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Abstract. In this paper we study the residual spectrum of the quasi-

split unitary group G = U(n, n) defined over a number field F , coming
from the Borel subgroups, L2

dis(G(F )\G(A))T . Due to lack of information
on the local results, that is, the image of the local intertwining operators

of the principal series, our results are incomplete. However, we describe
a conjecture on the residual spectrum and prove a certain special case by
using the Knapp-Stein R-group of the unitary group.
Keywords: Automorphic representation, spectral decomposition, resid-

ual spectrum.
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1. Introduction

In this paper we study the residual spectrum of the quasi-split unitary group
G = U(n, n) defined over a number field F , coming from the Borel subgroups,
L2
dis(G(F )\G(A))T . (See the introduction of [18] for the definition.) Its root

system over F is Cn and we can apply the technique in [22]. Due to lack of
information on the local results, that is, the image of the local intertwining
operators of the principal series, our results are incomplete. However, we de-
scribe a conjecture on the residual spectrum and prove a certain special case
as in [22] by using the Knapp-Stein R-group of the unitary group studied by
Keys [15].

More precisely, let G = U(n, n) with respect to E/F , be a quadratic exten-
sion of number fields, and let AF be the ring of adeles. Let LG = GL(2n,C)⋊
WF denote its dual group. Let µ1, . . . , µk be distinct grössencharacters of
E such that µi|N(A×

E) = 1 but µi|A×
F

̸= 1. We note that this means that

µi|A×
F
= ηE/F , the quadratic character corresponding to E/F by the class field

theory. Let ν1, . . . , νl be distinct grössencharacters of E such that νj |A×
F
= 1.
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The residual spectrum of U(n, n) 192

Then the character χ = χ(µ1, . . . , µ1︸ ︷︷ ︸
r1

, . . . , µk, . . . , µk︸ ︷︷ ︸
rk

, ν1, . . . , ν1︸ ︷︷ ︸
s1

, . . . , νl, . . . , νl︸ ︷︷ ︸
sl

),

where r1 + · · · + rk + s1 + · · · + sl = n, defines a character of T (F )\T (AF ),
where T is the maximal split torus in G. An Eisenstein series attached to a
character of T (F )\T (AF ) will contribute to the residual spectrum only if the
character is of the above type (Proposition 4.8).

The Arthur parameter of interest to us is a homomorphism

ψ :WF × SL(2,C) −→ LG,

which factors through GL(2r1,C)×· · ·×GL(2rk,C)×GL(2s1,C)×GL(2sl,C)⋊
WF ↪→ GL(2n,C) ⋊WF . By Jacobson-Morozov theorem, ψ|SL(2,C) is deter-

mined by distinguished unipotent orbit
∏k
i=1Oi ×

∏l
j=1O

′
j , where Oi’s are

distinguished unipotent orbits in O(2ri,C), i = 1, . . . , k and Oj ’s in Sp(2sj ,C);
ψ|WF

is defined using µi’s and νj ’s (see Section 3.1). To ψ, we can define the
set L2(G(F )\G(A))ψ (see (3.4)).

In Section 4, by assuming a local conjecture on the image of the local in-
tertwining operators of the principal series, we describe a conjecture on the
intersection

L2(G(F )\G(A))ψ ∩ L2
dis(G(F )\G(A))T .

We hope that the technique of [13] in the case of symplectic and odd orthogonal
groups may be applied in our case.

In Section 5, we consider a special case as in [22], that is, for each i =
1, . . . , k, let Oi be the unipotent orbit of O(2ri,C) attached to principal Jor-
dan block (2ri − 1, 1). Let O′

j , j = 1, . . . , l, be the principal unipotent orbit
of Sp(2sj ,C), i.e., the one attached to the Jordan block (2sj). To ψ, Arthur
associates a Langlands’ parameter ϕψ. We construct the representations in
Πϕψ as residues of Eisenstein series associated to the character χ. Using cer-
tain identities satisfied by local intertwining operators which was proved in
[16], we then verify Arthur’s multiplicity formula for these square integrable
residues. (See Section 3.1 for Arthur’s multiplicity formula.) It is remark-
able that in this case also as in [22] the formula itself appears in the cor-
responding residue of the Eisenstein series. We note that the local R-group
Cϕψv for the parameter ϕψ is the Knapp-Stein R-group of the unitary princi-

pal series Iv = Ind
M(Fv)
B0(Fv)

χv, where M is the Levi-subgroup whose L-group is
LM0 = Cent(imϕ+ψ ,

LG). Here ϕ+ψ is the non-tempered part of ϕψ. M is iso-

morphic to ResE/FGLn1×· · ·×ResE/FGLnk×U(k, k) for some n1, . . . , nk. The
R-group has been calculated by Keys [15] and is isomorphic to Z/2Z×· · ·×Z/2Z
if v is inert in E, and is generated by the sign changes cr1+···+ri such that µiv’s
are distinct and µiv|F×

v
is non-trivial.

In Section 6 we determine the residual spectrum of U(2, 2) coming from the
conjugacy class of Borel subgroups. Konno [24] obtained all residual spectrum
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of U(2, 2). However, his result on the residual spectrum, coming from Borel
subgroup, is not a suitable form for Arthur parameters. So we redo the calcu-
lations imitating [17]. We should also note that Konno’s results do not show
the global obstruction condition, i.e., Arthur’s condition.

At the suggestion of the referee, we would like to review some recent rel-
evant (by no means exhaustive) works on the residual spectrum: In [20], we
gave a conjecture on the residual spectrum from arbitrary parabolic subgroups,
assuming some local and global conjectures. The local conjecture is about nor-
malized local intertwining operators, similar to Conjecture 4.10 of this paper.
It is conjectured that the residual spectrum is parametrized by unipotent orbits
as in the Borel case. In [21], we showed the relationship among the residual
spectrum coming from Borel subgroups in an isogeny class. In a monumental
work in [5], J. Arthur proved the endoscopic classification of the discrete spec-
trum of symplectic and orthogonal groups over a number field. In [33], C.P.
Mok followed Arthur closely and gave the endoscopic classification of quasi-
split unitary groups. Based on Arthur’s classification, Mœglin [29, 30] gave a
conjectural description of the residual spectrum in terms of its transfer to the
general linear group. She proves a special case of unitary groups and cohomo-
logical representations at the infinity. Most recently, De Martino, Heiermann
and Opdam [8] computed the spherical residual spectrum of arbitrary split re-
ductive group from the trivial character of the torus, using graded affine Hecke
algebras. We hope that their technique may be helpful in proving Conjecture
4.10. There have been some results on residual spectrum of inner forms of
classical groups such as inner forms of GLn [6], and inner forms of symplectic
and orthogonal groups [10, 11, 12].

2. Preliminaries

Let F be a number field and E/F be a quadratic extension of number fields.
LetWF denote the Weil group of F and G = U(n, n) be the quasi-split unitary
group in 2n variables defined with respect to E/F . Let G = G(F ). It is given
as follows: Let Jn be the n× n matrix given by

Jn =


1

1
.

.
.

1

 .

Let J ′
2n =

(
Jn

−Jn

)
. Then

G =
{
g ∈ GL(2n)

∣∣ tḡJ ′
2ng = J ′

2n

}
,
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where x 7−→ x̄ is the Galois automorphism of E/F . We note that G(E) =
GL(2n,E). Let Td be the maximal F -split torus consisting of diagonal elements
in G. Then

Td =


t(λ1, . . . , λn) =



λ1
λ2

. . .

λn
λ−1
n

. . .

λ−1
2

λ−1
1



∣∣∣∣ λi ∈ F×


.

The centralizer of Td in G is the maximal torus T of diagonal elements:

T (F ) =


t(λ1, . . . , λn) =



λ1

λ2

. . .

λn

λ̄−1
n

. . .

λ̄−1
2

λ̄−1
1



∣∣∣∣ λi ∈ E×


.

Then the root system Φ(G,T ) is of type A2n−1. But the restricted root system
Φ(G,Td) is of type Cn. We choose the ordering on the restricted roots so that
the Borel subgroup B is the subgroup of upper triangular matrices in G. Let
∆ be the set of simple roots in Φ(G,Td) given by ∆ = {α1, . . . , αn}, with
αj = ej − ej+1 for 1 ≤ j ≤ n − 1 and αn = 2en. We let ⟨, ⟩ be the standard
inner product on Φ(G,Td).

The Weyl group is given by W (G/T ) ≃ Sn ⋉ (Z/2Z)n. Sn acts by permu-
tations on the λi, i = 1, . . . , n. We will use standard cycle notation for the
elements of Sn. Thus (ij) interchanges λi and λj . If ci is the nontrivial element

in the i-th copy of Z/2Z then ci takes λi to λ
−1
i . The element ci is called a

sign change because its action on Φ(G,T ) takes ei to −ei.
For each place v, we define Gv = G(Fv) = G ⊗F Fv, Tv = T (Fv). We note

that T (Fv) = {t(λ1, . . . , λn)|λi ∈ E×
v }, where Ev = E ⊗F Fv. Ev/Fv is a

quadratic extension, except the case when v splits in E. In that case, Ev ≃
Fv ⊕ Fv. In this case, we define the ‘Galois’ automorphism x = (x1, x2) 7−→
x̄ = (x2, x1).

