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Abstract. We provide a uniform estimate for the L1-norm (over any

interval of bounded length) of the logarithmic derivatives of global nor-
malizing factors associated to intertwining operators for the following
reductive groups over number fields: inner forms of GL(n); quasi-split

classical groups and their similitude groups; the exceptional group G2.
This estimate is a key ingredient in the analysis of the spectral side of
Arthur’s trace formula. In particular, it is applicable to the limit multi-
plicity problem studied by the authors in earlier papers.
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1. Introduction

In this paper we study the analytic properties of the global intertwining
operators associated to parabolic subgroups of reductive groups G over number
fields F . In the previous papers [35] (joint with Werner Müller) and [34], we
defined certain properties (TWN) and (BD) pertaining to these intertwining
operators, and showed that these two properties together imply the solution of
the limit multiplicity problem for congruence subgroups of lattices contained
in G(F ). Property (TWN) is a global property concerning the scalar-valued
normalizing factors, while (BD) is essentially a local property. In [35], these
properties were verified for the groups GL(n) and SL(n).

This paper is devoted to establishing property (TWN) in a number of other
cases, namely for inner forms of the groups GL(n) and SL(n), for quasi-split
classical groups and their similitude groups, and for the exceptional group G2.
In fact, we prove without any more effort a finer estimate (already mentioned
in [35]), which we call property (TWN+). In addition to the application to the
limit multiplicity problem, this property may be useful in the study of other
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asymptotic questions, where it is important to control the dependence on the
archimedean parameters. The main examples of such problems are Weyl’s law
with remainder term and the asymptotics of Hecke operators in general families
[84, 86, 87]. In any case, the results of this paper are sufficient to extend the
limit multiplicity results of [35, 34] to inner forms of GL(n) and SL(n). This
will be discussed in a future paper, where we will also study property (BD) for
general groups G, and prove a weaker variant. This, together with the results of
the current paper, will allow for an extension of the limit multiplicity results to
quasi-split classical groups and their similitude groups and G2 (at least under
a technical restriction on the congruence subgroups in question).

We sketch the definition of property (TWN+), which is explained in more
detail in Section 3 below. As usual, fix a minimal Levi subgroup M0 of G
defined over F , and consider a proper Levi subgroup M of G containing M0

and a root α ∈ ΣM . Let Uα be the unipotent subgroup of G corresponding
to α, Mα the group generated by M and U±α, and M̂α its F -simple normal

subgroup generated by U±α. The group M̃α = M̂α ∩M is a maximal Levi

subgroup of M̂α. For π ∈ Πdisc(M(A)) let nα(π, s) be the normalizing factor
for the global intertwining operators associated to pairs of parabolic subgroups
of G adjacent along α. These factors are meromorphic functions of finite order
of the complex variable s and satisfy the functional equation |nα(π, it)| = 1 for
all t ∈ R.

We say that G satisfies property (TWN+) (tempered winding numbers,
strong version) if we have the estimate

∫ T+1

T

|n′α(π, it)| dt≪ log(|T |+ Λ(π∞; psc) + level(π; psc))

for all π ∈ Πdisc(M(A)) and all real numbers T where the implied constant
depends only on G. Here, level(π; psc) is essentially the level of π restricted

to M̃α, and Λ(π∞; psc) measures the size of the infinitesimal character of the

restriction of π∞ to M̃α. (See Section 2.3 and Section 3 for the precise defini-
tions.) We note that property (TWN+) implies property (TWN) introduced
in [35, Definition 5.2], and that property (TWN+) has been shown (as a conse-
quence of the theory of Rankin-Selberg L-functions) for the groups GL(n) and
SL(n) in [35, Proposition 5.5].

Our method of proving (TWN+) for the groups listed above, is to use func-
toriality to transfer the problem to a well-understood problem for GL(n). We
start by an axiomatic treatment of automorphic L-functions in Section 2, which
we then apply to the global normalizing factors in Section 3. In Section 4 we
will show (TWN+) for inner forms of GL(n) and SL(n) using the Jacquet-
Langlands correspondence (obtained in general in [7, 8]), which allows us to
reduce the problem to known properties of Rankin-Selberg L-functions.
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In Section 5, we will consider quasi-split classical groups. We first consider
the twisted exterior and symmetric square L-functions for GL(n), as well as
the Asai L-function for ResE/F GL(n), using known results obtained by the
Langlands-Shahidi method and by the study of integral representations. Using
Arthur’s work on functoriality from the classical groups to GL(n) [3], extended
by Mok to unitary groups [91], we will be able once again to reduce the re-
maining L-functions to Rankin-Selberg L-functions for GL(n).

Our approach is based on Arthur’s work, which requires the full force of the
stable twisted trace formula. Among the prerequisites of Arthur’s results are
[77, 105, 99, 33, 79, 111, 110, 90], to mention a few. One may contemplate
whether there is a different approach to the problem which avoids functoriality
(and is perhaps applicable to other groups). Unfortunately, at the moment we
cannot say anything in this direction.

For the exceptional group G2, which we treat in Section 6, we need to
consider the (twisted) symmetric cube L-function for GL(2) which was studied
by Kim–Shahidi.

1.1. It is a pleasure to dedicate this paper to Freydoon Shahidi for his up-
coming 70th birthday. Shahidi’s influence on the field of automorphic forms
cannot be overestimated. Needless to say, the current paper also owes a lot to
his work. On a personal level it has always been a pleasure to interact with
Freydoon and we wish him the very best.

2. Estimates for logarithmic derivatives of L-functions

We begin with an axiomatic treatment of automorphic L-functions which
isolates the precise properties needed for the main estimate (see Proposition
2.6 below).

Let us first recall some generalities about L-functions. Let G be a reductive
group over a number field F and let A be the ring of adeles of F . Let Afin be
the ring of finite adeles of F and F∞ = F ⊗ R. Let |·|A× be the idele norm on
A×. Let TG be the Q-split part of the (Zariski) connected component of the
center of ResF/QG (restriction of scalars) and let AG = TG(R)◦ (topological
connected component), viewed as a subgroup of TG(AQ) (and hence of G(A)).
Let G(A)1 ⊂ G(A) be the intersection of the kernels ker |χ|A× as χ ranges over
the F -rational characters of G. Then G(A) is the direct product of G(A)1 and
AG. Let aG be the Lie algebra of AG, a real vector space, and a∗G its dual
space. We set a∗G,CC = a∗G ⊗ CC.

