work of Mœglin [51], and also the work of [17,20,37].

We would like to discuss briefly the poles of the tensor product (partial)
L-functions LS(s, π×τ) and the endoscopic structure of π. Let ψ be the global
Arthur parameter of π. It can be written as

ψ = (τ1, b1)⊞ · · ·⊞ (τr, br).

If the partial L-function LS(s, π×τ) is holomorphic for the real part of s greater
than s0 and has a pole at s = s0, then it is not hard to show that τ = τi0 for

some i0 ∈ {1, 2, · · · , r} and s0 =
bi0+1

2 . The converse is also true. Hence the

right-most pole at s = s0 of LS(s, π × τ) detects the occurrence of the simple
global Arthur parameter (τ, 2s0 − 1) in the global Arthur parameter ψ of π. It
remains very interesting to consider the following problem

Problem 4.1. For a given π ∈ Acusp(Gn), determine the upper bound for the
integer b in the simple global Arthur parameter (τ, b) that occurs in the global
Arthur parameter ψ of π.

In order to understand this problem, we formulate an approach, called the
(τ, b)-theory in [28], which will be recalled briefly below.

4.1. On (τ, b)-theory: τ = χ. It is a program of S. Rallis [57] in collaboration
with I. Piatetski-Shapiro and S. Kudla to understand the poles of the partial
L-functions LS(s, π × χ) with a quadratic character χ with connection to the
structure of the theta lifting of π, via the doubling method [55] and the regu-
larized Siegel-Weil formula [46]. We may reformulate the program of Rallis as
the (χ, b)-theory, as a special case taking τ to be χ of the general (τ, b)-theory.

For example, take Gn = Sp2n. The doubling method of Piatetski-Shapiro
and Rallis [55] gives a global zeta integral to represent the L-function LS(s, π×
χ) with quadratic character χ and π ∈ Acusp(Sp2n). By means of the regular-
ized Siegel-Weil formula for Sp4n, Kudla and Rallis prove the following theorem
in [46].

Theorem 4.2 (Kudla-Rallis, [46]). Let π ∈ Acusp(Sp2n) and χ be a unitary
character of A×/F×.

(1) If χ2 ̸= 1, then LS(s, π⊗χ) is holomorphic for the real part of s greater
than or equal to 1

2 .

(2) If χ2 = 1, then the possible poles of LS(s, π⊗ χ) for s ≥ 1
2 are at most

simple and are located at the points

s0 ∈ {1, 2, · · · , [n
2
] + 1}.

With the endoscopic classification of Arthur citeA13, we have the following
consequence.
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Corollary 4.3. Let χ be a quadratic character of A×/F×. For any π ∈
Acusp(Sp2n), if the simple global Arthur parameter (χ, b) with an integer b oc-
curs in the global Arthur parameter ψ of π, then b ≤ 2[n2 ] + 1.

It is worthwhile to remark that the integer b in the simple global Arthur
parameter (τ, b) occurring in the global Arthur parameter ψ of π measures how
far away of the cuspidal automorphic representation π is from the Ramanujan
bound according to the generalized Ramanujan conjecture for the cuspidal
spectrum of Sp2n. In our recent paper joint with Baiying Liu [29], we consider
the precise upper bound of Ramanujan type for the whole cuspidal spectrum of
Sp2n and relate this problem to the construction and the characterization of the
so called small cuspidal automorhic representations of Sp2n. For instance, the
cuspidal automorphic representation π of Sp4n as constructed by T. Ikeda in
[25] has the global Arthur parameter (τ, 2n) with τ ∈ Acusp(GL2) of symplectic
type is the worst cuspidal automorphic representation of non-unipotent type in
the cuspidal spectrum in the sense of the generalized Ramanujan conjecture.
Note that the construction of Ikeda needs to assume that the ground field F
must be totally real. We show in [29] that if the ground field F is totally
imaginary and n ≥ 5, then the Ikeda construction does not exist for Sp2n.
Hence we can get a better Ramanujan type bound in such a circumstance for
Sp2n. We refer to [29] for the detailed discussion of this issue and other related
problems.

We also remark that the characterization of the poles of the partial L-
functions LS(s, π ⊗ χ) can be given in terms of certain periods of π. Such a
characterization has important applications to arithmetic and geometric prob-
lems as in the work of Bergeron, Millson and Mœglin [4] and [5], and also [3].
The whole theory works for all classical groups as indicated in [18,35] and [36].

