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ABSTRACT. In this paper we study the residual spectrum of the quasi-
split unitary group G = U(n,n) defined over a number field F, coming
from the Borel subgroups, L2, (G(F)\G(A))r. Due to lack of information
on the local results, that is, the image of the local intertwining operators
of the principal series, our results are incomplete. However, we describe
a conjecture on the residual spectrum and prove a certain special case by
using the Knapp-Stein R-group of the unitary group.
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1. Introduction

In this paper we study the residual spectrum of the quasi-split unitary group
G = U(n,n) defined over a number field F', coming from the Borel subgroups,
L2 (G(F)\G(A))r. (See the introduction of [18] for the definition.) Its root
system over F is C}, and we can apply the technique in [22]. Due to lack of
information on the local results, that is, the image of the local intertwining
operators of the principal series, our results are incomplete. However, we de-
scribe a conjecture on the residual spectrum and prove a certain special case
as in [22] by using the Knapp-Stein R-group of the unitary group studied by
Keys [15].

More precisely, let G = U(n,n) with respect to E/F, be a quadratic exten-
sion of number fields, and let Ar be the ring of adeles. Let G = GL(2n,C) %
W denote its dual group. Let ui,...,ur be distinct grossencharacters of
E such that P‘i|N(A§) = 1 but Hi|A; # 1. We note that this means that
1] ax = TE/F the quadratic character corresponding to E/F by the class field

theory. Let v4q,...,1; be distinct grossencharacters of E such that v;] A = 1.
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The residual spectrum of U(n, n) 192

Then the character X = X (11, -y 1y ey flhye vy s VlyeneyVlyenesViyen oy V1),
—_——— —_———— —— ————

1 Tk S1 sy
where r1 + -+ rp + s1 + -+ + s; = n, defines a character of T(F)\T'(Ar),
where T is the maximal split torus in G. An Eisenstein series attached to a
character of T(F)\T(AFr) will contribute to the residual spectrum only if the
character is of the above type (Proposition 4.8).

The Arthur parameter of interest to us is a homomorphism

Y Wr x SL(2,C) — L@,

which factors through GL(2r1,C)x- - - X GL(2r, C) x GL(2s1,C) x GL(2s;,C)
Wr < GL(2n,C) x Wg. By Jacobson-Morozov theorem, 9|s2,c) is deter-
mined by distinguished unipotent orbit Hle O; x Hé-:l Oj}, where O;’s are
distinguished unipotent orbits in O(2r;,C), i =1,...,k and O,’s in Sp(2s;, C);
Y|w, is defined using p;’s and v;’s (see Section 3.1). To 1, we can define the
set L2(G(F)\G(A))y (see (3.4)).

In Section 4, by assuming a local conjecture on the image of the local in-
tertwining operators of the principal series, we describe a conjecture on the
intersection

LA(GFN\G(A))y N L (GENG(A))r.

We hope that the technique of [13] in the case of symplectic and odd orthogonal
groups may be applied in our case.

In Section 5, we consider a special case as in [22], that is, for each ¢ =
1,...,k, let O; be the unipotent orbit of O(2r;,C) attached to principal Jor-
dan block (2r; —1,1). Let O}, j = 1,...,l, be the principal unipotent orbit
of Sp(2s;,C), i.e., the one attached to the Jordan block (2s;). To v, Arthur
associates a Langlands’ parameter ¢,. We construct the representations in
I, as residues of Eisenstein series associated to the character x. Using cer-
tain identities satisfied by local intertwining operators which was proved in
[16], we then verify Arthur’s multiplicity formula for these square integrable
residues. (See Section 3.1 for Arthur’s multiplicity formula.) It is remark-
able that in this case also as in [22] the formula itself appears in the cor-
responding residue of the Eisenstein series. We note that the local R-group
Cy,,, for the parameter ¢, is the Knapp-Stein R-group of the unitary princi-

pal series I, = I ndﬁ((};;fv)) Xvs

LMO = Cent(im gblt, L@). Here d)lz is the non-tempered part of ¢,. M is iso-
morphic to Resg/pG Ly, X+ -x Resp)pG Ly, xU(k, k) for some ny, ... ,ng. The
R-group has been calculated by Keys [15] and is isomorphic to Z/2Z x - - - X Z /27
if v is inert in F, and is generated by the sign changes ¢, +...4r, such that p;,’s
are distinct and g, | FX is non-trivial.

In Section 6 we determine the residual spectrum of U(2,2) coming from the
conjugacy class of Borel subgroups. Konno [24] obtained all residual spectrum

where M is the Levi-subgroup whose L-group is
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of U(2,2). However, his result on the residual spectrum, coming from Borel
subgroup, is not a suitable form for Arthur parameters. So we redo the calcu-
lations imitating [17]. We should also note that Konno’s results do not show
the global obstruction condition, i.e., Arthur’s condition.

At the suggestion of the referee, we would like to review some recent rel-
evant (by no means exhaustive) works on the residual spectrum: In [20], we
gave a conjecture on the residual spectrum from arbitrary parabolic subgroups,
assuming some local and global conjectures. The local conjecture is about nor-
malized local intertwining operators, similar to Conjecture 4.10 of this paper.
It is conjectured that the residual spectrum is parametrized by unipotent orbits
as in the Borel case. In [21], we showed the relationship among the residual
spectrum coming from Borel subgroups in an isogeny class. In a monumental
work in [5], J. Arthur proved the endoscopic classification of the discrete spec-
trum of symplectic and orthogonal groups over a number field. In [33], C.P.
Mok followed Arthur closely and gave the endoscopic classification of quasi-
split unitary groups. Based on Arthur’s classification, Moeglin [29, 30] gave a
conjectural description of the residual spectrum in terms of its transfer to the
general linear group. She proves a special case of unitary groups and cohomo-
logical representations at the infinity. Most recently, De Martino, Heiermann
and Opdam [8] computed the spherical residual spectrum of arbitrary split re-
ductive group from the trivial character of the torus, using graded affine Hecke
algebras. We hope that their technique may be helpful in proving Conjecture
4.10. There have been some results on residual spectrum of inner forms of
classical groups such as inner forms of GL,, [6], and inner forms of symplectic
and orthogonal groups [10, 11, 12].

2. Preliminaries

Let F be a number field and E//F be a quadratic extension of number fields.
Let W denote the Weil group of F' and G = U(n, n) be the quasi-split unitary
group in 2n variables defined with respect to E/F. Let G = G(F). It is given
as follows: Let J,, be the n x n matrix given by

Let Ji, = <—J J”). Then

G={geGL2n)| "gl3.9 = T3},
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where © — T is the Galois automorphism of E/F. We note that G(E) =
GL(2n, E). Let Ty be the maximal F-split torus consisting of diagonal elements
in G. Then

A
A2
An %
Ty = t()\l,...,/\n): ! N € F75.
At
At
The centralizer of Ty in G is the maximal torus T of diagonal elements:
A1
A2
An x
T(F): t(Al,,)\n): X_l )\'LGE
Nt

Then the root system ®(G,T) is of type As,—1. But the restricted root system
O(G,Ty) is of type C,,. We choose the ordering on the restricted roots so that
the Borel subgroup B is the subgroup of upper triangular matrices in G. Let
A be the set of simple roots in ®(G,T,) given by A = {ay,...,a,}, with
a; =ej —ejpr for 1 <j<n-—1anda, =2e, Welet (,) be the standard
inner product on ®(G, Ty).

The Weyl group is given by W(G/T) ~ S, x (Z/2Z)™. S,, acts by permu-
tations on the A;, ¢ = 1,...,n. We will use standard cycle notation for the
elements of S,,. Thus (¢j) interchanges A; and \;. If ¢; is the nontrivial element
in the i-th copy of Z/2Z then ¢; takes \; to )\i_l. The element ¢; is called a
sign change because its action on ®(G,T') takes e; to —e;.