We write Πdisc(G(A)) for the set of equivalence classes of automorphic repre-
sentations of G(A) which occur in the discrete spectrum of L2(AGG(F )\G(A)).
We will also write Πcusp(G(A)) for the subset of cuspidal representations.

For any π = ⊗vπv ∈ Πdisc(G(A)) let S(π) be the finite set of places of F
such that at least one of the following conditions holds:
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(1) v is archimedean.
(2) F/Q is ramified at v.
(3) G is ramified at v, i.e., G is not quasi-split over Fv or G does not split

over an unramified extension of Fv.
(4) For every hyperspecial maximal compact subgroup Kv of G(Fv), πv

does not have a nonzero vector invariant under Kv.

(The exclusion of the finite places which are ramified for F is inessential and is
only made for convenience.) We write S(π) = S∞ ∪ Sf (π), where S∞ denotes
the set of archimedean places of F and Sf (π) denotes the non-archimedean
places in S(π). Let SQ,f (π) (or simply SQ,f , if π is clear from the context)
be the set of rational primes which lie below the primes in Sf (π). Also set
SQ(π) = SQ,f (π) ∪ {∞}.

Let WF be the Weil group of F and let LG be the L-group of G (cf. [11]).
Let r : LG → GL(N,CC) be a continuous and WF -semisimple N -dimensional
representation of LG. For any π ∈ Πdisc(G(A)) and any place v of F outside
of S(π) we have the Hecke-Frobenius parameter tπv ∈ LG. To each such v we
associate the polynomial Pv(X) = det(1−Xr(tπv )) of degree N and the local
L-factor Lv(s, π, r) = Pv(q

−s
v )−1 where qv is the cardinality of the residue field

of Fv. Since π is unitary, the absolute values of the eigenvalues of r(tπv ) are
bounded by qαv , where α depends only on G and r ([11, 80]). Therefore, for
S ⊃ S(π) the partial L-function

LS(s, π, r) =
∏
v/∈S

Lv(s, π, r)

is well-defined as an absolutely convergent product and holomorphic for Re s >
α+ 1. Because of the unitarity of π, we also have

LS(s, π, r∨) = LS(s̄, π, r),

where r∨ is the contragredient of r. A cornerstone of the Langlands program is
the (largely conjectural) meromorphic continuation of these L-functions with
finitely many poles in CC.

As usual, we write ΓR(s) = π−s/2Γ(s/2) and ΓCC(s) = 2(2π)−sΓ(s) =
ΓR(s)ΓR(s+ 1), where Γ(s) is the standard Gamma function.

Definition 2.1. We say that a pair (G, r) has property (FE), if for any π ∈
Πdisc(G(A)) there exist rational functions Rp, p ∈ SQ,f (π), an integer m ≥ 1,
a constant C∞ ∈ CC∗ and parameters α1, . . . , αm, α

∨
1 , . . . , α

∨
m ∈ CC, such that

the partial L-function LS(s, π, r) admits a meromorphic continuation to CC
with a functional equation of the form

(2.1) LS(π)(s, π, r) =
( ∏
p∈SQ(π)

γp(s, π, r)
)
LS(π)(1− s, π, r∨),
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or equivalently,

LS(π)(s, π, r) =
( ∏
p∈SQ(π)

γp(s, π, r)
)
LS(π)(1− s̄, π, r),

where for each p ∈ SQ,f (π), γp(s, π, r) = Rp(p
−s), and

(2.2) γ∞(s, π, r) = C∞

m∏
i=1

ΓR(1− s+ α∨
i )

ΓR(s+ αi)
.

In general, this property is wide open except for a number of important
special cases, some of which will be considered below.

2.1. We first address the uniqueness of the terms in (2.1). This is of course
standard. For completeness we give the details.

Lemma 2.2. Assume that (2.1) is satisfied for some fixed r and π. Then

(1) The factors γp(s, π, r), p ∈ SQ(π) (and hence the rational functions Rp,
p ∈ SQ,f (π)), are uniquely determined up to non-zero constant multiples.

(2) The integer m is uniquely determined. (We call it the degree of γ∞.)
(3) We have

(2.3) γp(s, π, r)γp(1− s̄, π, r) = const.

for all p ∈ SQ(π).
(4) The parameters α∨

1 , . . . , α
∨
m are determined by α1, . . . , αm (up to permu-

tation).
(5) The expression( m∏

i=1

(1 + |αi − 1/2|)(1 + |α∨
i − 1/2|)

) 1
2

is uniquely determined. It is called the archimedean conductor and de-
noted by c∞(π, r) (cf. [56]).

(6) We say that α1, . . . , αm are reduced, if αi + α∨
j is not a negative odd

integer for any 1 ≤ i, j ≤ m. We may choose the parameters α1, . . . , αm

to be reduced. Moreover, in this case
(a) The zeros (resp., poles) of γ∞(s, π, r), taken with multiplicities, co-

incide with those of
∏m

i=1 ΓR(s+ αi)
−1(resp.,

∏m
i=1 ΓR(1− s+ α∨

i )).
(b) The multisets {α1, . . . , αm} and {α∨

1 , . . . , α
∨
m} are uniquely deter-

mined.
(c) As a multiset we have

(2.4) {α∨
1 , . . . , α

∨
m} = {α1, . . . , αm}.