4.2. On (τ, b)-theory: general τ . In order to extend the (χ, b)-theory to
the general (τ, b)-theory for irreducible cuspidal automorphic representations
τ ∈ Acusp(GLa), the theory of global zeta integrals for the tensor product
L-functions L(s, π × τ) for general irreducible cuspidal automorphic represen-
tations π ∈ Acusp(G) with G being any classical group is necessary. Currently,
certain types of global zeta integrals are known to give the tensor product L-
functions L(s, π × τ), see [17,20,37,38,40,59–61] and. However, it is not hard
to discover that the global zeta integrals in such circumstances are different
from the doubling integrals developed by Piatetski-Shapiro and Rallis [55]. Al-
though the author has explained in [28] what should be expected for a general
(τ, b)-theory, and also there are conjectures that may be relevant made in [15]
and [19], it is still not clear about how to develop such a theory. The key point
is to bound the integer b for the simple global Arthur parameter (τ, b) to occur
in the global Arthur parameter of π. As explained in [38] and [40], this issue
may have a close relation to the global Gan-Gross-Prasad conjecture [14], and
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hence should be deeply involved in the arithmetic of automorphic representa-
tions. We will leave a further discussion of this issue in the next section and
will be considered in the future.

5. On the tensor product L-functions: central values

Let G be a classical group defined over a number field F . For π ∈ Acusp(G)
and for τ ∈ Acusp(GLa), we consider the functorial meaning of the cental value
L( 12 , τ × π). In Section 4, we take π as the main object to study and use τ
to test if the global Arthur parameter ψ of π has a simple summand (τ, b) for
some b. In this section, we want to turn around the roles of τ and π.

Let G∗ be an F -quasisplit classical group and G be one of its pure inner form.
Assume that τ = τ1 ⊞ · · · ⊞ τr is an irreducible generic isobaric automorphic
representation of GLN (A) with N = NG∗ as before, which determines a generic
global Arthur parameter ϕ of G∗. Then the endoscopic classification provides
the following diagram:

(5.1)

Φ̃2(G
∗)

ϕ

↙ ↘

AΦ̃2
cusp(G) ∩ Π̃ϕ(G) ⇐⇒ Π̃ϕ(G

∗) ∩ AΦ̃2
cusp(G

∗).

Here is a basic problem.

Problem 5.1. Determine when the generic global Arthur parameter ϕ ∈ Φ̃2(G
∗)

is G-relevant.

It is clear that if ϕ ∈ Φ̃2(G
∗) is G-relevant, then both global Arthur packets

Π̃ϕ(G) and Π̃ϕ(G
∗) are non-empty and the transfer from Π̃ϕ(G) to Π̃ϕ(G

∗)
is the generalized Jacquet-Langlands correspondence between G∗ and its pure
inner form G. The theory of the twisted automorphic descents as developed
in [38] and [40], and also [31], is to give an approach to resolve Problem 5.1.
The idea is to bring the idea of the global Gan-Gross-Prasad conjecture [14]
into the game of the explicit construction of the endoscopic transfers and the
generalized Jacquet-Langlands correspondence as illustrated in diagram (5.1).

In order to explain the idea, we take G∗
n to be the F -split SO2n+1 and Gn be

a pure inner form of G∗
n over F . Take H∗

m to be an F -quasisplit SO2m and Hm

be a pure inner form ofH∗
m over F . We refer to [14,41,62] [2, Chapter 9] and [42]

for further discussion of the inner forms in general. Assume that G∗
n×H∗

m is a
relevant pair in the framework of the global Gan-Gross-Prasad conjecture [14,
Section 2.1], and Gn×Hm is a relevant pure inner form of G∗

n×H∗
m over F . For

any σ ∈ Acusp(Hm), the non-vanishing of the central value L( 12 , τ × σ) should
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detect whether the representation τ or the generic global Arthur parameter ϕ
determined by τ parameterizes cuspidal automorphic representations of Gn(A).
We remark that here the L-function L(s, τ ×σ) is viewed as an L-function of τ
twisted by σ. In other words, τ is given and σ and the group Hm are changing.
This is the reason that in [31, 38] and [40], we call the theory of automorphic
descents based on the non-vanishing condition:

L(
1

2
, τ × σ) ̸= 0

the theory of twisted automorphic descents, which extends the theory of the
automorphic descents of Ginzburg, Rallis and Soudry [23] to the great gener-
ality.