For each place v, we define G, = G(F,) = G ®p F,, T,, = T(F,). We note
that T(Fy) = {t(A1,..., )|\ € EX}, where E, = E®p F,. E,/F, is a
quadratic extension, except the case when v splits in F. In that case, F, ~
F, ® F,. In this case, we define the ‘Galois’ automorphism z = (z1,z2) —
T = (1‘2, .731).

If a place v of F is inert in E, then the place of E lying over v will be
denoted by w. If v splits in F, then the places of E lying over v will be
denoted by w; and wy. We note that G, ~ U(n,n)g, /p, if v is inert in £ and
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G, ~ GL(2n, F,) if v splits in E. According to the class field theory, roughly
half places of F' split in E and roughly half of them are inert in E.

3. Arthur parameters for the residual spectrum

3.1. Arthur parameters for the unitary groups. Let F' be a number field
and let Wx denote the Weil group of F. For G = U(n,n), we can take the dual
group YG® = GL(2n,C) and G = GL(2n,C) x Wg. Note that Wr/Wg =~
Gal(E/F) =7Z/2Z. Let w, be the non-trivial element in Gal(E/F). We let Wg
acts on GL(2n,C) trivially and w, acts on GL(2n,C) by g — Jb,tg~1J5, ~1,
i.e., the multiplication in “G is given by

(9" x we)(g x w) = ¢' Ty, "9~ T~ X wow,

for w € Wp and (¢’ x w')(g x w) = ¢'g x w'w for w' € Wg. We recall the
definition of Jj,,: Let J,, be the n x n matrix given by

1

In =

Then Jb, = iy In

In the following, let uq, ..., ux be distinct grossencharacters of E such that
1] N@AY) = 1 but ;] AX # 1 and let vy,..., 1 be distinct grossencharacters of
E such that v;| Ax = 1. Then the character
Xzx(ul,...,ul,...,uk7...,,uk,yl,...7y1,...,1/l,...,ul),Wherer1+---+rk+

—_——— —_————— —— ———

1 Tk S1 Sy
s1+ -+ s; = n, defines a character of T(F)\T(Ar), where T is the maximal
torus in G.

The Arthur parameter of interest to us is a homomorphism

Y Wp x SL(2,C) — L@,
which factors through
GL(2r1,C)x---xGL(2ry,C)xGL(2s1,C)xGL(2s;, C)xWp — GL(2n,C)xWg,

as follows: (The usual definition of Arthur parameters uses Langlands’ hypo-
thetical group Lr. But since we are only dealing with Langlands’ quotients
which come from principal series, Wy is enough.)
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(1) fwe Wg,
pa(w)lor,

Ylwp :wr—

I/l(w)lzsl

7 —1
Ylwp : Wo — Jry e svens;d2n - X W,
where
']27'1

JQT)C

Jrl,“,rk,m AAAAA sy T Jé
S1

Jos,
(3) By Jacobson-Morozov theorem, ¥, (2,c) is determined by a unipotent
orbit of GL(2r1,C) x -+ - x GL(2ry,C) x GL(2s1,C) x --- x GL(2s;,C)

of the form
k l
[0 o
i=1 j=1

where O;, i =1,...,k, is a distinguished unipotent orbit of O(2r;,C) C
GL(2r;,C) and O}, j = 1,...,l, is a distinguished unipotent orbit of
Sp(2s;,C) C GL(2s;,C). Inside O;, 0}, we fix elements u;,v; such

J
that
1 1 k l
M(o 1>) B I Ilu’ 8 I Ilvj'
1= Jj=

Remark 3.1. The above definition is a refinement of the usual definition which
is:

(1) ¥(Wp) is bounded and included in the set of semi-simple elements of
L@a.
(2) YlsLee,c) is algebraic.

We note that
Cent(Jry,. . rps1, st Jé,;l X we, LGN
GL(2r1,C) x --- x GL(2r,C) x GL(251,C) x --- x GL(25;,C) x 1
=0(2r1,C) x --- x O(2r,C) x Sp(2s1,C) x - -+ x Sp(2s;,C).
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This is the reason we chose distinguished unipotent orbits from O(2r;, C)
and Sp(2s;,C). Recall from Carter [7] that O is a distinguished unipotent
orbit in O(2n,C) if and only if it has a Jordan block (11,3 5t ...), where
t; = 0 or 1; O is a distinguished unipotent orbit in Sp(2n,C) if and only if it
has a Jordan block (2¢2,4% 6% ...), where t; =0 or 1.

Let Sy = Cent(im,LGY), Zg = Cent(G,2G°) = {£1} and

Cy = Sy/S}Za.
Then Sy, is a maximal reductive subgroup of
k 1
HCent(ui, O(2r;,C)) x H Cent (v}, Sp(2s;,C)).
i=1 j=1
Therefore Sj, = 1, i.e., Sy is finite if and only if each u; is a distinguished
unipotent element in O(2r;, C) and v} in Sp(2s;,C). So:

Lemma 3.2. In order that Sy is finite, r; > 2 for i = 1,...,k, and O; C
O(2r;, C), O} C Sp(2s;,C) are distinguished.

Now it is clear that Sy /Sy, Z¢ is equal to

k
(3.1) HCent(ui,O(2ri,C))/C’ent(ui,O(2ri,C))°

l
X HCent(v;,Sp(ZSj,C))/Cent(v;,Sp(2sj,(C))oZg.
i=1
Here Cent(u;, O(2r;,C))/Cent(u;, O(2r;,C))° is t product of Z/2Z, where t is
the number of ¢ odd with ¢; > 0 in Jordan blocks;
Cent(v}, Sp(2s;,C))/Cent (v}, Sp(2s;,C))° is t product of Z/2Z, where t is the
number of ¢ even with ¢; > 0 in Jordan blocks.

For each place v of F, we have a local Arthur parameter ¢, : Wg, x
SLy(C) — GL(2n,C) x W, such that it commutes with the map Wr, — Wp
[37, p. 8]. As in the global case, we can then define Sy, .

There are two cases.

Case 1. visinert in E. In this case, Gal(E,/F,) ~ Gal(E/F) and therefore,
GL(2n,C) x W, is defined in the same way as in the global case.

But in the local case, u;,, or v, may not be distinct. Suppose p1, = fi2y.
Then in the above formula (3.1),

Cent(uy,0(2r1,C))/Cent(ui,0(2r1,C))°
x Cent(ugz, O(2ry, C))/Cent(ug, O(2ry, C))°
must be replaced by
Cent(uy X ug, O(2r1 + 213, C))/Cent(uy X ug, O(2r1 + 213, C))°.
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However, if p1, = vy, then the above formula (3.1) still holds.

Case 2. v splits in E. In this case, E,,, = F,, where w;, ¢ = 1,2, are the
places of E over v. Therefore, the action of Wg, in GL(2n,C) x W, is trivial.
Therefore, v, is given by ), : Wg, x SL(2,C) — GL(2n,C) x W, such that

(1)

Pw, (W) T2

Hkw; (w)brk

LW
wv|WFv Viw; (w)1231

X w,

Viw; (w)I2Sl
where w; is a place of E over v. We note that the map is well-defined,
independent of the choice of w; (see [37, p. 9]).
(2) ¥ulsLzc) is defined by the unipotent orbit TS, O; x [T._; O}, where
O;, i = 1,...,k, be a distinguished unipotent orbit of O(2r;,C) C
GL(2r;,C) and O}, j = 1,...,l, is a distinguished unipotent orbit of
Sp(2s;,C) C GL(2s4,C).
Then Cy, is trivial in this case.
Now we recall Meeglin’s reformulation of Arthur’s conjecture [29]: It is a
part of local Arthur’s conjecture that for each irreducible character n, of Cy,,
there exists an irreducible representation (v, n,). For each v, let I, be the

set of 7(ty, ).
We define the global Arthur packet I to be the set of irreducible represen-
tations ™ = ®,m, of G(A) such that for each v, m, belongs to II,, .