Proof. Suppose that we are given a function of the form

ϕ(s) = CAs
m∏
i=1

ΓR(1− s+ α∨
i )

ΓR(s+ αi)

∏
p∈SQ,f (π)

R̃p(p
−s),
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where C is a non-zero constant, A is a positive real number and for all p ∈
SQ,f (π), R̃p is a rational function with R̃p(0) = 1. Up to a finite multiset,
the zeros of the first product are given (with multiplicities) by −αi − 2Z≥0,

i = 1, . . . ,m, while those of R̃p(p
−s) are given by s = (− log xp,i+2πiZ)/ log p,

where xp,1, . . . , xp,dp are the zeros of R̃p. Considering only the zeros with

Im s sufficiently large, we see that the zeros of each rational function R̃p are

determined by ϕ. Arguing similarly with the poles, we conclude that each R̃p

is determined by ϕ.
Furthermore, if we have an equality

(2.5)

m∏
i=1

ΓR(1− s+ α∨
i )

ΓR(s+ αi)
= CAs

m′∏
i=1

ΓR(1− s+ β∨
i )

ΓR(s+ βi)

for some constants A > 0 and C, then an examination of the zeros and
poles shows that m′ = m, and that after possibly reindexing α1, . . . , αm and
α∨
1 , . . . , α

∨
m we may assume that αi − βi, α

∨
i − β∨

i ∈ 2Z for all i, in which case
ΓR(s+αi)/ΓR(s+βi) and ΓR(1−s+α∨

i )/ΓR(1−s+β∨
i ) are rational functions

in s. Thus A = 1.
The first two parts follow. The third and fourth parts immediately follow

from the first part.
Moreover, by an easy argument (e.g., [101]) the equality (2.5) holds if and

only if A = 1, m′ = m and after reindexing α1, . . . , αm and α∨
1 , . . . , α

∨
m if

necessary, there exists 0 ≤ k ≤ m such that

(1) αi + β∨
i = α∨

i + βi = 1 and αi − βi ∈ 2Z for all i = 1, . . . , k,
(2) αi = βi and α

∨
i = β∨

i for i > k, and,
(3) C = (−1)(α1−β1+···+αk−βk)/2.

Part 5 follows.
Suppose that α1, . . . , αm are not reduced, so that there exist indices i and j

such that αi + α∨
j = 1− 2k for some positive integer k. We may then replace

αi and α
∨
j by 1− α∨

j and 1− αi, respectively, and multiply C∞ by (−1)k. We
may repeat this process until α1, . . . , αm become reduced. The process must
terminate after finitely many steps since

∑
i(αi + α∨

i ) increases by 4k in each
step.

Once α1, . . . , αm are reduced, the poles of
∏m

i=1 ΓR(1− s+ α∨
i ) are disjoint

from those of
∏m

i=1 ΓR(s+ αi). Therefore, the zeros of
∏m

i=1 ΓR(s+ αi)
−1

are
precisely those of γ∞(s, π, r) (including multiplicities). In particular, {α1, . . . ,
αm} is determined as a multiset, and hence (2.4) follows from (2.3). □

Assume that (2.1) is satisfied for some fixed r and π and take α1, . . . , αm to
be reduced (hence uniquely determined). We set

Lred
∞ (s, π, r) =

m∏
i=1

ΓR(s+ αi),
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so that

γ∞(s, π, r) = c∞
L∞(1− s̄, π, r)

L∞(s, π, r)

with c∞ = ±C∞. In this case the archimedean conductor simplifies to

(2.6) c∞(π, r) =
m∏
i=1

(1 + |αi − 1/2|).

For p ∈ SQ,f (π) it follows from (2.3) that we can write in a unique fashion

(2.7) γp(s, π, r) = cpp
( 1
2−s)ep(π,r)Pp(p

−s)/P̄p(p
s−1),

where cp ∈ CC∗, ep(π, r) ∈ Z, and Pp is a polynomial with Pp(0) = 1 such
that no zeros α and β of Pp satisfy αβ̄ = p−1. Here P̄ is the polynomial
obtained from P by taking complex conjugates of the coefficients. The degree
of Pp is the number of zeros (or, equivalently, poles) of Rp in CC× (counted
with multiplicities), and the integer ep(π, r) is the difference between the order
of Rp at X = 0 and the degree of Pp. We have seen that ep(π, r) and Pp

are uniquely determined by π and r. Analogously to the case p = ∞, the
zeros of Pp(p

−s) are precisely the zeros of γp(s, π, r). Although we expect that
ep(π, r) ≥ 0, we do not impose this condition at the outset. We set

Lred
p (s, π, r) = Pp(p

−s)−1, p ∈ SQ,f (π),

and define the reduced completed L-function

Lred(s, π, r) =
( ∏
p∈SQ(π)

Lred
p (s, π, r)

)
LS(π)(s, π, r),

and the reduced epsilon factor

ϵred(s, π, r) = c∞
∏

p∈SQ,f (π)

cpp
( 1
2−s)ep(π,r) = n(π, r)

1
2−s

∏
p∈SQ(π)

cp,

where

(2.8) n(π, r) =
∏

p∈SQ,f (π)

pep(π,r) ∈ Q>0

is the arithmetic, or finite, conductor. Thus, we can rewrite (2.1) as

Lred(s, π, r) = ϵred(s, π, r)Lred(1− s, π, r∨) = ϵred(s, π, r)Lred(1− s̄, π, r).

We denote by

Lred,f (s, π, r) = (
∏

p∈SQ,f (π)

Lred
p (s, π, r))LS(π)(s, π, r)

the “finite” part of Lred.
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Remark 2.3. In many cases there is an alternative procedure to define a com-
pleted L-function

(2.9) L(s) =
( ∏
p∈SQ(π)

L̃p(s)
)
LS(π)(s, π, r),

which may differ from Lred(s). Here L̃∞(s) =
∏m̃

i=1 ΓR(s + α̃i) with some

complex numbers α̃i, and L̃p(s) = P̃p(p
−s)−1 for p ∈ SQ,f (π), where P̃p are

some polynomials satisfying P̃p(0) = 1. (For brevity, we say that factors L̃p(s),
p ∈ SQ(π), of this shape are Euler factors.) The advantage in working with

Lred(s) is that it is uniquely determined by the partial L-function LS(π) (and
hence by π and r). Of course, it is only defined if property (FE) is known a
priori.