If a place v of F is inert in E, then the place of E lying over v will be
denoted by w. If v splits in E, then the places of E lying over v will be
denoted by w1 and w2. We note that Gv ≃ U(n, n)Ew/Fv if v is inert in E and
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Gv ≃ GL(2n, Fv) if v splits in E. According to the class field theory, roughly
half places of F split in E and roughly half of them are inert in E.

3. Arthur parameters for the residual spectrum

3.1. Arthur parameters for the unitary groups. Let F be a number field
and letWF denote the Weil group of F . For G = U(n, n), we can take the dual
group LG0 = GL(2n,C) and LG = GL(2n,C) ⋊WF . Note that WF /WE ≃
Gal(E/F ) = Z/2Z. Let wσ be the non-trivial element inGal(E/F ). We letWE

acts on GL(2n,C) trivially and wσ acts on GL(2n,C) by g 7−→ J ′
2n
tg−1J ′

2n
−1,

i.e., the multiplication in LG is given by

(g′ × wσ)(g × w) = g′J ′
2n
tg−1J ′

2n
−1 × wσw,

for w ∈ WF and (g′ × w′)(g × w) = g′g × w′w for w′ ∈ WE . We recall the
definition of J ′

2n: Let Jn be the n× n matrix given by

Jn =


1

1
.

.
.

1

 .

Then J ′
2n =

(
Jn

−Jn

)
.

In the following, let µ1, . . . , µk be distinct grössencharacters of E such that
µi|N(A×

E) = 1 but µi|A×
F
̸= 1 and let ν1, . . . , νl be distinct grössencharacters of

E such that νj |A×
F
= 1. Then the character

χ = χ(µ1, . . . , µ1︸ ︷︷ ︸
r1

, . . . , µk, . . . , µk︸ ︷︷ ︸
rk

, ν1, . . . , ν1︸ ︷︷ ︸
s1

, . . . , νl, . . . , νl︸ ︷︷ ︸
sl

), where r1+ · · ·+rk+

s1 + · · ·+ sl = n, defines a character of T (F )\T (AF ), where T is the maximal
torus in G.

The Arthur parameter of interest to us is a homomorphism

ψ :WF × SL(2,C) −→ LG,

which factors through

GL(2r1,C)×· · ·×GL(2rk,C)×GL(2s1,C)×GL(2sl,C)⋊WF ↪→ GL(2n,C)⋊WF ,

as follows: (The usual definition of Arthur parameters uses Langlands’ hypo-
thetical group LF . But since we are only dealing with Langlands’ quotients
which come from principal series, WF is enough.)
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(1) If w ∈WE ,

ψ|WF : w 7−→



µ1(w)I2r1
. . .

µk(w)I2rk
ν1(w)I2s1

. . .

νl(w)I2sl


× w

(2)
ψ|WF : wσ 7−→ Jr1,...,rk,s1,...,slJ

′
2n

−1 × wσ,

where

Jr1,...,rk,s1,...,sl =



J2r1
. . .

J2rk
J ′
2s1

. . .

J ′
2sl


.

(3) By Jacobson-Morozov theorem, ψ|SL(2,C) is determined by a unipotent
orbit of GL(2r1,C)× · · · ×GL(2rk,C)×GL(2s1,C)× · · · ×GL(2sl,C)
of the form

k∏
i=1

Oi ×
l∏

j=1

O′
j ,

where Oi, i = 1, . . . , k, is a distinguished unipotent orbit of O(2ri,C) ⊂
GL(2ri,C) and O′

j , j = 1, . . . , l, is a distinguished unipotent orbit of
Sp(2sj ,C) ⊂ GL(2sj ,C). Inside Oi, O

′
j , we fix elements ui, v

′
j such

that

ψ(

(
1 1
0 1

)
) =

k∏
i=1

ui ×
l∏

j=1

v′j .

Remark 3.1. The above definition is a refinement of the usual definition which
is:

(1) ψ(WF ) is bounded and included in the set of semi-simple elements of
LG.

(2) ψ|SL(2,C) is algebraic.

We note that

Cent(Jr1,...,rk,s1,...,slJ
′
2n

−1 × wσ,
LG0)∩

GL(2r1,C)× · · · ×GL(2rk,C)×GL(2s1,C)× · · · ×GL(2sl,C)× 1

= O(2r1,C)× · · · ×O(2rk,C)× Sp(2s1,C)× · · · × Sp(2sl,C).
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This is the reason we chose distinguished unipotent orbits from O(2ri,C)
and Sp(2sj ,C). Recall from Carter [7] that O is a distinguished unipotent
orbit in O(2n,C) if and only if it has a Jordan block (1t1 , 3t3 , 5t5 , . . .), where
ti = 0 or 1; O is a distinguished unipotent orbit in Sp(2n,C) if and only if it
has a Jordan block (2t2 , 4t4 , 6t6 , . . .), where ti = 0 or 1.

Let Sψ = Cent(imψ, LG0), ZG = Cent(LG, LG0) = {±1} and

Cψ = Sψ/S
◦
ψZG.

Then Sψ is a maximal reductive subgroup of

k∏
i=1

Cent(ui, O(2ri,C))×
l∏

j=1

Cent(v′j , Sp(2sj ,C)).

Therefore S◦
ψ = 1, i.e., Sψ is finite if and only if each ui is a distinguished

unipotent element in O(2ri,C) and v′j in Sp(2sj ,C). So:

Lemma 3.2. In order that Sψ is finite, ri ≥ 2 for i = 1, . . . , k, and Oi ⊂
O(2ri,C), O′

j ⊂ Sp(2sj ,C) are distinguished.

Now it is clear that Sψ/S
◦
ψZG is equal to

(3.1)
k∏
i=1

Cent(ui, O(2ri,C))/Cent(ui, O(2ri,C))◦

×
l∏
i=1

Cent(v′j , Sp(2sj ,C))/Cent(v′j , Sp(2sj ,C))◦ZG.

Here Cent(ui, O(2ri,C))/Cent(ui, O(2ri,C))◦ is t product of Z/2Z, where t is
the number of i odd with ti > 0 in Jordan blocks;
Cent(v′j , Sp(2sj ,C))/Cent(v′j , Sp(2sj ,C))◦ is t product of Z/2Z, where t is the
number of i even with ti > 0 in Jordan blocks.

For each place v of F , we have a local Arthur parameter ψv : WFv ×
SL2(C) −→ GL(2n,C)⋊WFv such that it commutes with the mapWFv →WF

[37, p. 8]. As in the global case, we can then define Sψv .
There are two cases.
Case 1. v is inert in E. In this case, Gal(Ew/Fv) ≃ Gal(E/F ) and therefore,

GL(2n,C)⋊WFv is defined in the same way as in the global case.
But in the local case, µiv or νjv may not be distinct. Suppose µ1v = µ2v.

Then in the above formula (3.1),

Cent(u1, O(2r1,C))/Cent(u1, O(2r1,C))◦

× Cent(u2, O(2r2,C))/Cent(u2, O(2r2,C))◦

must be replaced by

Cent(u1 × u2, O(2r1 + 2r2,C))/Cent(u1 × u2, O(2r1 + 2r2,C))◦.
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However, if µ1v = νjv, then the above formula (3.1) still holds.

Case 2. v splits in E. In this case, Ewi = Fv, where wi, i = 1, 2, are the
places of E over v. Therefore, the action of WFv in GL(2n,C)⋊WFv is trivial.
Therefore, ψv is given by ψv :WFv ×SL(2,C) −→ GL(2n,C)×WFv such that

(1)

ψv|WFv
: w 7−→



µ1wi(w)I2r1
. . .

µkwi(w)I2rk
ν1wi(w)I2s1

. . .

νlwi(w)I2sl


×w,

where wi is a place of E over v. We note that the map is well-defined,
independent of the choice of wi (see [37, p. 9]).

(2) ψv|SL(2,C) is defined by the unipotent orbit
∏k
i=1Oi ×

∏l
j=1O

′
j , where

Oi, i = 1, . . . , k, be a distinguished unipotent orbit of O(2ri,C) ⊂
GL(2ri,C) and O′

j , j = 1, . . . , l, is a distinguished unipotent orbit of
Sp(2sj ,C) ⊂ GL(2sj ,C).

Then Cψv is trivial in this case.
Now we recall Mœglin’s reformulation of Arthur’s conjecture [29]: It is a

part of local Arthur’s conjecture that for each irreducible character ηv of Cψv ,
there exists an irreducible representation π(ψv, ηv). For each v, let Πψv be the
set of π(ψv, ηv).

We define the global Arthur packet Πψ to be the set of irreducible represen-
tations π = ⊗vπv of G(A) such that for each v, πv belongs to Πψv .

Conjecture 3.3 (Arthur’s conjecture (Global)). Πψ ∩ L2
dis(G(F )\G(A)) is

nonempty if and only if Sψ is finite, i.e., S◦
ψ = 1. We call such an Arthur

parameter elliptic. For an elliptic Arthur parameter ψ, any π ∈ Πψ occurs in
L2
dis(G(F )\G(A)) if and only if

(3.2)
∑
x∈Cψ

∏
v

ηv(xv) ̸= 0,

where π = ⊗vπ(ψv, ηv), x = (xv).

Note that, if Cψ is abelian, (3.2) is equivalent to

(3.3)

(∏
v

ηv

)
|Cψ = 1.

Define

(3.4) L2(G(F )\G(A))ψ = Πψ ∩ L2
dis(G(F )\G(A)).
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Let Πresv be the subset of Πψv which consists of the local components of the
residual spectrum. We will parametrize the elements in Πresv and prove the
multiplicity formula (3.3) under certain conjecture on local problems, namely,

construct a set of characters Cresv ⊂ Ĉψv and each character of Cresv gives rise
to an element in Πresv .