Conjecture 3.3 (Arthur’s conjecture (Global)). II, N L2, (G(F)\G(A)) is
nonempty if and only if Sy is finite, i.e., S:j} = 1. We call such an Arthur
parameter elliptic. For an elliptic Arthur parameter 1, any 7 € 1l occurs in
L2 (G(F)\G(A)) if and only if

(3.2) Z an(xv) # 0,

zeCy v
where m = Q,7m(Vy, M), T = ().
Note that, if Cy, is abelian, (3.2) is equivalent to

(33) <H 771)) |Cw =1
Define
(3.4) LA(G(F\G(A))y = Iy N L3, (G(F)\G(A)).
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Let 11,5, be the subset of 11, which consists of the local components of the
residual spectrum. We will parametrize the elements in II,.s, and prove the
multiplicity formula (3.3) under certain conjecture on local problems, namely,
construct a set of characters Ci.s, C 5111\ and each character of C,.s, gives rise
to an element in I, .

Remark 3.4. To any Arthur parameter ¢, Arthur associates a Langlands’ pa-
rameter ¢y : Wp — LG as follows:

oo (5 2)

Let Sy, = Cent(im ¢y, “G°) and Cy,, = Sy,,/S3, Za. For each place v, we
have Sy, , Cy, . For each v, there is a natural surjection Cy, — Cy,, . The
parameter ¢y, gives a L-packet Il ~which consists of Langlands’ quotients.
It is a part of Arthur’s original local conjecture that for each place v, there is
a pairing (, ) on Cy, x Iy, —and an enlargement IIy, of Il ~which allows
an extension of ( , ) to Cy, x II, such that 7 € I, C Il if and only if

the function (,7) lies in the image of C{%\ in a; Since Cy,, is abelian in our
case, giving a pairing between Cy, and Il is the same as giving a character
of va.

In Section 5, we construct the representations in Il,, —as local component
of the residual spectrum attached to special unipotent orbits. In this case, the
pairing (, ) on Cy, x Iy, —is given by the Knapp-Stein R-groups [I0].

4. Residual spectrum of U(n,n)

We fix a non-trivial additive character ¢p = ®,¢p, of Ap/F and let
Lp(z, 1) be the Hecke L-function over F with the ordinary I'-factor so that
it satisfies the functional equation Lp(z,p) = ep(z,u)Lr(1 — 2, u7 1), where
er(z, 1) = [1, €r(2, o, ¥r,) is the usual e-factor, see [9, p. 159]. If p is the
trivial character pg, then we write simply Lp(z) for Lr(z, o).

We extend the coroots oV : F* — T, to oV : F* — T as follows. For

a=¢e —eja’N)=t1,....\ ..., . 1) €T(F) for 1 <i<j<n. For
i i
a=c¢e +ej,a’(N)=t1,...,\.. ,)\, ,1), for 1 <i < j <n. For a = 2e,,
VA =t(1,..., A ..., ) for 1 <14 g n. Here dots represent 1.
K3

Let X(T)p (resp. X*(T)r) be the group of F-characters (resp. cochar-
acters) of T. There is a natural pairing (,) : X(T)p x X*(T)p — Z. For
a, B € (G, Ty), (8,a") = 2(8,a)/(a,a), where (, ) is the standard inner
product in ®(G,T). Let w; = e; +---+¢;. Then wy,...,w, are the fundamen-
tal weights of G with respect to (G, Tq). Set a* = X(T)r®R, af = X(T)r®C,
and a = X*(T)p®@R = Hom(X(T)r,R), ac = X*(T')p ®C. The positive Weyl
chamber in a* is
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C+

{A €a*|{A,aY) >0, for all a positive roots}
{Z a;w; | a; > 0}.
i=1

Let B =TU be the Borel subgroup, where U is the unipotent radical. Let
K be the standard maximal compact subgroup of G(A). If v < oo, let
K, be an open maximal compact subgroup of G, such that for almost all
v, K, = G(O,), where O, is the ring of integers of F,. Then K = K. X
[1,<oo Kv is a maximal compact subgroup of G(Ar) and G(Ar) = B(Ap)K.
The embedding X (T)r — X (T')F, induces an embedding a, < a. There exists
a homomorphism Hp : T(Ap) — a, defined by

eap((x. Hp () = [T Ix(t)los

where x € X(T)p and t = (t,). We will extend Hp to G by making it trivial
on U and K, see [22].

4.1. Definition of Eisenstein series. For p, ..., u, grossencharacters of E,
we define a character x = x(p1,- .., pn) of T(F)\T(Ar) by

X1y s ) (EA1s - A)) = (A1) - i (An)-
As in [22], we form the Eisenstein series:
E(g,f,N)= > f(9),
YEB(F)\G(F)

where f € I(A,x) = Ind$ x ® exp(A, Hg( )). It converges absolutely for
ReA € C* + pp and extends to a meromorphic function of A. It is an auto-
morphic form and the constant term of E(g, f, A) along B is given by

A) = A du = A
Folo. .0 = [ e P FA d= 3 M A 9)

weW
where

M(w, A, x)f(g) = / Fwug) du.

wU(A)w=1NU(A)\U(A)
Then M (w, A, x) defines an intertwining map from I(A, x) to I(wA,wy) and
satisfies a functional equation of the form

M(wiwa, A, x) = M (wy, waA, wax) M (wa, A, X).
For x = x(u1, -+ n),
uiugl, forao =e; —¢;
xoa¥ =< i, fora=e +ejandi<j

Mi|A;, for a = 2e;,
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where ji denotes the character ji(a) = pu(a) for a € A%. We note that if p is a
grossencharacter of E, then i = p| A% is a grossencharacter of F' and its local
component is fi, = uw|FUX if v is inert in F and fiy, = fhy, fw, if v splits in E.
We have
M(w, A, x) = @uA(w, A, Xyp)-
We normalize the local intertwining operators A(w, A, x,) as in [16] for p-adic
places and [4] for archimedean places: For any v, let

_ L((A, "), xe 0 0)
re)= 1 e s av (et v o, o)

a>0,wa<0

Here the L-functions are defined as follows:
(1) The case o =e; — ej, © < j. In this case,

LA, a"),xpo0a) =
{LE(<A,aV>,umuﬁ,}), if v is inert in E
Le((A, 05V>7Niw1ﬂj_$1)LE(<A7 av), ,um2,uj_u}2), if v splits in F,
e((A, 0¥, xw 0¥ hr,) =
{/\(Ew/FvytffFv)éE((A,av>,,uiw,uj$,'t/JFU oTrg,/r,), ifvisinertin F
en((A, ), fiwn 150, VB, Ve (A, @), finy 5, B, ), 3 0 splits in E.

(2) The case a = e; + e; is similar.
(3) The case a = 2¢;. In this case,

(<A7 a\/>7 Hiw
((A, @), Hiw, friws,),  if v splits in F,

L({A,a¥), xy 0 0¥) = {iF py)y  ifvisinertin B
F

er({A, V), fhiw| mx s , ifwvisinertin F
(A, a¥), xo 0 0¥, g, ) = {EZEEAQV;L'L%P{) £ splits in .
We normalize the intertwining operators A(w, A, x,,) for all v by
A(w, A, xv) = mo(w)R(w, A, ).
Let R(w, A, x) = ®,R(w, A, x,) and
r(w) = I,r, (w) = H

a>0,wa<0

LA, oY), xoaY)
L({A,aV) + 1, x 0 aV)e((A, a¥), x oY)

R(w, A, x) satisfies the functional equation
R(wiwa, A, x) = R(w1, welA, wax) R(wz, A, x)
for any wy, we. Because of the normalization of the intertwining operators,

Aw,Axo) [ Lo a¥),xwoa)™!

a>0,wa<0
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is holomorphic for any v. So for any v, R(w, A, x,) is holomorphic for each A
with Re((A,a")) > —1 and for all positive « with wa < 0.