In any case, as a consequence of the minimality of the local factors Lred
p (s),

p ∈ SQ(π), the reduced L-function Lred(s) satisfies the following minimality
property. Suppose that a function L(s) as in (2.9) satisfies a functional equation
of the form

L(s) = cR
1
2−sL∨(1− s)

for some c ∈ CC∗ and R > 0, where

L∨(s) =
( ∏
p∈SQ(π)

L̃∨
p (s)

)
LS(π)(s, π, r∨),

for some Euler factors L̃∨
p (s), p ∈ SQ(π). Then for each p ∈ SQ,f (π), the

polynomial P̃p is divisible by Pp and L̃∞(s)/Lred
∞ (s, π, r) is a polynomial. In

particular, the quotient Lred(s)/L(s) is an entire function. Moreover,

n(π, r)

R
=

∏
p∈SQ,f (π)

pdeg P̃p−degPp

is a positive integer.
Consider for example the case of G = GL(n) with the standard representa-

tion r = Stn. If π ∈ Πcusp(G(A)) then the completed L-function LGJ(s, π, Stn)
was defined and studied by Godement–Jacquet [49]. The Jacquet-Shalika
bounds on the local parameters of generic representations imply that LGJ(s, π,
Stn) is reduced. On the other hand, for any m > 1 the L-function

m∏
j=1

LGJ(s+
m+ 1

2
− j, π, Stn),

which is the completed L-function of a residual representation of GL(nm,A),
is not reduced.

Our next task is to apply the standard argument of Riemann and von Man-
goldt for estimating the number of zeros of an L-function (cf., e.g., [55, Section
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5.3]). For our purposes we will need a weak form of this argument which works
under the following supplementary conditions.

Definition 2.4. We say that (G, r) satisfies property (FE+), if it satisfies
property (FE) and if in addition the following holds.

(1) There exists a polynomial P (s), whose degree is bounded in terms of
(G, r) only, such that P (s)LS(π)(s, π, r) is an entire function of finite
order.

(2) The degrees of the polynomials Pp, p ∈ SQ,f , in (2.7), as well as the
degree of the factor γ∞ are bounded in terms of (G, r) only.

(3) There exists a real number β depending only on (G, r), such that the ze-
ros of Pp, p ∈ SQ,f , have absolute value ≥ p−β and such that γ∞(s, π, r)
has no zeros in the half-plane Re s > β (i.e., the reduced parameters
αi satisfy Reαi ≥ −β).

We say that (G, r) has virtually property (FE+), if there exist representa-
tions r1 and r2 for which (G, ri) has property (FE+) and r ⊕ r1 = r2.

In practice, we will have deg γ∞ = N [F : Q] ≥ degPp for all p ∈ SQ,f (π).
However, we do not demand it at the outset. The most elusive condition in
property (FE+) is in fact the first one — the boundedness of the number of
poles of LS(s, π, r) independently of π.

Remark 2.5. It is clear that (G, r) satisfies (FE+) if and only if the same is true
for (G, r∨). An analogous remark is applicable for all subsequent properties
defined below.

We can now state the desired estimate. Recall the archimedean and arith-
metic conductors defined in (2.6) and (2.8), respectively. Here and throughout
we write

A≪ B

to mean that A is bounded by a constant multiple of B. The implied constant
is allowed to depend only on the pair (G, r).

Proposition 2.6. Suppose that (G, r) satisfies property (FE+). Then for any
π ∈ Πdisc(G(A)) the meromorphic function

m(s, π, r) = ϵred(1, π, r)Lred(s, π, r)/Lred(s+ 1, π, r)

satisfies |m(it, π, r)| = 1 for t ∈ R and∫ T+1

T

|m′(it, π, r)| dt≪ log(|T |+ 2) + log c∞(π, r) + log(n(π, r)
∏

p∈SQ,f (π)

p)

for all T ∈ R.
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Proof. Although the argument is familiar, we will provide the details, since our
assumptions are somewhat weaker than usual. Let

Λ(s, π, r) = n(π, r)s/2Lred(s, π, r).

Then

(2.10) Λ(s, π, r) = ϵred(
1

2
, π, r)Λ(1− s, π, r).

Note that m(s, π, r) = Λ(s, π, r)/Λ(−s, π, r) and hence m(s, π, r) is holomor-
phic on the imaginary axis and has absolute value one there. Moreover,

m′(it, π, r)

m(it, π, r)
= 2Re

Λ′(it, π, r)

Λ(it, π, r)
, t ∈ R.

The function Λ(s) = Λ(s, π, r) is a quotient of holomorphic functions of
order one, and hence a meromorphic function of order one. For instance, the
argument of [39, Proposition 1] shows that there exist positive constants c1, c2,
c3, depending also on π, such that∣∣∣P (s)LS(π)(s, π, r)

∣∣∣ ≤ c1(1 + |s|)max(c2,−c3 Re(s)), s ∈ CC.

Therefore Λ(s) admits a Hadamard factorization

Λ(s) = ea+bssn(0)
∏
ρ ̸=0

[(1− s/ρ)es/ρ]n(ρ),

where a, b ∈ CC, the product ranges over the zeros and poles of Λ(s) other
than 0, and n(ρ) is the order of the function Λ(s) at s = ρ (possibly negative).
Also, ∑

ρ̸=0

|n(ρ)|
|ρ|1+ϵ <∞

for all ϵ > 0. Thus,

Λ′(s)

Λ(s)
= b+

n(0)

s
+
∑
ρ̸=0

n(ρ)

(
1

s− ρ
+

1

ρ

)
,

and hence

Re
Λ′(s)

Λ(s)
=

∑
ρ

Re
n(ρ)

s− ρ
+Re b+

∑
ρ ̸=0

Re
n(ρ)

ρ
,

where the series of ρ are absolutely convergent because of∑
ρ ̸=0

∣∣∣∣Re n(ρ)ρ
∣∣∣∣ = ∑

ρ̸=0

n(ρ) |Re ρ|
|ρ|2

≪
∑
ρ̸=0

n(ρ)

|ρ|2
<∞.