Remark 3.4. To any Arthur parameter ψ, Arthur associates a Langlands’ pa-
rameter ϕψ :WF −→ LG as follows:

ϕψ(w) = ψ

(
w,

(
|w| 12 0

0 |w|− 1
2

))
.

Let Sϕψ = Cent(imϕψ,
LG0) and Cϕψ = Sϕψ/S

◦
ϕψ
ZG. For each place v, we

have Sϕψv , Cϕψv . For each v, there is a natural surjection Cψv → Cϕψv . The
parameter ϕψv gives a L-packet Πϕψv which consists of Langlands’ quotients.
It is a part of Arthur’s original local conjecture that for each place v, there is
a pairing ⟨ , ⟩ on Cϕψv × Πϕψv and an enlargement Πψv of Πϕψv which allows
an extension of ⟨ , ⟩ to Cψv × Πψv such that π ∈ Πϕψv ⊂ Πψv if and only if

the function ⟨ , π⟩ lies in the image of Ĉϕψv in Ĉψv . Since Cψv is abelian in our
case, giving a pairing between Cψv and Πψv is the same as giving a character
of Cψv .

In Section 5, we construct the representations in Πϕψv as local component
of the residual spectrum attached to special unipotent orbits. In this case, the
pairing ⟨ , ⟩ on Cϕψv ×Πϕψv is given by the Knapp-Stein R-groups [16].

4. Residual spectrum of U(n, n)

We fix a non-trivial additive character ψF = ⊗vψFv of AF /F and let
LF (z, µ) be the Hecke L-function over F with the ordinary Γ-factor so that
it satisfies the functional equation LF (z, µ) = ϵF (z, µ)LF (1 − z, µ−1), where
ϵF (z, µ) =

∏
v ϵF (z, µv, ψFv ) is the usual ϵ-factor, see [9, p. 159]. If µ is the

trivial character µ0, then we write simply LF (z) for LF (z, µ0).
We extend the coroots α∨ : F× → Td to α∨ : F× → T as follows. For

α = ei − ej , α
∨(λ) = t(1, . . . , λ

i
, . . . , λ

j

−1, . . . , 1) ∈ T (F ) for 1 ≤ i < j ≤ n. For

α = ei + ej , α
∨(λ) = t(1, . . . , λ

i
, . . . , λ̄

j
, . . . , 1), for 1 ≤ i < j ≤ n. For α = 2ei,

α∨(λ) = t(1, . . . , λ
i
, . . . , 1) for 1 ≤ i ≤ n. Here dots represent 1.

Let X(T )F (resp. X∗(T )F ) be the group of F -characters (resp. cochar-
acters) of T . There is a natural pairing ⟨, ⟩ : X(T )F × X∗(T )F → Z. For
α, β ∈ Φ(G,Td), ⟨β, α∨⟩ = 2(β, α)/(α, α), where ( , ) is the standard inner
product in Φ(G,T ). Let ωi = e1+ · · ·+ ei. Then ω1, . . . , ωn are the fundamen-
tal weights of G with respect to (G,Td). Set a

∗ = X(T )F ⊗R, a∗C = X(T )F ⊗C,
and a = X∗(T )F ⊗R = Hom(X(T )F ,R), aC = X∗(T )F ⊗C. The positive Weyl
chamber in a∗ is



The residual spectrum of U(n, n) 200

C+ = {Λ ∈ a∗ | ⟨Λ, α∨⟩ > 0, for all α positive roots}

= {
n∑
i=1

aiωi | ai > 0}.

Let B = TU be the Borel subgroup, where U is the unipotent radical. Let
K∞ be the standard maximal compact subgroup of G(A∞). If v < ∞, let
Kv be an open maximal compact subgroup of Gv such that for almost all
v, Kv = G(Ov), where Ov is the ring of integers of Fv. Then K = K∞ ×∏
v<∞Kv is a maximal compact subgroup of G(AF ) and G(AF ) = B(AF )K.

The embeddingX(T )F ↪→ X(T )Fv induces an embedding av ↪→ a. There exists
a homomorphism HB : T (AF ) → a, defined by

exp(⟨χ,HB(t)⟩) =
∏
v

|χ(tv)|v,

where χ ∈ X(T )F and t = (tv). We will extend HB to G by making it trivial
on U and K, see [22].

4.1. Definition of Eisenstein series. For µ1, . . . , µn grössencharacters of E,
we define a character χ = χ(µ1, . . . , µn) of T (F )\T (AF ) by

χ(µ1, . . . , µn)(t(λ1, . . . , λn)) = µ1(λ1) . . . µn(λn).

As in [22], we form the Eisenstein series:

E(g, f,Λ) =
∑

γ∈B(F )\G(F )

f(γg),

where f ∈ I(Λ, χ) = IndGB χ ⊗ exp(Λ,HB( )). It converges absolutely for
ReΛ ∈ C+ + ρB and extends to a meromorphic function of Λ. It is an auto-
morphic form and the constant term of E(g, f,Λ) along B is given by

E0(g, f,Λ) =

∫
U(F )\U(A)

E(ug, f,Λ) du =
∑
w∈W

M(w,Λ, χ)f(g),

where

M(w,Λ, χ)f(g) =

∫
wU(A)w−1∩U(A)\U(A)

f(w−1ug) du.

Then M(w,Λ, χ) defines an intertwining map from I(Λ, χ) to I(wΛ, wχ) and
satisfies a functional equation of the form

M(w1w2,Λ, χ) =M(w1, w2Λ, w2χ)M(w2,Λ, χ).

For χ = χ(µ1, . . . , µn),

χ ◦ α∨ =


µiµ

−1
j , for α = ei − ej

µiµ̄j , for α = ei + ej and i < j

µi|A×
F
, for α = 2ei,



201 Kim

where µ̄ denotes the character µ̄(a) = µ(ā) for a ∈ A×
E . We note that if µ is a

grössencharacter of E, then µ̃ = µ|A×
F

is a grössencharacter of F and its local

component is µ̃v = µw|F×
v

if v is inert in E and µ̃v = µw1µw2 if v splits in E.
We have

M(w,Λ, χ) = ⊗vA(w,Λ, χv).
We normalize the local intertwining operators A(w,Λ, χv) as in [16] for p-adic
places and [4] for archimedean places: For any v, let

rv(w) =
∏

α>0,wα<0

L(⟨Λ, α∨⟩, χv ◦ α∨)

L(⟨Λ, α∨⟩+ 1, χv ◦ α∨)ϵ(⟨Λ, α∨⟩, χv ◦ α∨, ψFv )
.

Here the L-functions are defined as follows:
(1) The case α = ei − ej , i < j. In this case,

L(⟨Λ, α∨⟩,χv ◦ α∨) ={
LE(⟨Λ, α∨⟩, µiwµ

−1
jw ), if v is inert in E

LE(⟨Λ, α∨⟩, µiw1µ
−1
jw1

)LE(⟨Λ, α∨⟩, µiw2µ
−1
jw2

), if v splits in E,

ϵ(⟨Λ, α∨⟩,χv ◦ α∨, ψFv ) ={
λ(Ew/Fv, ψFv )ϵE(⟨Λ, α∨⟩, µiwµ

−1
jw , ψFv ◦ TrEw/Fv ), if v is inert in E

ϵE(⟨Λ, α∨⟩, µiw1µ
−1
jw1

, ψFw1
)ϵE(⟨Λ, α∨⟩, µiw2µ

−1
jw2

, ψFw2
), if v splits in E.

(2) The case α = ei + ej is similar.
(3) The case α = 2ei. In this case,

L(⟨Λ, α∨⟩, χv ◦ α∨) =

{
LF (⟨Λ, α∨⟩, µiw|F×

v
), if v is inert in E

LF (⟨Λ, α∨⟩, µiw1µiw2), if v splits in E,

ϵ(⟨Λ, α∨⟩, χv ◦ α∨, ψFv ) =

{
ϵF (⟨Λ, α∨⟩, µiw|F×

v
, ψFv ), if v is inert in E

ϵE(⟨Λ, α∨⟩, µiw1µiw2 , ψFv ), if v splits in E.

We normalize the intertwining operators A(w,Λ, χv) for all v by

A(w,Λ, χv) = rv(w)R(w,Λ, χv).

Let R(w,Λ, χ) = ⊗vR(w,Λ, χv) and

r(w) = Πvrv(w) =
∏

α>0,wα<0

L(⟨Λ, α∨⟩, χ ◦ α∨)

L(⟨Λ, α∨⟩+ 1, χ ◦ α∨)ϵ(⟨Λ, α∨⟩, χ ◦ α∨)
.

R(w,Λ, χ) satisfies the functional equation

R(w1w2,Λ, χ) = R(w1, w2Λ, w2χ)R(w2,Λ, χ)

for any w1, w2. Because of the normalization of the intertwining operators,

A(w,Λ, χv)
∏

α>0,wα<0

Lv(⟨Λ, α∨⟩, χv ◦ α∨)−1
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is holomorphic for any v. So for any v, R(w,Λ, χv) is holomorphic for each Λ
with Re(⟨Λ, α∨⟩) > −1 and for all positive α with wα < 0.