We are going to use the following two conditions to build a source represen-
tation for the twisted automorphic descent:

(1) τ = τ1⊞· · ·⊞τr is an irreducible generic isobaric automorphic represen-
tation of GL2n(A), which determines a generic global Arthur parameter

ϕ ∈ Φ̃2(G
∗
n) for the F -split G

∗
n of type SO2n+1.

(2) the central value L( 12 , τ × σ0) ̸= 0 for some σ0 ∈ AΦ̃2
cusp(Hm) for some

pure inner form Hm of an F -quasisplit H∗
m of type SO2m.

Let ϕ0 be the generic global Arthur parameter of σ0 and define

(5.2) ϕ(2) ⊞ ϕ0 := (τ1, 2)⊞ · · ·⊞ (τr, 2)⊞ ϕ0.

It is clear that ϕ(2) ⊞ ϕ0 is a global Arthur parameter for H2n+m, which is a
pure inner F -form of an F -quasisplit SO4n+2m. The source representations for
the twisted automorphic descent are the automoprhic members in the global

Arthur packet Π̃ϕ(2)⊞ϕ0
(H2n+m).

We first want to construct some automorphic members in the global Arthur

packet Π̃ϕ(2)⊞ϕ0
(H2n+m). For the given generic global Arthur parameter ϕ0

of H∗
m, if ϕ0 is Hm-relevant for a pure inner F -form Hm of H∗

m, we define

as in [2, Chapter 9] the global Arthur packet Π̃ϕ0(Hm), and if ϕ0 is not Hm-

relevant, we define the global Arthur packet Π̃ϕ0(Hm) to be empty. The global
Vogan packet attached to the global Arthur parameter ϕ0 is defined by

(5.3) Π̃ϕ0 [H
∗
m] := ∪HmΠ̃ϕ0(Hm),

where the union is taken over all the pure inner F -forms of the given F -

quasisplit H∗
m. For any σ ∈ Π̃ϕ0 [H

∗
m], take τ ⊗ σ to be an automorphic repre-

sentation of GL2n × Hm, which is the Levi subgroup of a standard parabolic
subgroup of H2n+m. Hence we may form an Eisenstein series E(·,Φτ⊗σ, s)
following [48] and [53], and also [32]. By [38, Proposition 5.3], the Eisenstein
series E(·,Φτ⊗σ, s) has a pole at s = 1

2 of order r if and only if the central

value L( 12 , τ ×σ) is nonzero. In this case, following [32], the iterated residue of

E(·,Φτ⊗σ, s) at s = 1
2 , which is denoted by Eτ⊗σ, is square-integrable and has
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the global Arthur parameter ϕ(2) ⊞ ϕ0. Following [62] and [14], we define the
global Vogan packet by

Π̃ϕ(2)⊞ϕ0
[H∗

2n+m] := ∪H2n+mΠ̃ϕ(2)⊞ϕ0
(H2n+m)

whereH2n+m runs over all pure inner F -forms of the F -quasisplitH∗
2n+m deter-

mined by the F -quasisplitH∗
m. Again if the global Arthur parameter ϕ(2)⊞ϕ0 is

not H2n+m-relevant, then we define the global Arthur packet Π̃ϕ(2)⊞ϕ0
(H2n+m)

to be empty. Hence when σ runs in the global Vogan packet Π̃ϕ0 [H
∗
m] with the

property that L( 12 , τ × σ) is nonzero, then we construct nonzero automorphic

members Eτ⊗σ in the global Vogan packet Π̃ϕ(2)⊞ϕ0
[H∗

2n+m]. According to the
construction given in [30], in addition to the residual representations as con-
structed here, there should be cuspidal automorphic members in the global

Vogan packet Π̃ϕ(2)⊞ϕ0
[H∗

2n+m].
As explained before, the theory of twisted automorphic descents is to take

τ that determines the global Arthur parameter ϕ ∈ Φ̃2(G
∗
n) as the main object

for study, and to use ϕ0, Hm and σ as tools to proceed the investigation or
the construction. Hence we may let m run in {0, 1, 2, · · · , n}, let H∗

m run

over all F -quasisplit SO2m, and let ϕ0 run in Φ̃2(H
∗
m). Therefore, the source

representations for the construction of the twisted automorphic descents from

global Arthur parameter ϕ ∈ Φ̃2(G
∗
n) to the automorphic members in the global

Vogan packet Π̃ϕ[G
∗
n] may be taken from the following set

(5.4) S(ϕ) := ∪nm=0 ∪H∗
m
∪ϕ0∈Φ̃2(Hm∗)Π̃ϕ(2)⊞ϕ0

[H∗
2n+m].