Taking the logarithmic derivative of the functional equation (2.10), we also get

−Re
Λ′(s)

Λ(s)
=

∑
ρ

Re
n(ρ)

1− s− ρ
+Re b+

∑
ρ̸=0

Re
n(ρ)

ρ
.
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Since n(ρ) = n(1−ρ), we conclude that Re b+
∑

ρ̸=0 Re
n(ρ)
ρ = 0, and therefore

Re
Λ′(s)

Λ(s)
=

∑
ρ

n(ρ)Re
1

s− ρ
=

∑
ρ

n(ρ)
Re(s− ρ)

|s− ρ|2
.

By the second and third condition of Definition 2.4, there exist an integer
m ≥ 1 and a constant A ≥ 2, depending only on G and r, such that for all
primes p the Euler factor at p of Lred(s, π, r) is a product of at most m factors
(1 − αp,ip

−s)−1 with |αp,i| ≤ pA−2 for all p and i, and such that the poles
of the factor at infinity L∞ lie in the half-plane Re s ≤ A − 2. (In fact, we
may take A = max(α, β) + 2.) Therefore, the Euler product Lred,f (s, π, r) is
absolutely convergent for Re s > A − 1, and because of the condition on L∞
and the functional equation (2.10), all zeros and poles ρ of Λ(s) lie in the strip
2−A ≤ Re s ≤ A− 1.

By definition, we have

Λ′(s)

Λ(s)
=

1

2
log n(π, r) +

(Lred,f )′(s, π, r)

Lred,f (s, π, r)
+
L′
∞(s, π, r)

L∞(s, π, r)
.

The absolute convergence of the Euler product for Re s > A− 1 implies that∣∣∣∣ (Lred,f )′(s, π, r)

Lred,f (s, π, r)

∣∣∣∣ ≤ −mζ ′(s−A+ 2)

ζ(s−A+ 2)

in this half-plane. Using the fact that Γ′(s)/Γ(s) = log s+O(1/ |s|) for Re s ≥ 1,
we get that∣∣∣∣Re Λ′(s)

Λ(s)

∣∣∣∣ ≤ ∣∣∣∣Λ′(s)

Λ(s)

∣∣∣∣ ≤ 1

2
log n(π, r) +

1

2
log c∞(π, r) +

m

2
log |s|+ c

for Re s ≥ A, where c depends only on G and r. Taking Re s = A, we conclude
that∑

ρ

n(ρ)
A− Re ρ

|A+ iT − ρ|2
≤ 1

2
log n(π, r) +

1

2
log c∞(π, r) +

m

2
log(1 + |T |) + c.

On the other hand, because of the first condition of Definition 2.4, up to finitely
many exceptions the poles of Λ(s) can only arise from the poles of the Eu-
ler factors Lp(s, π, r) = Pp(p

−s), p ∈ SQ,f (π). Therefore, using the identity∑
n∈Z(1 + (n/x)2)−1 = πx coth(πx), we have

∑
ρ:n(ρ)<0

|n(ρ)| A− Re ρ

|A+ iT − ρ|2
≤ c+

m

2

∑
p∈SQ,f (π)

1 + p−1

1− p−1
log p,
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where c again depends only on r. Hence

(2.11)
∑
ρ

|n(ρ)|
1 + (T − Im ρ)2

≪

log n(π, r) +
∑

p∈SQ,f (π)

log p+ log c∞(π, r) + log(1 + |T |) + 1,

and in particular
(2.12)∑
ρ:|Im ρ−T |<2

|n(ρ)| ≪ log n(π, r)+
∑

p∈SQ,f (π)

log p+log c∞(π, r)+ log(1+ |T |)+1.

We can now estimate
∫ T+1

T
|m′(it, π, r)| dt = 2

∫ T+1

T

∣∣∣Re Λ′(it)
Λ(it)

∣∣∣ dt by writing

Re
Λ′(it)

Λ(it)
=

∑
ρ

n(ρ)
Re ρ

|it− ρ|2
,

and splitting the sum into two parts according to whether |Im ρ− T | ≥ 2 or
|Im ρ− T | < 2. For the first sum we have∣∣∣∣∣∣

∑
ρ:|Im ρ−T |≥2

n(ρ)
Re ρ

|it− ρ|2

∣∣∣∣∣∣ ≤ 2A
∑

ρ:|Im ρ−T |≥2

|n(ρ)|
1 + (T − Im ρ)2

for any t ∈ [T, T + 1] and we use (2.11). For the second sum we use the fact
that for ρ = β + iγ with β ̸= 0 we have∫ T+1

T

|Re ρ|
|it− ρ|2

dt =

∫ T+1

T

|β|
β2 + (t− γ)2

dt =

∫ (T+1−γ)/|β|

(T−γ)/|β|

1

1 + t2
dt < π.

Thus, ∫ T+1

T

∣∣∣∣∣∣
∑

ρ:|Im ρ−T |<2

n(ρ)
Re ρ

|it− ρ|2

∣∣∣∣∣∣ dt ≤ π
∑

ρ:|Im ρ−T |<2

|n(ρ)| ,

which is bounded by (2.12). All in all we get the required estimate. □

Remark 2.7. It is clear that in Proposition 2.6 it is in fact sufficient to require
that (G, r) has virtually property (FE+). Similarly, it suffices to know that the
number of poles of LS(π)(s, π, r) is ≪ log c∞(π, r) + log(n(π, r)

∏
p∈SQ,f (π)

p).

In order to make the connection to asymptotic problems, we need to control
n(π, r) (resp., c∞(π, r)) in terms of the level of π (resp., the size of the infinites-
imal character of π∞). Fix once and for all a faithful F -rational representation
ρ : G→ GL(V ) and an oF -lattice Λ in the representation space V . The stabi-

lizer of Λ̂ = ôF ⊗ Λ ⊂ Afin ⊗ V in G(Afin) is an open compact subgroup Kfin,
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and any maximal compact subgroup of G(Afin) can be realized this way. For
any non-zero ideal n of oF let

K(n) = KG(n) = {g ∈ G(Afin) : ρ(g)v ≡ v (mod nΛ̂), v ∈ Λ̂}
be the principal congruence subgroup of level n, a factorizable normal open
subgroup of Kfin. The groups K(n) form a neighborhood base of the identity
element in G(Afin). We denote by N(n) = [oF : n] the ideal norm of n. We
define the level of an admissible representation π of G(A) by level(π) = N(n),
where n is the largest ideal such that πK(n) ̸= 0. Analogously, for any finite
place v of F we define the level levelv(πv) of a smooth representation πv of
G(Fv). Thus, level(π) =

∏
v levelv(πv) where v ranges over the finite places

of F and almost all of the factors are 1. Note that there exists an integer n,
depending only on G, such that for any π ∈ Πdisc(G(A)) we have:

(2.13) p divides level(π) for any rational prime p ∈ SQ,f (π) coprime to n.