For α ∈ Φ+, let Sα = {Λ ∈ a∗C|⟨Λ, α∨⟩ = 1}. We call Sα a singular hyper-
plane. We say that E(g, f,Λ) has a pole of order l at Λ0 if Λ0 is the intersection
of l singular hyperplanes in general position on which the Eisenstein series has
a simple pole.

For Ψ ⊂ Φ+, we define r(w,Λ,Ψ) by

r(w,Λ,Ψ) =
∏

α∈Ψ,wα<0

L(⟨Λ, α∨⟩, χ ◦ α∨)

L(⟨Λ, α∨⟩+ 1, χ ◦ α∨)ϵ(⟨Λ, α∨⟩, χ ◦ α∨)
.

Observe that we have suppressed the dependence of r(w,Λ,Ψ) on χ.

4.2. Definition of pseudo-Eisenstein series. In order to apply the results
in [28], we introduce pseudo-Eisenstein series, following Mœglin. For T a max-
imal split torus, a character χ of T (F )\T (AF ) defines a cuspidal represen-
tation of T . For any w ∈ W , wTw−1 = T and so (T,wχ) is conjugate to
(T, χ). Let I(χ) be the set of entire functions ϕ of Paley-Wiener type such that
ϕ(Λ) ∈ I(Λ, χ) for each Λ. Let

θϕ(g) =

(
1

2πi

)n ∫
ReΛ=Λ0

E(g, ϕ(Λ),Λ) dΛ,

where Λ0 ∈ ρB + C+. Let

L2(G(F )\G(A))(T,χ),

be the space spanned by θϕ for all ϕ ∈ I(wχ) as wχ runs through all distinct
conjugates of χ. Let L2

dis(G(F )\G(A))(T,χ) be the discrete part of

L2(G(F )\G(A))(T,χ). It is the set of iterated residues of E(g, ϕ(λ), λ) of or-
der n and the residual spectrum attached to (T, χ). In order to decompose
L2

dis(G(F )\G(A))(T,χ), we use the inner product formula of two pseudo-Eisenstein
series: Let χ and χ′ be conjugate characters and ϕ ∈ I(χ), ϕ′ ∈ I(χ′). Then

⟨θϕ, θϕ′⟩ = 1
(2πi)n

∫
ReΛ=Λ0

∑
w∈W (χ,χ′)(M(w−1,−wΛ̄, wχ)ϕ′(−wΛ̄), ϕ(Λ)) dΛ

= 1
(2πi)n

∫
ReΛ=Λ0

∑
w∈W (χ,χ′)(M(w,Λ, χ)ϕ(Λ), ϕ′(−wΛ̄)) dΛ,

where W (χ, χ′) = {w ∈ W |wχ = χ′}. Let D be the set of distinguished coset
representatives in Proposition 4.9. Then {dχ| d ∈ D} is the set of distinct
conjugates of χ.

In order to deal with the distinct conjugates of χ simultaneously, we consider

∑
d∈D

 ∑
w∈W (χ,dχ)

M(w−1, wΛ, wχ)ϕd(wΛ)

 ,
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where ϕd ∈ I(dχ). Since W = ∪d∈DW (χ, dχ), for simplicity, we write it as

EPS0 (ϕ,Λ, χ) =
∑
w∈W

M(w−1, wΛ, wχ)ϕ(−wΛ).

HereM(w−1, wΛ, wχ)= r(w,−Λ, χ)R(w−1, wΛ, wχ), since r(w,−Λ, χ)= r(w−1,
wΛ, wχ). We will take the iterated residues of EPS0 (ϕ,Λ, χ) in Section 4.4. We
first review Mœglin’s results on the residual spectrum of split classical groups
attached to the trivial character of the maximal torus.

4.3. Review of Mœglin’s results. In order to apply Mœglin’s results, we
recall some definitions. Let LG0 = O(2n,C), Sp(2n,C). Recall that unipotent
orbits in LG0 are in 1 to 1 correspondence with partitions (1r1 , 2r2 , 3r3 , . . .) of
2n such that ri is even for even i in the orthogonal case and for odd i in the
symplectic case. For a unipotent orbit O in LG0, Mœglin formed a set P (O)
of ordered partitions as follows:

p = (p1, . . . , pr; q1, . . . , qs) ∈ P (O) if and only if

(1) (p1, p1, . . . , pr, pr, q1, . . . , qs) is O if we ignore the order.
(2) qi are distinct and odd in the orthogonal case and even in the symplectic

case.
(3) For all ≤ j ≤ [ s+1

2 ], q2j−1 > q2j and there does not exist 1 ≤ k ≤ [ s+1
2 ]

such that q2j−1 > q2k−1 > q2j > q2k.
(4) If there exists a 1 ≤ k ≤ s such that q2j−1 > qk > q2j , then k < 2j− 1.

We set qs+1 = 0 if s is odd. We can put an equivalence relation on P (O)
as follows: For p = (p1, . . . , pr; q1, . . . , qs), p

′ = (p′1, . . . , p
′
r; q

′
1, . . . , q

′
s) ∈ P (O),

p ≃ p′ if and only if for all 1 ≤ i ≤ [ s+1
2 ], there exists 1 ≤ j ≤ [ s+1

2 ] such that
q2i−1 = q′2j−1, q2i = q′2j . We note that {p1, . . . , pr} = {p′1, . . . , p′r} as sets. We
note that

Remark 4.1. For a distinguished unipotent orbit, we have r = 0. In that case,
we write p = (; q1, . . . , qs).

Example 4.2. For a unipotent orbit of the form (7, 5, 3, 1) in O(16,C), there
are two nonequivalent elements in P (O), namely, ( ;7,5,3,1) and ( ;5,3,7,1).

For p = (p1, . . . , pr; q1, . . . , qs), we set, for 2 ≤ i ≤ r, p′i = p1 + · · · + pi−1

and p′1 = 0, and for 1 ≤ i ≤ [ s+1
2 ]

T di =
r∑
j=1

pj +
∑

1≤l<i

q2l−1 + q2l
2

,

T fi =
r∑
j=1

pj +
∑

1≤l≤i

q2l−1 + q2l
2

.
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We recall the definition of Λp and wp: Λp = (Λp,1, . . . ,Λp,n), where

Λp,p′i+t
=
pi + 1

2
− t, for 1 ≤ i ≤ r and 1 ≤ t ≤ pi,

Λp,Tdk+t
=
q2k−1 + 1

2
− t, for 1 ≤ k ≤ [

s+ 1

2
] and 1 ≤ t ≤ q2k1 + q2k

2
,

and wp is an element of the Weyl group given by:

wp(p
′
i + t) = p′i+1 − t+ 1, for 1 ≤ i ≤ r and 1 ≤ t ≤ pi,

wp(t) = −t, for 1 ≤ k ≤ [
s+ 1

2
] and T d

k < t ≤ T d
k +

q2k1 − q2k
2

,

wp(T
d
k +

q2k−1 − q2k
2

+ t) = T f
k − t+ 1, for 1 ≤ k ≤ [

s+ 1

2
] and 1 ≤ t ≤ q2k.

Remark 4.3. All Λp are conjugates and w2
p = 1. Let ΛO be the conjugate of

Λp which is in the closure of the positive Weyl chamber.

We also define σ(pi) for 1 ≤ i ≤ r and σk for 1 ≤ k ≤ [ s2 ] and denote
Stab(Λp, ↑ p) be the subgroup of Stab(Λp) generated by these elements:

σ(pi)(j) = j, if j /∈ [p′i + 1, p′i+1],

σ(pi)(p
′
i + t) = −(p′i+1 − t+ 1), if t ∈ [1, pi],

σk(j) = j, if j /∈ [T dk +
q2k−1 − q2k

2
+ 1, T fk ],

σk(T
d
k +

q2k−1 − q2k
2

+ t) = −(T fk − t+ 1), if t ∈ [1, q2k].

Let A(O) be a finite abelian group generated by the order two elements
σ(p1), . . . , σ(pr), σ(q1), . . . , σ(qs). Let Ā(p) = A(O)/Kp, where Kp is generated
by
σ(q2i−1)σ(q2i)

−1 for all 1 ≤ i ≤ [ s+1
2 ]. We set σ(qs+1) = 1 if s is odd. We note

that |Ā(p)| = 2[
s
2 ].

4.3.1. Local Theory in the split group case. Let G be a split classical group
O(2n), O(2n + 1) and let Iv(Λp) = IndGB exp(⟨Λp,HB()⟩) (normalized induc-
tion). The normalized intertwining operator Rv(wp,Λ) is not holomorphic at
Λp in general. Mœglin defined Rv(wp,Λp) as composition of several operators.
Then we have:

(1) Rv(wp,Λp)Iv(Λp) is a direct sum of |Ā(p)| irreducible representations
with multiplicity 1. Let Unip(p) be the set of the irreducible direct sum-
mands and Unip(O) = ∪p∈P (O)Unip(p). Then the Iwahori-Matsumoto
involution of elements in Unip(O) is tempered.

(2) If r = 0, i.e., O is a distinguished unipotent orbit, then the Iwahori-
Matsumoto involution of elements in Unip(p) is square integrable.
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(3) Unip(O) is exactly the set of irreducible representations of G(n) whose
infinitesimal character is ΛO and whose Iwahori-Matsumoto involution
is tempered.