For a € &1, let S, = {A € af[(A,aY) = 1}. We call S, a singular hyper-
plane. We say that E(g, f, A) has a pole of order [ at Ag if Ag is the intersection
of [ singular hyperplanes in general position on which the Eisenstein series has
a simple pole.

For ¥ C ®*, we define r(w, A, ¥) by

- L((A,aY), x oY)
r(w,A,U) = H LA, V) +1,xoaY)e((A,aV), xoaY)’

aceV wa<0

Observe that we have suppressed the dependence of r(w, A, ¥) on .

4.2. Definition of pseudo-Eisenstein series. In order to apply the results
in [28], we introduce pseudo-Eisenstein series, following Mceglin. For T a max-
imal split torus, a character x of T(F)\T(Ar) defines a cuspidal represen-
tation of T. For any w € W, wTw™' = T and so (T,wy) is conjugate to
(T, x)- Let I(x) be the set of entire functions ¢ of Paley-Wiener type such that
¢(A) € I(A, x) for each A. Let

b6() = (5

27li> /REA—AO (g7 (b( )’ ) 7
where AO S PB + CT. Let

LA(G(P)\G(A))(rx),

be the space spanned by 6, for all ¢ € I(wy) as wy runs through all distinct
conjugates of x. Let L3, (G(F)\G(A))(r,) be the discrete part of
LAHG(F)\G(A))(1,x)- It is the set of iterated residues of E(g,$()),A) of or-
der n and the residual spectrum attached to (7, x). In order to decompose
L% (G(F)\G(A))(r,y), we use the inner product formula of two pseudo-Eisenstein
series: Let y and x’ be conjugate characters and ¢ € I(x), ¢’ € I(x’). Then

<0¢7 0¢/> = ﬁ fReA:Ao ZwEW(X,X’) (M(w717 —U)]\, wX)¢/(_wA)7 ¢(A)) dA
= (271'12’)" fReA:AO ZweW(X,X’)(M(w’ A, x)o(A), ¢ (—wA)) dA,

where W(x, x") = {w € W|wx = x’'}. Let D be the set of distinguished coset

representatives in Proposition 4.9. Then {dx|d € D} is the set of distinct

conjugates of x.
In order to deal with the distinct conjugates of x simultaneously, we consider

S X M whwnsawn) |,

deD \weW (x,dx)
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where ¢4 € I(dx). Since W = Uge pW (x, dX), for simplicity, we write it as

EYS (0, M0) = Y M(w™ ' wA, wx)p(—wA).
weWw

Here M (w1, wA, wx) =7(w, —A, x)R(w~t, wA, wy), since r(w, —A, x) =r(w™}

wA, wy). We will take the iterated residues of EJ* (¢, A, x) in Section 4.4. We
first review Moeglin’s results on the residual spectrum of split classical groups
attached to the trivial character of the maximal torus.

4.3. Review of Moceglin’s results. In order to apply Meeglin’s results, we
recall some definitions. Let LG? = O(2n, C), Sp(2n, C). Recall that unipotent
orbits in *G? are in 1 to 1 correspondence with partitions (171,272,372, ...) of
2n such that r; is even for even 7 in the orthogonal case and for odd ¢ in the
symplectic case. For a unipotent orbit O in #G°, Moeglin formed a set P(O)
of ordered partitions as follows:

p=(p1,--sPr;q,--,qs) € P(O) if and only if

(1) (p1,015---+sPrsPry 1, - - -5 qs) is O if we ignore the order.

(2) g; are distinct and odd in the orthogonal case and even in the symplectic
case.

(3) For all < j < [231], gaj—1 > qo; and there does not exist 1 < k < [#31]
such that g2;—1 > qar—1 > q2j > Gax-

(4) If there exists a 1 < k < s such that ga;_1 > g > ¢a;, then k < 2j — 1.

We set gs41 = 0 if s is odd. We can put an equivalence relation on P(O)

as follows: For p = (p1,...,0riq1,---,9s), 9 = (P4, ., 0341, ...,4.) € P(O),

p ~ p’ if and only if for all 1 < i < [8'51], there exists 1 < j < [%] such that

@2i-1 = q5;_1,q2i = q3;- We note that {p1,...,p,} = {p},...,p,.} as sets. We
note that

Remark 4.1. For a distinguished unipotent orbit, we have r = 0. In that case,
we write p = (5q1,...,Gs)-

Example 4.2. For a unipotent orbit of the form (7,5,3,1) in O(16,C), there
are two nonequivalent elements in P(O), namely, ( ;7,5,3,1) and ( ;5,3,7,1).

FOI'p = (p17"'5p7';Q17"'7q$)5 we Seta for 2 S 1 S r, p; :p1+"'+pi—1

and pj =0, and for 1 <14 < [£H]

s
d_ ' Qo1—1 + q21

1<i<i

T
Q21-1 + q21
SR IR S
j=1 1<i<i
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We recall the definition of A, and wy: Ay = (Ap1,..., Ay ), where

i+ 1
Ap)p;H:pl;_ —tfor1<i<rand1l<t<p;,
_ 1 1
Mg =220 rfor 1<k < [P and 1< ¢ < B TEE

and wy, is an element of the Weyl group given by:

wy(p; +1) =piy1 —t+1,for 1 <i<rand1<t<p;,

w,,(t)z—t,forlﬁkﬁ[Sgl]andTg<t§Tg+w,
wp(T,?erth):T,fftJrl,forlSkS[S;I]andlgtgqgk.

Remark 4.3. All A, are conjugates and wg = 1. Let Ap be the conjugate of
A, which is in the closure of the positive Weyl chamber.

We also define o(p;) for 1 < i < r and o for 1 < k < [§] and denote

Stab(Ap, T p) be the subgroup of Stab(A,) generated by these elements:
a(pi)(5) = 5,3 J ¢ [p; + 1, Pipals
o(p)(p; +1t) = —(pipr —t+1),if t € [L,pi],
. e Gok—1 — ¢
on(j) = 3. j ¢ [T+ ="+ LT{],

q2k—1 — 92k
2

Let A(O) be a finite abelian group generated by the order two elements
op1),...,0pr),0(q1),...,0(gs). Let A(p) = A(O)/K,, where K, is generated
Y

or(TE + +t) = —(Tf —t+1),if t € [1, gar).

0(qoi_1)o(g;) "t forall 1 <i < [Sgl]. We set 0(gs4+1) = 1 if s is odd. We note
that |A(p)| = 2[3].

4.3.1. Local Theory in the split group case. Let G be a split classical group
O(2n),0(2n + 1) and let I,(Ay) = Ind$ exp((Ay, Hp())) (normalized induc-
tion). The normalized intertwining operator R,(wy,A) is not holomorphic at
A, in general. Moeglin defined R, (wy,Ay) as composition of several operators.
Then we have:

(1) Ry(wp, Ap)I,(Ap) is a direct sum of |A(p)| irreducible representations
with multiplicity 1. Let Unip(p) be the set of the irreducible direct sum-
mands and Unip(O) = Upep(o)Unip(p). Then the Iwahori-Matsumoto
involution of elements in Unip(O) is tempered.

(2) If r =0, i.e., O is a distinguished unipotent orbit, then the Iwahori-
Matsumoto involution of elements in Unip(p) is square integrable.
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(3) Unip(O) is exactly the set of irreducible representations of G(n) whose
infinitesimal character is Ap and whose Iwahori-Matsumoto involution
is tempered.