We fix a maximal compact subgroup K∞ of G(F∞) and set K = K∞Kfin.
Fix a Cartan subalgebra hCC of the complexified Lie algebra (g∞)CC of

G(F∞) and a Euclidean norm ∥·∥CC on h∗CC which is invariant under the Weyl
groupW ((g∞)CC, hCC). For any (smooth) non-zero representation π of G(F∞),
which has an infinitesimal character χπ, we define

Λ(π) = 1 + ∥χπ∥2,
where we view χπ as an orbit in h∗CC under W ((g∞)CC, hCC).

Remark 2.8. In [35, Section 5.1] the slightly different invariant

Λ′(π) = 1 + λ2π +min∥τ∥2

is used (and denoted there by Λ(π)), where λπ is the eigenvalue of the Casimir
operator of G(F∞), τ ranges over the K∞-types of π and the norm ∥τ∥ is the
one defined by Vogan (cf. [28, Section 2.2]). By a standard argument (cf. [109,
Sections 6.5 and 6.6]), there exist constants c1, c2 > 0, depending only on G,
such that

c1Λ
′(π) < Λ(π)2 < c2Λ

′(π).

Therefore, for all practical purposes there is no difference between Λ(π) and
Λ′(π).

We thus make the following definition.

Definition 2.9. Suppose that the pair (G, r) satisfies property (FE+). We say
that the conductor condition (CC) is satisfied, if there exists c > 0 (depending
only on G and r), such that

(2.14) n(π, r) ≪ level(π)c

and

(2.15) c∞(π, r) ≪ Λ(π∞)c
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for all π ∈ Πdisc(G(A)).

Condition (CC) is certainly expected to hold in general (cf. [9]), although
it is not clear whether, strictly speaking, its non-archimedean part (2.14) for-
mally follows from Langlands’s principle of functoriality or the local Langlands
conjecture for G. For the archimedean part (2.15) see Remark 2.10 below.

2.2. The standard paradigm for proving (FE) (e.g., through the Langlands-
Shahidi method or an integral representation, cf. [41]) goes by defining local
factors γ•v(s, π, r), that satisfy certain properties, most importantly

(FE’) LS(s, π, r) =
( ∏
v∈S

γ•v(s, π, r)
)
LS(1− s, π, r∨)

for any finite set S ⊃ S(π). (In each particular case the superscript • will be
replaced by an appropriate acronym.) The local factors γ•v(s, π, r) normally
depend on a choice of a character ψv of Fv. We will suppress this choice by
taking ψF = ψQ ◦ TrF/Q where ψQ =

∏
p ψQp is the standard character of

Q\AQ (characterized by ψR(·) = e2πi(·)) and writing ψF = ⊗ψv, i.e., ψv =
ψFv = ψQp ◦TrFv/Qp

, if v lies above p. If we want to emphasize that γ•v(s, π, r)
depends only on πv (as it is in the usual paradigm) we will write it as γ•v(s, πv, r).
However, we will not make it a part of our requirements. This flexibility will
be useful in sections 4 and 5, where we will use functoriality to study analytic
properties of L-functions.

In addition to (FE’) we will impose the following conditions on γ•v(s, π, r)
(which for simplicity we denote by (ΓF)). Here, n is a positive integer and β a
real number which depend only on (G, r). (In practice n = N = deg r.)

(1) For every finite v, the function γ•v(s, π, r) is a rational function in q−s
v ,

and

(2.16) γ•v(s, π, r) = ϵ•v(s, π, r)
L•
v(1− s, π, r∨)

L•
v(s, π, r)

,

where, denoting by ∆v the ideal norm of the different of Fv (i.e., the
conductor of ψv as above),

ϵ•v(s, π, r) = cvq
e•v(π,r)(

1
2−s)

v ∆
N( 1

2−s)
v ,

L•
v(s, π, r) = Pv(q

−s
v )−1,

L•
v(s, π, r

∨) = Qv(q
−s
v )−1,

for some e•v(π, r) ∈ Z and polynomials Pv and Qv of degree ≤ n satis-
fying Pv(0) = Qv(0) = 1.

(2) For v ∈ S∞ we have

(2.17) γ•v(s, π, r) = cv

mv∏
i=1

ΓFv (1− s+ α∨
v,i)

ΓFv (s+ αv,i)
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for some cv ∈ CC∗, αv,1, . . . , αv,mv , α
∨
v,1, . . . , α

∨
v,mv

∈ CC, where mv ≤
n.

(3) For all v ∈ S(π), the function γ•v(s, π, r) has no zeros for Re s > β.

Let us make a few comments about these conditions.
First, as before, we do not impose that e•v(π, r) ≥ 0 for v ∈ Sf (π) (although

in practice this will always be the case). Also, for v finite we allow Pv(X) and
Qv(q

−1
v X−1) to have common zeros. Thus, e•v(π, r) does not depend only on

the function γ•v(s, π, r) itself. However, this ambiguity is immaterial for our
purpose since different presentations (2.16) give rise to values of e•v(π, r) which
differ by an integer of absolute value ≤ n.

Similarly, for v ∈ S∞ we allow the numerator and denominator in the ex-
pression (2.17) to have common poles. We set

c•v(π, r) =
( mv∏
i=1

(1 + |αv,i − 1/2|)(1 +
∣∣α∨

v,i − 1/2
∣∣)) 1

2 .

As in the proof of Lemma 2.2, c•v(π, r) depends only on the factor γ•v(s, π, r)
and not on the choice of αv,1, . . . , αv,mv , α

∨
v,1, . . . , α

∨
v,mv

. (In practice we always
have mv = N .)