We give below the outline of the construction of the twisted automorphic de-
scents.

For the given irreducible generic isobaric automorphic representation τ =
τ1⊞· · ·⊞τr of GL2n(A), which determines a generic global Arthur parameter ϕ ∈
Φ̃2(G

∗
n), where G

∗
n is the F -split SO2n+1, we take an irreducible automorphic

member Σ ∈ S(ϕ). We may assume that Σ ∈ Π̃ϕ(2)⊞ϕ0
[H∗

2n+m] for a choice of
data. Hence we must have that

Σ ∈ A2(H2n+m) ∩ Π̃ϕ(2)⊞ϕ0
(H2n+m)

for some integer m, some generic global Arthur parameter ϕ0, and some pure
inner F -form of the F -quasisplit H∗

2n+m. The twisted automorphic descent of
τ is defined to be the Fourier coefficient of Σ attached to the partition

p
d
:= [(2n+ 2m− 1)12n+1].

From the choice of the Σ, the partition p
d
of 4n+2m is H2n+m-relevant. Hence

the partition p
d
corresponds to the F -stable nilpotent orbit Ost

p
d
in the Lie

algebra of H2n+m. For each F -rational orbit Od in the F -stable orbit Ost
p
d
(F ),

the Fourier coefficient attached to the Od of the residual representation Σ is
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denoted by DψOd (Σ). We refer to [31] or [38] for the detailed account of the
explicit construction of such Fourier coefficients. As proved in [31, Theorem
1.2], [38, Proposition 2.2], and [38, Theorem 6.4], we have the following theorem.

Theorem 5.2. The twisted automorphic descent DψOd (Σ) as defined above is
a cuspidal automorphic representation of Gn(A) for some pure inner F -form
Gn of the F -split G∗

n. If it is nonzero, it may be written as

DψOd (Σ) = π1 ⊕ π2 ⊕ · · · ⊕ πk ⊕ · · ·
with πk’s are all irreducible cuspidal automorphic representations of Gn(A). In
this case, the decomposition is of multiplicity free and all πk’s belong to the

global Arthur packet Π̃ϕ(Gn).

As proved in [38], by the local Gan-Gross-Prasad conjecture at all local
places, the twisted automorphic descent DψOd (Σ) is irreducible or zero if Σ =

Eτ⊗σ for some cuspidal σ ∈ Π̃ϕ0(Hm) with Hm determining H2n+m. Hence we
have:

Theorem 5.3. For σ ∈ Π̃ϕ0(Hm) with the property that L( 12 , τ×σ) is nonzero,
the twisted automorphic descent DψOd (Eτ⊗σ) is irreducible or zero.

It follows that the twisted automorphic descent may construct many cuspidal

members in the global Vogan packet Π̃ϕ[G
∗
n]. Here is the main conjecture in

the theory of twisted automorphic descents.

Conjecture 5.4. Let G∗
n be the F -split SO2n+1. For an irreducible generic

isobaric automorphic representation

τ = τ1 ⊞ · · ·⊞ τr

of GL2n(A), which determines a generic global Arthur parameter ϕ ∈ Φ̃2(G
∗
n),

any cuspidal automorphic member π in the global Vogan packet

Π̃ϕ[G
∗
n] := ∪GnΠ̃ϕ(Gn),

where Gn runs over all pure inner F -forms of G∗
n, can be constructed as a

twisted automorphic descent.

It is clear that there are two technical issues in the proof of Conjecture 5.4.
One is the (global) non-vanishing of the twisted automorphic descent DψOd (Σ)
and the other is the completeness of the construction of the twisted automorphic
descents. These two issues can be resolved by extending the Arthur-Burger-
Sarnak principle ([8, 9], and [10]) to certain cases of Fourier coefficients of
automorphic forms associated to partitions or nilpotent orbits. This has been
done in [38] for the Bessel-Foruier case and in [40] for the Fourier-Jacobi case.
One finds relevant explanation in [39]. It is clear that the above theory can
be formulated for all classical groups. In particular, in the spirit of the global
Gan-Gross-Prasad conjecture [14], the approach given in [38] and [40], and also
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in [39] uses the property that the non-vanishing of the central value L( 12 , τ ×σ)
is nonzero. Hence the central value of the L-function of τ twisted by σ has deep
impact to the explicit construction of certain types of the Langlands functorial
transfers.
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