(4) Springer(O) ~ Uyepo)A(p), where A(p) is the character group of
A(p). We recall that the Springer correspondence is an injective map
from the characters of W, the Weyl group of G into the set of pairs
(O, n), where O is a unipotent orbit in “G? and 7 is a character of A(O).
Given a unipotent orbit O in YG?, Springer(O) is the set of characters
of A(O) which are in the image of the Springer correspondence. We
also note that if O = (¢1,...,qs) is a distinguished unipotent orbit,
|Springer(0)| = sC(s) (see [19]).

(5) For each o € Stab(Ay, 1 p), there is an intertwining operator R, (o) of
R, (wp, Ap)I,(Ap) and 0 — R, (0) is a homomorphism of groups.

(6) A(p) is isomorphic to the quotient of Stab(A,,1 p) by the subgroup
generated by o(p;)o(p;)~* for p; = p; and a(pi)agl for p; = qoi_1 or
Pi = q2k-

(7) For X € Unip(p), let R,(0)X =n%(c)X. Then n% defines a character
of Stab(Ay, T p).

(8) By passing to quotient, X — n% gives an isomorphism Unip(p) ~ A(p)
which is extended canonically to

Unip(O) ~ Springer(0O),

by X — nx in the sense that |[Unip(p) NUnip(p’)| = |A(p) N A(p’)| and

i

for X € Unip(p) N Unip(p'), nk = k.

(9) If p ~ p’, then Unip(p) ~ A(p) = A(p’) ~ Unip(p’). In other words,
up to isomorphism, Unip(p) depends only on the equivalence class of

p.

4.3.2. Global Theory for the split group case. We only look at the residual
spectrum. So in this section O will be a distinguished unipotent orbit, i.e.,
r=0. Let p = (;¢1,¢2,...,9s) € P(O). Let S, be the set of positive roots
defined as follows:

5]

ej —e;jy1 for Tid <j< Tif —1 and €pay 12121 + ers where 1 < i < [2

+

ej —ejqr1 for T& < j < n and 2e, if s is odd and g5 > 1.

2

We note that S, C {a >0 | wya < 0, (Ap, ") =1} and S, has exactly n
elements. We will take the iterated residue of the Eisenstein series along the n
singular hyperplanes (Ap,a") =1 for a € S,.
Definition 4.4. For p = (;¢1,42,...,9s) € P(O), we define

q

a1 1 st

M} = GL(E2) x ... x GL(Z5 ]
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. . . Tp2l) 1 Ty 241
If s is odd (symplectic group case), we put the convention that —_—

tq Is—1
Is S5—.

Definition 4.5. Let V(p) = {A,} and let V'(p) be the set of elements of the
form A, + 7, where 7 is a character of M,(A). We note that V'(p) is the
intersection of the singular hyperplanes (A, ") = 1, where

a€{ej—ejq forﬂd<j§Tif—1,i:1,..,[§] and T < j < n}.

We denote the element in V’(p) as

Ap(z1, o 2s01,) =Ap+ (21,00 21,00, Zsdlny oo oy Zrsdls)-
[2] N—— [2] [2]
91142
2 4 s+1  1Tq g41

Definition 4.6. For 1 < k < [££1], we define
Vip) = {Ap(z1,.. S 2=p) € V'(p), such that z; =0 for all i > k}.

In particular, Vj(p) = V(p) and V[’i] =V'(p).

Definition 4.7. We define W (1, p) to be the set of the Weyl group elements
which send the positive roots of M, to the positive roots of M.

Let
ap, A) = T ((Apa¥) = 1).
€Sy
Let Unip be the submodule of &) R, (wy, Ay)Iy(Ay) which is the sum of irre-
ducible subrepresentations of type ®! X,, where X,, € Unip(p) for all v and
there does not exist p’ > p and X, € Unip(p’) for all v.
Let progjjp) be the G(A)-projection & R, (wy, Ap)I,(Ap) — Unip. For ¢ €
PW | the set of Paley-Wiener type functions, let
(g, A) = Y r(w,—A)R(wyw™", wA)p(wA).
weW
Then we have
(1) r(wp, A)d(p, A) is holomorphic at A = A, and its value is non-zero.
(2) The poles of [,(¢, A) in a neighborhood of A, are contained in the local
intertwining operators.
(3) r(w,—A) is identically zero on V'(p) if w ¢ W (1, p). So the restriction
of [,(¢,A) to V'(p) is given by
(e, A) = > r(w,~A)Rwyw™", wA)p(wA).
weW (1,p)

(¢, Ap) can be defined inductively by restricting it to V}/(p) from k =
11] — 1 to k = 0 and it is the iterated residue of E{%(¢,A).

Sk
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(5) (o, Ay) € @LRy(wp, Ap)I,(Ay). This depends only on ¢ and the
equivalence class of p. Let I[,) (¢, Ap) = projp (¢, Ay).

(6) Let {, )ais be the inner product in the discrete spectrum L2, (G(F)\G(A)).
Then

<9¢/’0¢>di5 - Z Z CP<<lEp](¢/5]\P)3l[p](¢a AP)>>7

OCG*(n) peP(0O)

where O runs through the distinguished unipotent orbits in G*(n) and
p runs through the set of representatives in each equivalence classes in
P(O).

(7) For ¢ € PW, suppose I[p)(¢,Ap) generates an irreducible representa-
tion. Then for all v finite places, let X, be the local representation of
G, generated by lj,(¢, Ap). Then X, € Unip(p) and [], nx, = 1.

(8) Conversely, suppose p = (;¢1,...,¢s) € P(O) and 7 = ®/ X, be an irre-
ducible automorphic representation which satisfies; (a) X, € Unip(p)
for all v; (b) X, is spherical almost everywhere and at archimedean
places; (c¢) [[,7x, = 1. Then there exists ¢ € PW such that the
representation generated by [)(¢, Ay) is isomorphic to 7.

(9) In fact, for an appropriate ¢ € PW,

(M) = > R(THR(wy, Ay)p(Ay).

reStab(Ay,1p)

4.4. Residues of the Eisenstein series. For y a non-trivial character of
T(F)\T(AFr), we can assume, after conjugation, that

X = X(Has ooy flsee ey e ey s Vs v s Vs ey VL, oo, V), Where p;’s and v;'s
—— —_—— —— ———
T1 Tk S1 S
are distinct grossencharacters of E such that m\A; #lfori=1,... .k v; |A; =

lforj=1,...,,andri+---+rg+s1+---+sg=n,r, > ... > 1k, 81 > ... > 5.
Let E(g, f,A) be the Eisenstein series attached to the character x.

Proposition 4.8. The Eisenstein series has a pole of order n only if v, > 2,
and p; is a grossencharacter which satisfies m\N(AE) =1fori=1,...,k.

Proof. Similar to the proof [22, Proposition 4.2]. O
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We divide the set of positive roots ®* as follows:
P ={e;tej, 1 <i<j<m},
P, = {er1+i + €ri+js 1<i<j< 7"2},

Dp = {er+otriiti T € gr 14, 1 <0< j <k

Ppr1 ={er o trpti T Crpoprptgs L TE<G < 81,260 4oy tin @t = 1,0, 817,

Pprt = {er +tretsittsioati T Crtotrtsi ot gy 1 <8< J <81,
2€r, 1o trpbsi bt s iy 8 = 1y oo, 81},

k+1
bp =T — U ®;.
1=0

Let 17172 be the Weyl group corresponding to ®; for ¢ = 1,...,k and W; =
Wicry4.qr, for i =1,... k. Let W; be the Weyl group corresponding to ®;
fori=k+1,...,k+1. Wenote W(x,x) =W X+ X Wgy.
Let A = Al + 4 Ak+l, where Al = Qpy+4edry_14+16r1 4o dry_1+1 =+ 4
Gy gorgr; €y tetryy fOr 2 =1, ...k, and for j =1,...,1,
Aktj = Qrydoorptsiots; 1 +16m ooty totbsy 1+l T
Fry g sibots Cribe bt ots -
We recall the following well-known result, see [7, p. 47].
Proposition 4.9. Let A be a set of simple roots and W be the associated
Weyl group. Let w, be the simple reflection with respect to o € A. Then W is
generated by the w,, o € A. Let 6 be a subset of A and Wy be the subgroup of