Note that the functional equation (FE’) implies that for all v /∈ S(π) we
have

γ•v(s, π, r) =
Lv(1− s, πv, r

∨)

Lv(s, πv, r)
.

Finally, it implies (FE) with

γp(s, π, r) =
∏

v∈S(π):v|p

γ•v(s, π, r)

for each p ∈ SQ(π), and the second and third conditions of property (FE+) are
satisfied. Regarding condition (CC), by Remark 2.3 the quotient

n(π, r)∏
v∈Sf (π)

q
e•v(π,r)
v

is a positive integer which divides
∏

p∈SQ,f (π)
pn[F :Q]. Therefore, by (2.13) the

non-archimedean part of condition (CC) is implied by the condition

(CC’) e•v(π, r) ≪ 1 + logqv levelv(πv), v ∈ Sf (π).

Note that this property (in contrast to the value of e•v(π, r) itself) depends
only on γ•v(s, π, r). The archimedean part of condition (CC) is implied by the
condition

(AF) c•v(π, r) ≪ Λ(πv)
c, v ∈ S∞,

where c depends only on (G, r).
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Remark 2.10. In many cases one knows that the archimedean factors are com-
patible with the Langlands classification in the following sense. For v ∈ S∞, let
Wv be the Weil group of Fv and let ϕv :Wv → LG be the Langlands parameter
attached to πv. Then
(CL)
γ•v(s, π, r) = γv(s, r ◦ ϕv, ψv) := ϵv(s, r ◦ ϕv, ψv)Lv(1− s, r∨ ◦ ϕv)/Lv(s, r ◦ ϕv),
where the L- and ϵ-factors on the right-hand side are as in [108, §3]. It is easy
to see that condition (CL) for all v ∈ S∞ implies (AF) (with c = N/2).

We sum up the discussion as follows.

Corollary 2.11. For a given pair (G, r), suppose that for all π ∈ Πdisc(G(A))
the following conditions are satisfied.

(1) There exists a polynomial P (s), whose degree is bounded in terms of
(G, r) only, such that P (s)LS(π)(s, π, r) extends to an entire function of
finite order.

(2) There exist local factors γ•v(s, π, r) (for all places v of F ) satisfying (FE’),
(ΓF), (AF) and (CC’).

Then (G, r) satisfies properties (FE+) and (CC).

The following observation will be useful.

Lemma 2.12. Suppose that for all triplets (M,π, r′), where M is a Levi sub-
group of G defined over F (including G itself), π ∈ Πcusp(M(A)) is a cuspidal
representation ofM(A), and r′ is an irreducible constituent of r

∣∣
LM

, conditions

(1) and (2) of Corollary 2.11 are satisfied (with M instead of G and r′ instead
of r). Then (G, r) satisfies properties (FE+) and (CC).

Proof. Let π ∈ Πdisc(G(A)). Then there exist σ ∈ Πcusp(M(A)) and λ ∈ a∗M,CC
such that π is a subquotient of the representation I(σ, λ) parabolically induced
from the twist of σ by the character of M(A)/M(A)1 determined by λ [12,
Supplement]. We have S(σ) ⊂ S(π), level(σ) ≪ level(π) and Λ(σ∞) + ∥λ∥2 ≪
Λ(π∞). Also, by the unitarity of π, ∥Reλ∥ is bounded in terms of G only.
Decompose r

∣∣
LM

= ⊕k
i=1ri according to the central character, and let β∨

i be
the element of aM corresponding to the central character of ri. Then

LS(π)(s, π, r) =
k∏

i=1

LS(π)(s+ ⟨λ, β∨
i ⟩ , σ, ri).

We take

γ•v(s, π, r) =
k∏

i=1

γ•v(s+ ⟨λ, β∨
i ⟩ , σ, ri).

Then properties (1) and (2) for (G, π, r) immediately follow from the corre-
sponding properties of (M,σ, ri), i = 1, . . . , k (cf. Remark 2.3). □
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2.3. At this stage it will be useful to introduce a slight refinement of the
notion of level. For the rest of this section let G′ be a closed connected normal
subgroup of G and p : H → G′ a finite covering of G′ (with H connected), both
defined over F . Note that p(H(F )) is a normal subgroup of G′(F ) and that
G′(F )/p(H(F )) is an abelian group of finite exponent (bounded by the size of
the kernel of p), and similarly for p(H(A)) ⊂ G′(A).

For any π ∈ Πdisc(G(A)) we write level(π; p) = N(n), where n is the largest
ideal such that πK(n)∩p(H(A)) ̸= 0. (Note that the same notion was considered
in [35, §5.1], where the notation level(π; p(H(A))) was used.) Analogously, we
define levelv(πv; p) for a smooth representation πv of G(Fv). We also set

(2.18) Λ(π∞; p) = ΛG′
(π∞

∣∣
G′(F∞)

),

where on the right-hand side Λ is taken with respect to G′. Alternatively,
Λ(π∞; p) = 1 + ∥χπ∞;p∥2, where χπ∞;p is the projection of χπ∞ to (hCC ∩
Lie(G′(F∞))CC)

∗.

Lemma 2.13. There exists an integer N1, depending only on p and G, such
that for any π ∈ Πdisc(G(A)) there exists σ ∈ Πdisc(G

′(A)) and a character χ
of G′(A) trivial on G′(F )p(H(A)) such that level(σ) divides N1 level(π; p) and

σχ is a subrepresentation of π
∣∣
G′(A). In particular, ΛG′

(σ) = Λ(π∞; p).