(4) Springer(O) ≃ ∪p∈P (O)
̂̄A(p), where ̂̄A(p) is the character group of

Ā(p). We recall that the Springer correspondence is an injective map
from the characters of W , the Weyl group of LG0 into the set of pairs
(O, η), where O is a unipotent orbit in LG0 and η is a character of A(O).
Given a unipotent orbit O in LG0, Springer(O) is the set of characters
of A(O) which are in the image of the Springer correspondence. We
also note that if O = (q1, . . . , qs) is a distinguished unipotent orbit,
|Springer(O)| = sC[ s2 ]

(see [19]).

(5) For each σ ∈ Stab(Λp, ↑ p), there is an intertwining operator Rv(σ) of
Rv(wp,Λp)Iv(Λp) and σ 7−→ Rv(σ) is a homomorphism of groups.

(6) Ā(p) is isomorphic to the quotient of Stab(Λp, ↑ p) by the subgroup

generated by σ(pi)σ(pj)
−1 for pi = pj and σ(pi)σ

−1
k for pi = q2k−1 or

pi = q2k.
(7) For X ∈ Unip(p), let Rv(σ)X = ηpX(σ)X. Then ηpX defines a character

of Stab(Λp, ↑ p).

(8) By passing to quotient, X → ηpX gives an isomorphism Unip(p) ≃ ̂̄A(p)
which is extended canonically to

Unip(O) ≃ Springer(O),

by X → ηX in the sense that |Unip(p)∩Unip(p′)| = |̂̄A(p)∩ ̂̄A(p′)| and
for X ∈ Unip(p) ∩ Unip(p′), ηpX = ηp

′

X .

(9) If p ≃ p′, then Unip(p) ≃ ̂̄A(p) = ̂̄A(p′) ≃ Unip(p′). In other words,
up to isomorphism, Unip(p) depends only on the equivalence class of
p.

4.3.2. Global Theory for the split group case. We only look at the residual
spectrum. So in this section O will be a distinguished unipotent orbit, i.e.,
r = 0. Let p = (; q1, q2, . . . , qs) ∈ P (O). Let Sp be the set of positive roots
defined as follows: ej − ej+1 for T di < j ≤ T fi − 1 and e

Tdi +
q2i−q2i−1

2

+ eT fi
, where 1 ≤ i ≤ [

s

2
]

ej − ej+1 for T ds+1
2

< j < n and 2en if s is odd and qs > 1.

We note that Sp ⊂ {α > 0 | wpα < 0, ⟨Λp, α
∨⟩ = 1} and Sp has exactly n

elements. We will take the iterated residue of the Eisenstein series along the n
singular hyperplanes ⟨Λp, α

∨⟩ = 1 for α ∈ Sp.

Definition 4.4. For p = (; q1, q2, . . . , qs) ∈ P (O), we define

M ′
p = GL( q1+q22 )× · · · ×GL(

q
2[ s+1

2
]−1

+q
2[ s+1

2
]

2 ).
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If s is odd (symplectic group case), we put the convention that
q
2[ s+1

2
]−1

+q
2[ s+1

2
]

2

is qs−1
2 .

Definition 4.5. Let V (p) = {Λp} and let V ′(p) be the set of elements of the
form Λp + η, where η is a character of M ′

p(A). We note that V ′(p) is the
intersection of the singular hyperplanes ⟨Λ, α∨⟩ = 1, where

α ∈ {ej − ej+1 for T di < j ≤ T fi − 1, i = 1, .., [ s2 ] and T
f
s < j < n}.

We denote the element in V ′(p) as

Λp(z1, . . . , z
[
s+1
2 ]

) = Λp + (z1, . . . , z1︸ ︷︷ ︸
q1+q2

2

, . . . , z
[
s+1
2 ]
, . . . , z

[
s+1
2 ]︸ ︷︷ ︸

q
2[
s+1
2 ]−1

+q
2[
s+1
2 ]

2

).

Definition 4.6. For 1 ≤ k ≤ [ s+1
2 ], we define

V ′
k(p) = {Λp(z1, . . . , z[ s+1

2 ]) ∈ V ′(p), such that zi = 0 for all i > k}.

In particular, V ′
0(p) = V (p) and V ′

[ s+1
2 ]

= V ′(p).

Definition 4.7. We define W (↑, p) to be the set of the Weyl group elements
which send the positive roots of M ′

p to the positive roots of M ′
p.

Let
d(p,Λ) =

∏
α∈Sp

(⟨Λp, α
∨⟩ − 1).

Let Unip be the submodule of ⊗′
vRv(wp,Λp)Iv(Λp) which is the sum of irre-

ducible subrepresentations of type ⊗′
vXv, where Xv ∈ Unip(p) for all v and

there does not exist p′ > p and Xv ∈ Unip(p′) for all v.
Let proj[p] be the G(A)-projection ⊗′

vRv(wp,Λp)Iv(Λp) −→ Unip. For ϕ ∈
PW , the set of Paley-Wiener type functions, let

lp(ϕ,Λ) =
∑
w∈W

r(w,−Λ)R(wpw
−1, wΛ)ϕ(wΛ).

Then we have

(1) r(wp,Λ)d(p,Λ) is holomorphic at Λ = Λp and its value is non-zero.
(2) The poles of lp(ϕ,Λ) in a neighborhood of Λp are contained in the local

intertwining operators.
(3) r(w,−Λ) is identically zero on V ′(p) if w /∈W (↑, p). So the restriction

of lp(ϕ,Λ) to V
′(p) is given by

lp(ϕ,Λ) =
∑

w∈W (↑,p)

r(w,−Λ)R(wpw
−1, wΛ)ϕ(wΛ).

(4) lp(ϕ,Λp) can be defined inductively by restricting it to V ′
k(p) from k =

[ s+1
2 ]− 1 to k = 0 and it is the iterated residue of EPS0 (ϕ,Λ).
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(5) lp(ϕ,Λp) ∈ ⊗′
vRv(wp,Λp)Iv(Λp). This depends only on ϕ and the

equivalence class of p. Let l[p](ϕ,Λp) = proj[p](ϕ,Λp).
(6) Let ⟨, ⟩dis be the inner product in the discrete spectrum L2

dis(G(F )\G(A)).
Then

⟨θϕ′ , θϕ⟩dis =
∑

O⊂G∗(n)

∑
p∈P (O)

cp⟨⟨l′[p](ϕ
′, Λ̄p), l[p](ϕ,Λp)⟩⟩,

where O runs through the distinguished unipotent orbits in G∗(n) and
p runs through the set of representatives in each equivalence classes in
P (O).

(7) For ϕ ∈ PW , suppose l[p](ϕ,Λp) generates an irreducible representa-
tion. Then for all v finite places, let Xv be the local representation of
Gv generated by l[p](ϕ,Λp). Then Xv ∈ Unip(p) and

∏
v ηXv = 1.

(8) Conversely, suppose p = (; q1, . . . , qs) ∈ P (O) and π = ⊗′
vXv be an irre-

ducible automorphic representation which satisfies; (a) Xv ∈ Unip(p)
for all v; (b) Xv is spherical almost everywhere and at archimedean
places; (c)

∏
v ηXv = 1. Then there exists ϕ ∈ PW such that the

representation generated by l[p](ϕ,Λp) is isomorphic to π.
(9) In fact, for an appropriate ϕ ∈ PW ,

lp(ϕ,Λp) =
∑

τ∈Stab(Λp,↑p)

R(τ−1)R(wp,Λp)ϕ(Λp).

4.4. Residues of the Eisenstein series. For χ a non-trivial character of
T (F )\T (AF ), we can assume, after conjugation, that
χ = χ(µ1, . . . , µ1︸ ︷︷ ︸

r1

, . . . , µk, . . . , µk︸ ︷︷ ︸
rk

, ν1, . . . , ν1︸ ︷︷ ︸
s1

, . . . , νl, . . . , νl︸ ︷︷ ︸
sl

), where µi’s and νj ’s

are distinct grössencharacters of E such that µi|A×
F
̸= 1 for i = 1, . . . , k, νj |A×

F
=

1 for j = 1, . . . , l, and r1+· · ·+rk+s1+· · ·+sl = n, r1 ≥ . . . ≥ rk, s1 ≥ . . . ≥ sl.
Let E(g, f,Λ) be the Eisenstein series attached to the character χ.

Proposition 4.8. The Eisenstein series has a pole of order n only if rk ≥ 2,
and µi is a grössencharacter which satisfies µi|N(A×

E) = 1 for i = 1, . . . , k.

Proof. Similar to the proof [22, Proposition 4.2]. □
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We divide the set of positive roots Φ+ as follows:

Φ1 = {ei ± ej , 1 ≤ i < j ≤ r1},
Φ2 = {er1+i ± er1+j , 1 ≤ i < j ≤ r2},

...

Φk = {er1+···+rk−1+i ± er1+···+rk−1+j , 1 ≤ i < j ≤ rk},
Φk+1 ={er1+···+rk+i ± er1+···+rk+j , 1 ≤ i<j ≤ s1, 2er1+···+rk+i, i = 1, . . . , s1},

...

Φk+l = {er1+···+rk+s1+···+sl−1+i ± er1+···+rk+s1+···+sl−1+j , 1 ≤ i < j ≤ s1,

2er1+···+rk+s1+···+sl−1+i, i = 1, . . . , s1},

ΦD = Φ+ −
k+l∪
i=0

Φi.

Let W̃i be the Weyl group corresponding to Φi for i = 1, . . . , k and Wi =

W̃icr1+···+ri for i = 1, . . . , k. Let Wi be the Weyl group corresponding to Φi
for i = k + 1, . . . , k + l. We note W (χ, χ) =W1 × · · · ×Wk+l.