W generated by the w,, o € 8. Then each coset wWy has a unique element dy
characterized by any of the following equivalent properties:

(1) dyb > 0,
(2) dp is of minimal length in wWy,
(3) For any x € Wy, l(dpx) = I(dg) + I(z).
We apply Proposition 4.9 to A = {e; —ea,...,e,—1 — €, } and
(4'1) 0 =A— {eTl T lri+1:Cridre T Cridrotls - Crpdedry T Crp e+
Feritotrptsy T Eritotrgbsibly s s Eribotrgbsi oSy
—€ryttribsyfot st}

Let D be the set of such distinguished coset representatives.
Forde D, and w; € W;,i=1,...,k + [, we have

{a>0|dw ... wpria < O}:Ufill {a € ®; |wia < 0}U{a € Op |dw; ... wria < 0}
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Then for a Paley-Wiener type function ¢ € I(x), the constant term of pseudo-
Eisenstein series is given by

k41
Ey % (¢, M%) = D r(w, =AM, ) R(w ™ wA, wx)o(wh) = [ D r(ws, —As, @)
wew i=1w; W,

. (Zr(dwl v Wet, —A7 @D)R(w,;il “e wf1d71, dwy ... wk+lA, dx)gzﬁ(dun e ’wk+1A)>.
deD

We note that wy ... wrx = x. By the cocycle relation, we have
R(wk_il cen ’wl_ld_l, dw1 ce w;H_lA, dX) =

R(wi ;- witwy . owep A, X)R(d™ dwy . wgq A, d).

Let
f(w1 e wk_HA) = Z T(d’ll)l o W1, 7/\, <I>D)
deD
R(d™, dwy ... wp A, dx)d(dw; ... wi A).
Then we have
(42) Eg® (¢, A x) =
k+1
H Z r(wi, —A;, q%)R(wl;ll o wfl, W1 .. W A, X)f(wl R wkHA).
i=1w;eW;

We note that it has the same normalizing factors as the Eisenstein series
of O(2r1),...,0(2r) and O(2s1 + 1),...,0(2s; + 1) attached to the trivial
character.

Let O;’s be distinguished unipotent orbits in O(2r;,C) for ¢ = 1,...,k and
O} in Sp(2s;,C) for j = 1,...,1. Let p; € P(O;) for i = 1,....k+1, p =
p1 X X Py and wy = wy, X oo X wy,,, and Ay = Ay, +--+ Ay, . Let

lP (()b’ A7 X) =
k41

H Z r(ws, —As, <I>Z~)R(wpw,;il coowy wn s we A x) f(wr - wig A).
i=1w;eEW;
Since 7(w;, —A;, ®;) is identically zero on V'(p;) if w; ¢ W (1, p;), the restric-
tion of I,(¢, A, x) to V'(p) = V'(po) X --- x V'(ps) is given by

lP (¢7 Aa X)'V’(p) =
k1
H Z r(wi,—Ai,q)i)R(wpw,;il cwy wr s wp A, X)) f(wi . wigg A).
i=1w; EW(T,p;)



The residual spectrum of U(n, n) 210

We note that f(w;...wgA) is holomorphic on V'(p). We also note that
R(wy, A, xv) is Not holomorphic at A,. We now suppose the local problem
is solved, i.e., we can define the local intertwining operator R(wy, Ay, Xv) as
composition of several operators as in [13]. We apply Moeglin’s results and
define 1, (¢, Ay, x) inductively. But the order of induction will matter. Among
V'(p;)’s, we can shuffle the segments. By shuffling, we mean the following:

Let p1 = Gaq1,---,9s) and p2 = (5qi,...,q:) be two chains. By shuffling of
p1 X p2, we mean any permutation on segments so that

(1) (q1,42),---, (q2[s;1]717q2[%]) appear in that order, and
(2) (¢1,4b),---, (q;[%]_l, q’z[%]) appear in that order.

Take a shuflling of segments in such a way that it satisfies a certain condition,
that is, the non-vanishing of the normalized intertwining operators, see [13]. It
will correspond to starting with a conjugate of x. If there is no confusion, we
will still write it as x. Then

k+l1

9(;5’ 9(;5 dis = ZZZCP [p] (b Apa )’l[p](¢aAp7X)>>>

=1 O;

where O; runs through distinguished unipotent orbits in O(2r;,C) fori =1, .., k
and Sp(QSZ‘, (C) fori =k+1,...,k+1. p=p1X - XPpy € P(Ol)X~ . ~><P(Ok+l).
We have

l[p](ﬁé’ Ava) € ®;)Rv(wp7/\p7X)Iv(Ava)-

We need to analyze the image of the local intertwining operator R, (wy, Ay, X)
I,(Ap, xv). We give a conjecture on this in the next section.

4.5. Conjecture on the local problem. We can define R(wy, Ay, xo) as a
composition of several operators ([28, 13]). Then we need to study its image
R(wp, Ay, Xv)Iv(Ap, Xv). We hope that the technique of [13] in the case of
symplectic and odd orthogonal groups may be applied in our case.

Case 1. v splits in E. In this case G, = GL(2n, F,). We expect that
R(wy, Ay, Xv) L (Ap, Xo) is irreducible.
Case 2. v is inert in E. Then in light of [13], we expect the following;:

Conjecture 4.10. (1) R(wy, Ap, Xv)Io(Ap, Xo) is semi-simple;
(2) Let Unip(p, xov) be the set of direct summands of Ry, (wy, Ap, X) Lo (Ap; Xov)
and Unip(Ox,...,Ok11, X») be the set of union of Unip(p, x,) as p;
runs through P(0;) for i =1,...,k + 1. Then Unip(O1,...,Okti, Xv)
is parametrized by

0(017 ey Ok+l7 XU) =
[Springer(O1) x --- x Springer(Oy)] X [Springer(Ok4+1 X -- - x Springer(Ok+1)],
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where in [ ]: If g1, = poy # i for @ = 0,3, ..., k, then we replace
Springer(0O1) x Springer(O2z) by

0(01,02,M1v)
={n € Springer(0) : n|a(o,) € Springer(0;), for i = 1,2},
where O is a unipotent orbit of O(2(r; + r2), C) by combining Oy, Os.
In other words, C(Ox,...,Ok41, Xv) C Cy,, and
I,es, = Unip(On, ..., Okt1, Xo) = {7 (W0, )| 1w € C(O1, ..., Oky1, Xv) }-
Example 4.11. Let x = x(u1,- .., 1, pi2, - - -, p2), p1 and po are distinct qua-
(LA Sl A L

10 4
dratic grossencharacter of E such that :“i|N(A§) = 1 but ﬂi|A; # 1. Let
01 = (7,5,3,1) is a unipotent orbit in O(16,C) and Oy = (5, 3) is a unipotent
orbit in O(8,C). Then for a non-archimedean place v, if p1, # pay, then I,
is parametrized by Springer(O1) x Springer(Osz). It has 12 elements. Let
M1y = ploy. Let O = (7,5,5,3,3,1). Then A(O) is an abelian group generated
by order 2 elements o(1),0(3),0(5),0(7). Thus Springer(O) = {n € m :
n(a(7)) = n(o(1))}. Therefore, C(O1, 02, xv) = {n € Springer(O) : n|ao,) €
Springer(0;),i = 1,2} and C(Oq, O3, X, ) has 4 elements.

o] 1 1 1 1
o(5)] 1 1 1 1
o(3)] 1 1 1 1
o) 1 1 1 1

Remark 4.12. Special case; the result of Kudla-Sweet [25].

Let x = x(i,...,u), where p is a grossencharacter of E such that (1)
H\N(Ag) =1, N|A; # 1 or (2) u|A; = 1. Let O be a distinguished unipo-
tent orbit of the form (p,q) in O(2n,C) in the first case and (p,q) or (p) in
Sp(2n,C) in the second case. Then the above local problem is solved in [25].

4.6. Conjecture on the residual spectrum. In light of the local conjecture,
we have the following description of the residual spectrum coming from Borel
subgroups.

Conjecture 4.13. Let uq, ..., ux be distinct grossencharacters of E such that
Ui|N(A§) =1 but ,ui|A; # 1. Let v4q,...,1; be distinct grossencharacters of
such that v;| Ax = 1. Then the character x is given as follows:
X:X(ﬂlv"'7,“17"';#163"'3:“’1671/17“-;Vla"'7’/la-"ayl)a
——— —_——— —— —

T1 Tk S1 S1

where 71 + -+ 4+ 1 + 51 + -+ + 53 = n, and the residual spectrum attached
to the conjugacy class of (7', x) is parametrized by the distinguished unipotent
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orbits in O(2r;,C), i =1,...,k, and Sp(2s;,C), j =1,...,1. More specifically,
distinguished unipotent orbits O; € O, (C), i =1,...,k, Og € Ogs,11(C), and
X give a quadratic unipotent Arthur parameter o). Let C..s, = [Springer(O;)x
- x Springer(Ok41)] C Cy, and s, = Unip(O1, ..., Okqi, Xv) C 1Ly, for all
non-archimedean places. For each X € Il , there is a character nx € Cres,
which satisfies Arthur’s conjecture, i.e.,

L (GIENG(A)) (1,5 N LA (G(E)\G(A)) g,
is the set of 7 = ®] X, where X, satisfies the following conditions:

(1) there exists p; € P(0;),i=1,...,k+1, such that X, € Unip,(p1,...,
Pr+1, Xv) for all v.

(2) X, is spherical for almost all v and archimedean places.

(3) II, nx, is trivial on Cy.

5. Special case as in [22]

We restrict ourselves to the case where the unipotent orbits O; C O(2r;,C)
have Jordan blocks (2r; — 1,1) for i = 1,...,k, and O; C Sp(2s;,C) have
Jordan blocks (2s;) for j = 1,...,1, i.e., the ones with the most weighted
Dynkin diagrams (cf. [7]). We construct the representations in Ilg, ~as local
components of the residue of the Eisenstein series and show that they satisfy
Arthur’s conjecture.

In this case, each P(O;), i = 1,...,k + [, has only one element p; and
Ap, = Ao is the half-sum of (positive) roots in ®;,4 = 1,...,k + 1. Let
Ao =A10+ ...+ Akqr0- Recall the following two lemmas from [22]. Let C be
the set spanned by ¢, , ¢y 41y, -+ - 5 Cry4oerp, Where ¢;’s are sign changes in the
Weyl group: its action on ®(G,T;,) takes e; to —e;.

Lemma 5.1 ([22, Lemma 4.7])). D = DC is the set of distinguished coset
representatives for W/Wy ... Wiy, i.e., d € D if and only if d(®1U. . .UPyy) >
0.

Lemma 5.2 ([22, Lemma 4.8]). For each d € D,
r(dcwo, N, ®p) = r(dc'wg, Ao, Pp),
for any ¢, € C.
By Lemma 5.1, ford € D, c€ C and w; € W; fori =1,...,k + [, we have

{a >0ldcw; .. .wk+la<0}zufill{a € O;|wia < 0}U{a € Pp|dcw; ... wrtia<0}.
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Then the constant term of pseudo-Eisenstein series is given by

Eéjs ¢7AX H Z H Z w27 Auq)

i=1 4, eW; i=k+1 wi EW;

. <Z Z r(dwi ... wgyr, —A, @D)R(wk_il coowl e T dews . we A, dy)

deD ceC
¢(dC’LU1 e wk+lA)) .

We note that cw; ... wix = x. Let

flewy .. wppA) = Z r(dcwy ... wgyr, —A, Pp)
deD

R(d™', dcwy ... wp A, dx)p(dcws ... wi g A).

Let Vi = {Ai](Aj,aY) = 1 for a € 6N P;} and V) = {A € ai|A =
A+ 4 N, Ay € Vi h. We note that V) = {A € af| (A, oY) =1 for « € 6}.

Let Vip = {Ai] (A;, @) =1 for a simple roots in ®;} and Vp = {A € af.|A =
A+ -+ Mgy, Ay € Vig}. We note that Vo = {Ag}. Since for each d € D,
da > 0 for all @ € 0, f(cwy...wkA) is holomorphic on V{. Therefore we
can take iterated residue of EF% (¢, A, x) at Ag. Let lo(#, Ag, ) be the iterated
residue. Since cAg = Ay, by Lemma 5.2, it is given by

(5.1)

k
l0(¢7A07 ) w07A07 H 1+R CT1+ +T17A07 ))f(AU) € ®{L)R(w03A07X’U)7
=1

where wg = w10 ... Wk41,0 and w; o is the longest element in 17171 fori=1,...,k
and W; for ¢ = k+1,...,k+ 1. lo(¢, Ao, x) spans the part of the residual
spectrum attached to Ag. Here we note that we defined the local intertwin-
ing operator R(wg, Ag, Xy) on Ind§ Yo ® IndB Xv, where M is defined below
and R(¢py 4 tr;) = R(Cry4grs Moy Xv) defines a self intertwining operator for
Ind¥ x,. Recall from Remark 3.4 the associated Langlands’ parameter ¢y, i.e.

the homomorphism ¢y : Wgp — LG defined by

r=s(o (5 2)

Its non—tempered part is q§+ = exp(Ao, Hp( )).
Let LMO = C’ent(szr LGO) Since (Ag,e;) =0fori=1r1,r1+7r2,...,71 +
-+ + 14, the Levi subgroup M which has “M? as its L-group, will be, up to
isomorphism, of the form Resp/pGLy, X --+ X Resg/pGLy, x U(k, k), where
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ni,...,n, are determined by Ag. The parameter Ag is in the positive Weyl
chamber of the split component of M.
We need to analyze the image of the intertwining operator

@1, R(wo, Ao, Xo)I (Ao, Xo)-

For each place v, decompose ¢y, as ¢y, = ¢y, - djL as in [2]. The param-

eter ¢y, factors through LMO and is the Langlands parameter for the (tem-

pered) constituents of the unitary principal series I, = Indg)(gﬁv)) Xv = @iy,

of M(F,), where By = BNM. For each 7, ;, let IL, ; = J(m,,;Q@exp(Ao, Hp()))
be the corresponding Langlands quotient, where P = M N. Then for each v
the L-packet parameterized by ¢y, is Iy, = {Il,;}. The R-group for the
parameter ¢y, , i.e. Cy, is the same as the R-group of I, for each v in the
sense of Knapp—Stein. We divide into two cases:

Case 1. v is inert in E. By [15, Theorem 3.7], the R-group Cy, of I, is
a subgroup of the group generated by the sign changes ¢;,¢ = 1,71 + 12,71 +
-+« 4+ 1, a product of 2-groups. In fact, it is generated by the sign changes
Cryt-tr; Tor which u;,’s are distinet and p;,| FX is non-trivial. Moreover, if
the sign change ¢;, 1. 4r, in (5.1) does not belong to C%U for some i, then the
normalized operator R(c,,+. +r;) acts like identity.

Case 2. v splits in E. In this case, Cy, = 1.