Let Λ = Λ1 + · · · + Λk+l, where Λi = ar1+···+ri−1+1er1+···+ri−1+1 + · · · +
ar1+···+rier1+···+ri , for i = 1, . . . , k, and for j = 1, . . . , l,

Λk+j = ar1+···+rk+s1+···+sj−1+1er1+···+rk+s1+···+sj−1+1 + · · ·
+ar1+···+rk+s1+···+sjer1+···+rk+s1+···+sj .

We recall the following well-known result, see [7, p. 47].

Proposition 4.9. Let ∆ be a set of simple roots and W be the associated
Weyl group. Let wα be the simple reflection with respect to α ∈ ∆. Then W is
generated by the wα, α ∈ ∆. Let θ be a subset of ∆ and Wθ be the subgroup of
W generated by the wα, α ∈ θ. Then each coset wWθ has a unique element dθ
characterized by any of the following equivalent properties:

(1) dθθ > 0,
(2) dθ is of minimal length in wWθ,
(3) For any x ∈Wθ, l(dθx) = l(dθ) + l(x).

We apply Proposition 4.9 to ∆ = {e1 − e2, . . . , en−1 − en} and

θ = ∆− { er1 − er1+1, er1+r2 − er1+r2+1, . . . , er1+···+rk − er1+···+rk+1(4.1)

+er1+···+rk+s1 − er1+···+rk+s1+1, . . . , er1+···+rk+s1+···+sl

−er1+···+rk+s1+···+sl+1}.
Let D be the set of such distinguished coset representatives.
For d ∈ D, and wi ∈Wi, i = 1, . . . , k + l, we have

{α > 0 | dw1 . . . wk+lα < 0} = ∪k+l
i=1 {α ∈ Φi |wiα < 0}∪{α ∈ ΦD | dw1 . . . wk+lα < 0}.
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Then for a Paley-Wiener type function ϕ ∈ I(χ), the constant term of pseudo-
Eisenstein series is given by

EPS
0 (ϕ,Λ, χ) =

∑
w∈W

r(w,−Λ, χ)R(w−1, wΛ, wχ)ϕ(wΛ) =

k+l∏
i=1

∑
wi∈Wi

r(wi,−Λi,Φi)

·

(∑
d∈D

r(dw1 . . . wk+l,−Λ,ΦD)R(w−1
k+l . . . w

−1
1 d−1, dw1 . . . wk+lΛ, dχ)ϕ(dw1 . . . wk+lΛ)

)
.

We note that w1 . . . wkχ = χ. By the cocycle relation, we have

R(w−1
k+l . . . w

−1
1 d−1, dw1 . . . wk+lΛ, dχ) =

R(w−1
k+l . . . w

−1
1 , w1 . . . wk+lΛ, χ)R(d

−1, dw1 . . . wk+lΛ, dχ).

Let

f(w1 . . . wk+lΛ) =
∑
d∈D

r(dw1 . . . wk+l,−Λ,ΦD)

R(d−1, dw1 . . . wk+lΛ, dχ)ϕ(dw1 . . . wk+lΛ).

Then we have

(4.2) EPS0 (ϕ, λ, χ) =

k+l∏
i=1

∑
wi∈Wi

r(wi,−Λi,Φi)R(w
−1
k+l . . . w

−1
1 , w1 . . . wk+lΛ, χ)f(w1 . . . wk+lΛ).

We note that it has the same normalizing factors as the Eisenstein series
of O(2r1), . . . , O(2rk) and O(2s1 + 1), . . . , O(2sl + 1) attached to the trivial
character.

Let Oi’s be distinguished unipotent orbits in O(2ri,C) for i = 1, . . . , k and
O′
j in Sp(2sj ,C) for j = 1, . . . , l. Let pi ∈ P (Oi) for i = 1, . . . , k + l, p =

p1 × · · · × pk+l and wp = wp1 × · · · × wpk+l and Λp = Λp1 + · · ·+ Λpk+l . Let

lp(ϕ,Λ, χ) =
k+l∏
i=1

∑
wi∈Wi

r(wi,−Λi,Φi)R(wpw
−1
k+l . . . w

−1
1 , w1 . . . wk+lΛ, χ)f(w1 . . . wk+lΛ).

Since r(wi,−λi,Φi) is identically zero on V ′(pi) if wi /∈W (↑, pi), the restric-
tion of lp(ϕ,Λ, χ) to V

′(p) = V ′(p0)× · · · × V ′(pk) is given by

lp(ϕ,Λ, χ)|V ′(p) =

k+l∏
i=1

∑
wi∈W (↑,pi)

r(wi,−Λi,Φi)R(wpw
−1
k+l . . . w

−1
1 , w1 . . . wk+lΛ, χ)f(w1 . . . wk+lΛ).
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We note that f(w1 . . . wk+lΛ) is holomorphic on V ′(p). We also note that
R(wp,Λ, χv) is Not holomorphic at Λp. We now suppose the local problem
is solved, i.e., we can define the local intertwining operator R(wp,Λp, χv) as
composition of several operators as in [13]. We apply Mœglin’s results and
define lp(ϕ,Λp, χ) inductively. But the order of induction will matter. Among
V ′(pi)’s, we can shuffle the segments. By shuffling, we mean the following:

Let p1 = (; q1, . . . , qs) and p2 = (; q′1, . . . , q
′
t) be two chains. By shuffling of

p1 × p2, we mean any permutation on segments so that

(1) (q1, q2), . . . , (q2[ s−1
2

]−1
, q

2[ s−1
2

]
) appear in that order, and

(2) (q′1, q
′
2), . . . , (q

′
2[ t−1

2 ]−1
, q′

2[ t−1
2 ]

) appear in that order.

Take a shuffling of segments in such a way that it satisfies a certain condition,
that is, the non-vanishing of the normalized intertwining operators, see [13]. It
will correspond to starting with a conjugate of χ. If there is no confusion, we
will still write it as χ. Then

⟨θϕ′ , θϕ⟩dis =
k+l∑
i=1

∑
Oi

∑
p

cp⟨⟨l′[p](ϕ
′, Λ̄p, χ), l[p](ϕ,Λp, χ)⟩⟩,

where Oi runs through distinguished unipotent orbits in O(2ri,C) for i = 1, .., k
and Sp(2si,C) for i = k+1, . . . , k+l. p = p1×· · ·×pk+l ∈ P (O1)×· · ·×P (Ok+l).
We have

l[p](ϕ,Λp, χ) ∈ ⊗′
vRv(wp,Λp, χ)Iv(Λp, χv).

We need to analyze the image of the local intertwining operator Rv(wp,Λp, χ)
Iv(Λp, χv). We give a conjecture on this in the next section.

4.5. Conjecture on the local problem. We can define R(wp,Λp, χv) as a
composition of several operators ([28, 13]). Then we need to study its image
R(wp,Λp, χv)Iv(Λp, χv). We hope that the technique of [13] in the case of
symplectic and odd orthogonal groups may be applied in our case.

Case 1. v splits in E. In this case Gv = GL(2n, Fv). We expect that
R(wp,Λp, χv)Iv(Λp, χv) is irreducible.

Case 2. v is inert in E. Then in light of [13], we expect the following:

Conjecture 4.10. (1) R(wp,Λp, χv)Iv(Λp, χv) is semi-simple;
(2) Let Unip(p, χv) be the set of direct summands ofRv(wp, λp, χ)Iv(λp, χv)

and Unip(O1, . . . , Ok+l, χv) be the set of union of Unip(p, χv) as pi
runs through P (Oi) for i = 1, . . . , k + l. Then Unip(O1, . . . , Ok+l, χv)
is parametrized by

C(O1, . . . , Ok+l, χv) =

[Springer(O1)× · · · × Springer(Ok)]× [Springer(Ok+1 × · · · × Springer(Ok+l)],
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where in [ ]: If µ1v = µ2v ̸= µiv for i = 0, 3, . . . , k, then we replace
Springer(O1)× Springer(O2) by

C(O1, O2, µ1v)

={η ∈ Springer(O) : η|A(Oi) ∈ Springer(Oi), for i = 1, 2},
where O is a unipotent orbit of O(2(r1 + r2),C) by combining O1, O2.

In other words, C(O1, . . . , Ok+l, χv) ⊂ Cψv , and

Πresv = Unip(O1, . . . , Ok+l, χv) = {π(ψv, ηv)| ηv ∈ C(O1, . . . , Ok+l, χv)}.

Example 4.11. Let χ = χ(µ1, . . . , µ1︸ ︷︷ ︸
10

, µ2, . . . , µ2︸ ︷︷ ︸
4

), µ1 and µ2 are distinct qua-

dratic grössencharacter of E such that µi|N(A×
E) = 1 but µi|A×

F
̸= 1. Let

O1 = (7, 5, 3, 1) is a unipotent orbit in O(16,C) and O2 = (5, 3) is a unipotent
orbit in O(8,C). Then for a non-archimedean place v, if µ1v ̸= µ2v, then Πresv
is parametrized by Springer(O1) × Springer(O2). It has 12 elements. Let
µ1v = µ2v. Let O = (7, 5, 5, 3, 3, 1). Then A(O) is an abelian group generated

by order 2 elements σ(1), σ(3), σ(5), σ(7). Thus Springer(O) = {η ∈ Â(O) :
η(σ(7)) = η(σ(1))}. Therefore, C(O1, O2, χv) = {η ∈ Springer(O) : η|A(Oi) ∈
Springer(Oi), i = 1, 2} and C(O1, O2, χv) has 4 elements.

σ(7) 1 -1 1 -1
σ(5) 1 1 -1 -1
σ(3) 1 1 -1 -1
σ(1) 1 -1 1 -1

Remark 4.12. Special case; the result of Kudla-Sweet [25].
Let χ = χ(µ, . . . , µ), where µ is a grössencharacter of E such that (1)

µ|N(A×
E) = 1, µ|A×

F
̸= 1 or (2) µ|A×

F
= 1. Let O be a distinguished unipo-

tent orbit of the form (p, q) in O(2n,C) in the first case and (p, q) or (p) in
Sp(2n,C) in the second case. Then the above local problem is solved in [25].

4.6. Conjecture on the residual spectrum. In light of the local conjecture,
we have the following description of the residual spectrum coming from Borel
subgroups.

Conjecture 4.13. Let µ1, . . . , µk be distinct grössencharacters of E such that
µi|N(A×

E) = 1 but µi|A×
F
̸= 1. Let ν1, . . . , νl be distinct grössencharacters of E

such that νj |A×
F
= 1. Then the character χ is given as follows:

χ = χ(µ1, . . . , µ1︸ ︷︷ ︸
r1

, . . . , µk, . . . , µk︸ ︷︷ ︸
rk

, ν1, . . . , ν1︸ ︷︷ ︸
s1

, . . . , νl, . . . , νl︸ ︷︷ ︸
sl

),

where r1 + · · · + rk + s1 + · · · + sl = n, and the residual spectrum attached
to the conjugacy class of (T, χ) is parametrized by the distinguished unipotent
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orbits in O(2ri,C), i = 1, . . . , k, and Sp(2sj ,C), j = 1, . . . , l. More specifically,
distinguished unipotent orbits Oi ∈ O2ri(C), i = 1, . . . , k, O0 ∈ O2r0+1(C), and
χ give a quadratic unipotent Arthur parameter ψ. Let Cresv = [Springer(O1)×
· · ·×Springer(Ok+l)] ⊂ Cψv and Πresv = Unip(O1, . . . , Ok+l, χv) ⊂ Πψv for all
non-archimedean places. For each X ∈ Πresv , there is a character ηX ∈ Cresv
which satisfies Arthur’s conjecture, i.e.,

L2
dis(G(F )\G(A))(T,χ) ∩ L2(G(F )\G(A))ψ,

is the set of π = ⊗′
vXv, where Xv satisfies the following conditions:

(1) there exists pi ∈ P (Oi), i = 1, . . . , k+ l, such that Xv ∈ Unipv(p1, . . . ,
pk+l, χv) for all v.

(2) Xv is spherical for almost all v and archimedean places.
(3)

∏
v ηXv is trivial on Cψ.

5. Special case as in [22]

We restrict ourselves to the case where the unipotent orbits Oi ⊂ O(2ri,C)
have Jordan blocks (2ri − 1, 1) for i = 1, . . . , k, and O′

j ⊂ Sp(2sj ,C) have
Jordan blocks (2sj) for j = 1, . . . , l, i.e., the ones with the most weighted
Dynkin diagrams (cf. [7]). We construct the representations in Πϕψv as local
components of the residue of the Eisenstein series and show that they satisfy
Arthur’s conjecture.

In this case, each P (Oi), i = 1, . . . , k + l, has only one element pi and
Λpi = Λi,0 is the half–sum of (positive) roots in Φi, i = 1, . . . , k + l. Let
Λ0 = Λ1,0 + . . .+Λk+l,0. Recall the following two lemmas from [22]. Let C be
the set spanned by cr1 , cr1+r2 , . . . , cr1+···+rk , where ci’s are sign changes in the
Weyl group: its action on Φ(G,Td) takes ei to −ei.

Lemma 5.1 ([22, Lemma 4.7]). D̃ = DC is the set of distinguished coset

representatives forW/W1 . . .Wk+l, i.e., d ∈ D̃ if and only if d(Φ1∪. . .∪Φk+l) >
0.

Lemma 5.2 ([22, Lemma 4.8]). For each d ∈ D,

r(dcw0,Λ0,ΦD) = r(dc′w0,Λ0,ΦD),

for any c, c′ ∈ C.

By Lemma 5.1, for d ∈ D, c ∈ C and wi ∈Wi for i = 1, . . . , k + l, we have

{α >0|dcw1 . . . wk+lα<0}=∪k+l
i=1{α ∈ Φi|wiα < 0}∪{α∈ΦD| dcw1 . . . wk+lα<0}.
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Then the constant term of pseudo-Eisenstein series is given by

EPS
0 (ϕ,Λ, χ) =

k∏
i=1

∑
wi∈W̃i

k+l∏
i=k+1

∑
wi∈Wi

r(wi,−Λi,Φi)

·

(∑
d∈D

∑
c∈C

r(dw1 . . . wk+l,−Λ,ΦD)R(w−1
k+l . . . w

−1
1 c−1d−1, dcw1 . . . wk+lΛ, dχ)

ϕ(dcw1 . . . wk+lΛ)) .

We note that cw1 . . . wkχ = χ. Let

f(cw1 . . . wk+lΛ) =
∑
d∈D

r(dcw1 . . . wk+l,−Λ,ΦD)

R(d−1, dcw1 . . . wk+lΛ, dχ)ϕ(dcw1 . . . wk+lΛ).

Let V ′
i0 = {Λi| ⟨Λi, α∨⟩ = 1 for α ∈ θ ∩ Φi} and V ′

0 = {Λ ∈ a∗C|Λ =
Λ1 + · · ·+Λk+l,Λi ∈ V ′

i0}. We note that V ′
0 = {Λ ∈ a∗C| ⟨Λ, α∨⟩ = 1 for α ∈ θ}.

Let Vi0 = {Λi| ⟨Λi, α∨⟩ = 1 for α simple roots in Φi} and V0 = {Λ ∈ a∗C|Λ =
Λ1 + · · · + Λk+l,Λi ∈ Vi0}. We note that V0 = {Λ0}. Since for each d ∈ D,
dα > 0 for all α ∈ θ, f(cw1 . . . wk+lΛ) is holomorphic on V ′

0 . Therefore we
can take iterated residue of EPS0 (ϕ,Λ, χ) at Λ0. Let l0(ϕ,Λ0, χ) be the iterated
residue. Since cΛ0 = Λ0, by Lemma 5.2, it is given by

(5.1)

l0(ϕ,Λ0, χ) = R(w0,Λ0, χ)
k∏
i=1

(1+R(cr1+···+ri ,Λ0, χ))f(Λ0) ∈ ⊗′
vR(w0,Λ0, χv),

where w0 = w1,0 . . . wk+l,0 and wi,0 is the longest element in W̃i for i = 1, . . . , k
and Wi for i = k + 1, . . . , k + l. l0(ϕ,Λ0, χ) spans the part of the residual
spectrum attached to Λ0. Here we note that we defined the local intertwin-
ing operator R(w0,Λ0, χv) on IndGMΛ0 ⊗ IndMB χv, where M is defined below
and R(cr1+···+ri) = R(cr1+···+ri ,Λ0, χv) defines a self intertwining operator for
IndMB χv. Recall from Remark 3.4 the associated Langlands’ parameter ϕψ, i.e.

the homomorphism ϕψ :WF −→ LG defined by

ϕψ(w) = ψ

(
w,

(
|w| 12 0

0 |w|− 1
2

))
.

Its non–tempered part is ϕ+ψ = exp⟨Λ0,HB( )⟩.
Let LM0 = Cent(imϕ+ψ ,

LG0). Since (Λ0, ei) = 0 for i = r1, r1+ r2, . . . , r1+

· · · + rk, the Levi subgroup M which has LM0 as its L–group, will be, up to
isomorphism, of the form ResE/FGLn1 × · · · ×ResE/FGLnr × U(k, k), where
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n1, . . . , nr are determined by Λ0. The parameter Λ0 is in the positive Weyl
chamber of the split component of M .

We need to analyze the image of the intertwining operator

⊗′
vR(w0,Λ0, χv)I(Λ0, χv).

For each place v, decompose ϕψv as ϕψv = ϕ◦ψv · ϕ
+
ψv

as in [2]. The param-

eter ϕ◦ψv factors through LM0 and is the Langlands parameter for the (tem-

pered) constituents of the unitary principal series Iv = Ind
M(Fv)
B0(Fv)

χv = ⊕iπv,i,
ofM(Fv), where B0 = B∩M . For each πv,i, let Πv,i = J(πv,i⊗exp⟨Λ0,HP ( )⟩)
be the corresponding Langlands quotient, where P = MN . Then for each v
the L–packet parameterized by ϕψv is Πϕψv = {Πv,i}. The R–group for the
parameter ϕψv , i.e. Cϕψv is the same as the R–group of Iv for each v in the
sense of Knapp–Stein. We divide into two cases:

Case 1. v is inert in E. By [15, Theorem 3.7], the R–group Cϕψv of Iv is
a subgroup of the group generated by the sign changes ci, i = r1, r1 + r2, r1 +
· · · + rk, a product of 2–groups. In fact, it is generated by the sign changes
cr1+···+ri for which µiv’s are distinct and µiv|F×

v
is non-trivial. Moreover, if

the sign change cr1+...+ri in (5.1) does not belong to Cϕψv for some i, then the
normalized operator R(cr1+...+ri) acts like identity.