Let m(xv) = {mv:}. Then, given a place v, Keys and Shahidi [16] defined a
pairing ( , ) on Cy, x m(x,). We extend the pairing { , ) to Cy, xIlg,
as in Arthur [2, p. 9] by setting (7,,II,;) = (7y,my,). This can further be
extended to Cy, x Iy, , using the surjection Cy, — Cy, for each v [2, p.
11]. Let IT = ®,1II,; where almost all 11, ; are spherical. Then II € Il , the
(global) L—packet of ¢y,. Finally set (7,II) = [[(7, 1, ), where 7, is the image

of 7 under the map Cy — Cy,. Asin [22, p. 421], (-, II) is well-defined.
Applying (5.1) to II = ®,1I,; € I, now implies that the residue is equal
to

»

Z (*) R(dwo, Ao, X) Z (z, IHTL

deD zeCly

P
It is now clear that since Cy,, is abelian, the residue is non-zero if and only
if (-,II) is the trivial character. We state this as

Theorem 5.3. II appears in L2, (G(F)\G(A)) if and only if (-, I1) is the trivial
character.

This proves the global Arthur conjecture on the multiplicity formula (3.3) for
the residual spectrum. According to Conjecture 4.13, the full residual spectrum
attached to the Arthur parameter 1) can be described as follows:

Let fti,,0,--., i, 0 be the set of distinct characters such that 'uiij|F,UX is
non-trivial. Then if v is inert in E, Cy,, ~is spanned by the order two elements
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Crygeotryy s+ o3 Crygootr,, - On the other hand, by Conjecture 4.13, Cies, =
C(piy w) X - .. X C (i, 0) x Co, where C(p;; ) ~ Z/27Z and Cy is a set determined
by the remaining p;,’s and O;-, Jj=1,...,1. Wenote that Cy, =~ C(u;, ) X
oo X C(Nis,v)'

Example 5.4. Let x = x(p1, pi1, p2, f2), where pq, o are distinet grossenchar-
acters of F such that :ui|N(A;i) = 1Dbut ,ui|A; # 1foreachi =1,2. Let O1, 0 be
the distinguished unipotent (3,1) in O(4,C). Then if v is inert in E, p11, # {2y
and fiy|px is non-trivial for i = 1,2, Cres, = Cg,, = Z/2Z x Z/2Z. On the
other hand, if v is inert in F, ,ulv\va =1 and /,6271|F“>< # 1, then Cy,, ~7Z/27
but Cres, ~ Z/27 x Z/2Z. If v splits in E, Cy, = Cres, = 1.

6. Special case of G =U(2,2)

As we remarked in the introduction, the results in [24] are stated in such a
way that it is hard to see Arthur’s multiplicity formula. So we redo the calcu-
lations, using the same method as in [17]. We will get all residual spectrum,
coming from the Borel subgroup.

Let a1 = e1 — eg, ap = 2e5, a3 = e; + e3 and ay = 2e; be the restricted
positive roots. Let 81 = e1. Let 0,7 be the simple reflections with respect to
a1, aig, respectively. Let Py be the Siegel parabolic subgroup, i.e., P, = M7 Ny,
My = Resp/rpGLy. Let P2 be the non-Siegel parabolic subgroup, i.e., P, =
MQNQ, M2 = ResE/FGL1 X [](17 1)

Let p,v be grossencharacters of E. Then x = x(u,v) defines a unitary
character of T(F)\T'(Ar). Let E(g, f,A) be the Eisenstein series attached to x
and f € I(A, x) = Ind$ x @ exp({(A, Hg( ))). There are 4 singular hyperplanes
to consider: S; = {A € af| (A, o) =1} for i =1,2,3,4.

As we see in [17], we have to consider the residue

Resp, Ress, E(g, f, A),
Res,_ Ress, E(g, f,\),
Resq,Ress, E(g, f,A).
Then the following characters of T(F)\T (Ar) contribute the residual spec-
trum (* is some constant.):
(1) x = x(u,p), u|A; = 1. In this case, the residue at pp is square
integrable and it is given by
(%) R(otoT,pB,X) /[
(2) x =x(p,v), H|A; =1, V‘A; =1 and p, v are distinct. In this case, the

residue at g is square integrable and it is given by

(*) R(TUT7 as, X)(l + R(O’, asg, X))f
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(3) x = x(u, p), u|N(A§) =1 but u|A; # 1. In this case, the residue at 3y
is square integrable and it is given by

(*)R(o7o, B1,x)(1 + R(7, B1,X)) /-

We analyze the image of the intertwining operators by inducing in stages:

Case 1. Since o707 is the longest element in the Weyl group,

R(oToT, pB, Xv)I(pB, Xv) is the Langlands’ quotient which is the one dimen-
sional representation p, o det.

Case 2. I(ToT, a3, Xv) = Indg1 o3 ® Indg1 Xo-

Here 7 = Ind}y" x, is irreducible. Since R(c, a3, x») is a self-intertwining
operator on m = [ ndg[‘ Xv, it acts like a scalar. But because of the normaliza-
tion, it acts like 1. «ag is in the positive Weyl chamber of the split component
of Mi. Therefore the image of the intertwining operator is the Langlands’
quotient J(m ® explas, Hp,())).

Case 3. I(070, 1, Xv) = Indf, /1 @ Indy? Xy

If v splits in E, then [ ndAB42 Xv is irreducible. If v is inert, by the result of
Keys [15] on R-group, I ndé\gf[2 Xo is a sum of two irreducible representations if

and only if py|px # 1. Let Indggl’l) ty = T4 (o) B 7T—(ty), as in [16], i.e.,

with 74 () generic with respect to 7,. Let e(my(uy)) = 1 and e(m— (1)) =
—1. Observe that for almost all v, m (u,) is spherical. If pi,|px = 1, then

Indggl’l) ty is irreducible. In this case, we take m_(p,) = 0. Let m(u,) =
{74 (o), m—(1y)} and if m, € w(uy), let €(m,) be the corresponding sign. Let
J+(pv) be the Langlands’ quotients of Ind, | |vty X 7 (1), respectively. Let

J(pw) = {4 (o), - (o) }-
Observe that R(r, 81, xv) is the normalized intertwining operator for I ndg(()l‘1> -
By [16, Theorem 5.1],

fos for f, € 7T+(ﬂv)
*fm fOI‘ fv € '/T—(:U'v)'

Then we define J(u) to be the collection

R(T, Bla Xv)fv = {

J(p) = {1l = QIL,|II, € J(po) for all v, IT, = J4(po) for almost all v, He(m,) =1}.

v

We note that [], €(m,) is well-defined and independent of the choice of .
Therefore we have the following theorem.

Theorem 6.1. The residual spectrum & (r)\Vir,y) of U(2,2) coming from the
Borel subgroup, where

V(T,x) = L?lis(G(F)\G(AF))(T,X);

18 given as follows:
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(1) x = x(u, p), u\A; = 1. Vir,y) consists of the one-dimensional represen-
tation o det.

(2) x = x(u,v), /1|A§ =1, V|A; = 1 and p,v are distinct. V() is irre-
ducible and it consists of the Langlands’ quotient ®,J(m,Qexp{as, Hp, ())),
where m, = 1 ndg1 Xov-

B) x =X, 1), plyaxy =1 but plyx # 1. Vieyy = J(p).

Remark 6.2. Notice the difference between U(2,2) and Sps. In Spy case, the
contribution from «s3 is zero.

Remark 6.3. In U(2,2) case, Conjecture 4.13 on the residual spectrum is proved
since all three cases belong to the special case in Section 5.

In this special case, the Arthur parameters are given as follows:

Theorem 6.4. (1) x = x(u, p), M‘A;ﬁ = 1. The Arthur parameter is given
by the unipotent orbit O = (4) C Sp(4,C).

(2) x = x(u,v), p|A; =1, 1/|A; =1, and p,v are distinct. The Arthur
parameter is given by the unipotent orbit O = (2) x (2) C Sp(2,C) x
Sp(2,C).

(3) x = x(w, p), u|N(AE) =1 but ,u|A; # 1. The Arthur parameter is given
by the unipotent orbit O = (3,1) C O(4,C).
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