Case 2. v splits in E. In this case, Cϕψv = 1.
Let π(χv) = {πv,i}. Then, given a place v, Keys and Shahidi [16] defined a

pairing ⟨ , ⟩ on Cϕψv × π(χv). We extend the pairing ⟨ , ⟩ to Cϕψv ×Πϕψv
as in Arthur [2, p. 9] by setting ⟨τv,Πv,i⟩ = ⟨τv, πv,i⟩. This can further be
extended to Cψv × Πϕψv , using the surjection Cψv → Cϕψv for each v [2, p.
11]. Let Π = ⊗vΠv,i where almost all Πv,i are spherical. Then Π ∈ Πϕψ , the
(global) L–packet of ϕψ. Finally set ⟨τ,Π⟩ =

∏
v
⟨τv,Πv,i⟩, where τv is the image

of τ under the map Cψ → Cψv . As in [22, p. 421], ⟨·,Π⟩ is well-defined.
Applying (5.1) to Π = ⊗vΠv,i ∈ Πϕψ now implies that the residue is equal

to ∑
d∈D

(∗)R(dw0,Λ0, χ)
∑

x∈Cϕψ

⟨x,Π⟩Π.

It is now clear that since Cϕψ is abelian, the residue is non–zero if and only
if ⟨·,Π⟩ is the trivial character. We state this as

Theorem 5.3. Π appears in L2
dis(G(F )\G(A)) if and only if ⟨·,Π⟩ is the trivial

character.

This proves the global Arthur conjecture on the multiplicity formula (3.3) for
the residual spectrum. According to Conjecture 4.13, the full residual spectrum
attached to the Arthur parameter ψ can be described as follows:

Let µi1,v, . . . , µis,v be the set of distinct characters such that µij ,v|F×
v

is
non-trivial. Then if v is inert in E, Cϕψv is spanned by the order two elements
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cr1+···+ri1 , . . . , cr1+···+ris . On the other hand, by Conjecture 4.13, Cresv =

C(µi1,v)×. . .×C(µis,v)×C0, where C(µij ,v) ≃ Z/2Z and C0 is a set determined
by the remaining µiv’s and O′

j , j = 1, . . . , l. We note that Cϕψv ≃ C(µi1,v) ×
. . .× C(µis,v).

Example 5.4. Let χ = χ(µ1, µ1, µ2, µ2), where µ1, µ2 are distinct grössenchar-
acters of E such that µi|N(A×

F ) = 1 but µi|A×
F
̸= 1 for each i = 1, 2. LetO1, O2 be

the distinguished unipotent (3,1) in O(4,C). Then if v is inert in E, µ1v ̸= µ2v

and µiv|F×
v

is non-trivial for i = 1, 2, Cresv = Cϕψv ≃ Z/2Z × Z/2Z. On the

other hand, if v is inert in E, µ1v|F×
v

= 1 and µ2v|F×
v

̸= 1, then Cϕψv ≃ Z/2Z
but Cresv ≃ Z/2Z× Z/2Z. If v splits in E, Cϕψv = Cresv = 1.

6. Special case of G = U(2, 2)

As we remarked in the introduction, the results in [24] are stated in such a
way that it is hard to see Arthur’s multiplicity formula. So we redo the calcu-
lations, using the same method as in [17]. We will get all residual spectrum,
coming from the Borel subgroup.

Let α1 = e1 − e2, α2 = 2e2, α3 = e1 + e2 and α4 = 2e1 be the restricted
positive roots. Let β1 = e1. Let σ, τ be the simple reflections with respect to
α1, α2, respectively. Let P1 be the Siegel parabolic subgroup, i.e., P1 =M1N1,
M1 = ResE/FGL2. Let P2 be the non-Siegel parabolic subgroup, i.e., P2 =
M2N2, M2 = ResE/FGL1 × U(1, 1).

Let µ, ν be grössencharacters of E. Then χ = χ(µ, ν) defines a unitary
character of T (F )\T (AF ). Let E(g, f,Λ) be the Eisenstein series attached to χ
and f ∈ I(Λ, χ) = IndGB χ⊗ exp(⟨Λ,HB( )⟩). There are 4 singular hyperplanes
to consider: Si = {Λ ∈ a∗C| ⟨Λ, α∨

i ⟩ = 1} for i = 1, 2, 3, 4.
As we see in [17], we have to consider the residue

Resβ1ResS1E(g, f,Λ),

ResρBResS1E(g, f,Λ),

Resα3ResS2E(g, f,Λ).

Then the following characters of T (F )\T (AF ) contribute the residual spec-
trum (∗ is some constant.):

(1) χ = χ(µ, µ), µ|A×
F

= 1. In this case, the residue at ρB is square

integrable and it is given by

(∗) R(στστ, ρB , χ)f.

(2) χ = χ(µ, ν), µ|A×
F
= 1, ν|A×

F
= 1 and µ, ν are distinct. In this case, the

residue at α3 is square integrable and it is given by

(∗) R(τστ, α3, χ)(1 +R(σ, α3, χ))f.
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(3) χ = χ(µ, µ), µ|N(A×
E) = 1 but µ|A×

F
̸= 1. In this case, the residue at β1

is square integrable and it is given by

(∗)R(στσ, β1, χ)(1 +R(τ, β1, χ))f.

We analyze the image of the intertwining operators by inducing in stages:
Case 1. Since στστ is the longest element in the Weyl group,

R(στστ, ρB , χv)I(ρB , χv) is the Langlands’ quotient which is the one dimen-
sional representation µv ◦ det.

Case 2. I(τστ, α3, χv) = IndGP1
α3 ⊗ IndM1

B χv.

Here π = IndM1

B χv is irreducible. Since R(σ, α3, χv) is a self-intertwining

operator on π = IndM1

B χv, it acts like a scalar. But because of the normaliza-
tion, it acts like 1. α3 is in the positive Weyl chamber of the split component
of M1. Therefore the image of the intertwining operator is the Langlands’
quotient J(π ⊗ exp⟨α3, HP1( )⟩).

Case 3. I(στσ, β1, χv) = IndGP2
β1 ⊗ IndM2

B χv.

If v splits in E, then IndM2

B χv is irreducible. If v is inert, by the result of

Keys [15] on R-group, IndM2

B χv is a sum of two irreducible representations if

and only if µv|F×
v

̸= 1. Let Ind
U(1,1)
B0

µv = π+(µv) ⊕ π−(µv), as in [16], i.e.,

with π+(µv) generic with respect to ηv. Let ϵ(π+(µv)) = 1 and ϵ(π−(µv)) =
−1. Observe that for almost all v, π+(µv) is spherical. If µv|F×

v
= 1, then

Ind
U(1,1)
B0

µv is irreducible. In this case, we take π−(µv) = 0. Let π(µv) =
{π+(µv), π−(µv)} and if πv ∈ π(µv), let ϵ(πv) be the corresponding sign. Let
J±(µv) be the Langlands’ quotients of IndGPi | |vµv × π±(µv), respectively. Let
J(µv) = {J+(µv), J−(µv)}.
Observe thatR(τ, β1, χv) is the normalized intertwiningoperator for IndU(1,1)

B0
µv.

By [16, Theorem 5.1],

R(τ, β1, χv)fv =

{
fv, for fv ∈ π+(µv)

−fv, for fv ∈ π−(µv).

Then we define J(µ) to be the collection

J(µ) = {Π = ⊗Πv|Πv ∈ J(µv) for all v, Πv = J+(µv) for almost all v,
∏
v

ϵ(πv) = 1}.

We note that
∏
v ϵ(πv) is well-defined and independent of the choice of η.

Therefore we have the following theorem.

Theorem 6.1. The residual spectrum ⊕(T,χ)V(T,χ) of U(2, 2) coming from the
Borel subgroup, where

V(T,χ) = L2
dis(G(F )\G(AF ))(T,χ),

is given as follows:
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(1) χ = χ(µ, µ), µ|A×
F
= 1. V(T,χ) consists of the one-dimensional represen-

tation µ ◦ det.
(2) χ = χ(µ, ν), µ|A×

F
= 1, ν|A×

F
= 1 and µ, ν are distinct. V(T,χ) is irre-

ducible and it consists of the Langlands’ quotient ⊗′
vJ(πv⊗exp⟨α3, HP1( )⟩),

where πv = IndP1

B χv.
(3) χ = χ(µ, µ), µ|N(A×

E) = 1 but µ|A×
F
̸= 1. V(T,χ) = J(µ).

Remark 6.2. Notice the difference between U(2, 2) and Sp4. In Sp4 case, the
contribution from α3 is zero.

Remark 6.3. In U(2, 2) case, Conjecture 4.13 on the residual spectrum is proved
since all three cases belong to the special case in Section 5.

In this special case, the Arthur parameters are given as follows:

Theorem 6.4. (1) χ = χ(µ, µ), µ|A×
F
= 1. The Arthur parameter is given

by the unipotent orbit O = (4) ⊂ Sp(4,C).
(2) χ = χ(µ, ν), µ|A×

F
= 1, ν|A×

F
= 1, and µ, ν are distinct. The Arthur

parameter is given by the unipotent orbit O = (2) × (2) ⊂ Sp(2,C) ×
Sp(2,C).

(3) χ = χ(µ, µ), µ|N(A×
E) = 1 but µ|A×

F
̸= 1. The Arthur parameter is given

by the unipotent orbit O = (3, 1) ⊂ O(4,C).
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