Proof. We first reduce the lemma to the case G′ = G. Namely, we show that
there exists an integer N2, depending only on G and G′, such that for any
π ∈ Πdisc(G(A)) there exists a subrepresentation σ ∈ Πdisc(G

′(A)) of π|G′(A)
with level(σ; p) dividing N2 level(π; p).
Let C be the centralizer ofG′ inG. Then CG′ = G, and therefore G′(F∞)C(F∞)

has finite index in G(F∞). Since the maximal compact subgroup K∞ meets
every connected component of G(F∞), we have G(F∞) = G′(F∞)C(F∞)K∞.
Combining this fact with the well-known finiteness of the class number of G
[96, Theorem 8.1], we see that the coset space

X = G(F )\G(A)/G′(A)C(F∞)K

is finite. Fix a set of representatives {g1, . . . , gr} for the classes of X.
Let π ∈ Πdisc(G(A)). Note that since CG′ = G, G(A)/C(A)G′(A) is com-

pact, and therefore, the restriction π
∣∣
G′(A) decomposes into a direct sum of

irreducible representations. Let ϕ be an automorphic form on G(A) in the iso-
typic space of π, which is right-invariant under the group K(n) ∩ p(H(Afin)).
Then there exist i = 1, . . . , r, k ∈ KM and c ∈ C(F∞), such that the func-

tion ϕ̃ := ϕ(·cgik) does not vanish on G′(F )\G′(A). The function ϕ̃ is clearly

invariant under giK(n)g−1
i ∩ p(H(Afin)). Decomposing the span of ϕ̃

∣∣
G′(A) un-

der G′(A) into irreducibles, we obtain an irreducible subrepresentation σ ∈
Πdisc(G

′(A)) of π|G′(A) such that level(σ; p) divides N2 level(π; p), where the
integer N2 depends on G only, as required.
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So assume from now on that G′ = G. It remains to show that there exists an
integer N3, depending only on p, such that for any σ ∈ Πdisc(G(A)) there exists
a character χ : G(A)/G(F )p(H(A)) → CC× such that level(σχ−1) divides
N3 level(σ; p). Recall from [35, Lemma 5.1] that

levelv(σv; p) = min
χv

levelv(σvχ
−1
v ),

where χv ranges over the characters ofG(Fv)/p(H(Fv)). SinceG(Fv)/p(H(Fv))
is finite for all v, it suffices to show the following assertion. There exists a finite
set S0 of finite places of F , depending on p only, such that for any finite set S of
finite places of F outside S0 and a family of characters χ̃v of G(Fv)/p(H(Fv))
for v ∈ S, there exists a global character χ : G(A)/G(F )p(H(A)) → CC×, un-
ramified outside S∪S0, such that χvχ̃

−1
v is unramified for all v ∈ S. (We use the

fact that levelv(πvχv) ≪ levelv(πv) for any character χv of G(Fv)/p(H(Fv)),
v ∈ S0.)

For convenience we write K̃ = G(F∞)Kfin. We first show that the group

(G(F ) ∩ p(H(A))K̃)/p(H(F ))

is finitely generated. Indeed, choose representatives x1, . . . , xk for the finite
double coset space H(F )\H(A)/p−1(K̃), and let yi = p(xi). Then G(F ) ∩
p(H(A))K̃ is the union over i = 1, . . . , k of

G(F ) ∩ p(H(F ))yiK̃ = p(H(F ))(G(F ) ∩ yiK̃).

If δi ∈ G(F )∩ yiK̃, then G(F )∩ yiK̃ = (G(F )∩ δiK̃δ−1
i )δi, which is a coset of

a finitely generated group. Our claim follows.
Let Γ be the image of G(F ) ∩ p(H(A))K̃ in G(Afin)/p(H(Afin)). Since the

latter is abelian of finite exponent, Γ is necessarily finite, and therefore projects
injectively into G(FS0)/p(H(FS0)) for a suitable finite set S0 depending only on
p. It is therefore possible to extend the character

∏
v∈S χ̃v of KS to a character

of K̃/(G(F )p(H(A))∩K̃), which is trivial on Kv for any v /∈ S∪S0. Extending
this character to G(A)/G(F )p(H(A)) we obtain the desired χ.

The last assertion of the lemma is clear, since χ is trivial on the connected
component of the identity of G(F∞). □

The following observation will also be useful.

Lemma 2.14. Assume that G′ contains the derived group of G and let Lι :
LG → LG′ be the corresponding homomorphism of L-groups. Let r′ be a rep-
resentation of LG′ and let r = r′ ◦ Lι. Assume that (G, r) satisfies (FE+) and
(CC). Then (G′, r′) satisfies (FE+) and (CC).

We first need the following standard result.

Lemma 2.15. Let T be a torus over F . Then there exists a compact subset
C of the Pontryagin dual T (F∞)D = Hom(T (F∞),CC1) of T (F∞), such that
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for any character χ of T (A) there exists a character χ̃ of T (F )\T (A) such that
χ̃χ−1 is unramified at all finite places and χ̃∞χ

−1
∞ ∈ C.

Proof. Indeed, let T (F∞)1 = T (F∞) ∩ T (A)1. Then

X := T (F )T (F∞)1
∏

v finite

T (Ov)

is a closed subgroup of finite index of T (A)1 and the group Γ := T (F ) ∩
T (F∞)1

∏
v finite T (Ov) is a lattice in T (F∞)1. Therefore, there exists a com-

pact subset C of (T (F∞)1)D, such that its image under the restriction map

(T (F∞)1)D → ΓD

is onto. Thus, there exists a character χ̃ ofX, trivial on T (F ), whose restriction
to T (F∞)1 is in χ∞C and whose restriction to

∏
v finite T (Ov) is χ. Extending

χ̃ arbitrarily to T (A)1 and setting χ̃|AT
= χ|AT

, we obtain the assertion. □

Proof of Lemma 2.14. We show that for any given π′ ∈ Πdisc(G
′(A)) we can

find π ∈ Πdisc(G(A)) such that π′ is a subrepresentation of π
∣∣
G′(A), level(π) ≪

level(π′) and Λ(π∞) ≪ Λ(π′
∞). By [54, Theorem 4.13, Remark 4.23] there

exists π ∈ Πdisc(G(A)) such that π′ occurs in π
∣∣
G′(A). Let T = G/G′. As in

the proof of [35, Lemma 5.1] we have levelv(π
′
v) ≥ minωv levelv(πv⊗ωv), where

ωv ranges over the characters of G(Fv)/G
′(Fv), and similarly for Λ(π′

∞). Since
the map G(Fv)/G

′(Fv) → T (Fv) is injective, we can vary over the characters
of T (Fv) instead. Hence the claim follows from Lemma 2.15.

Finally, since π′ occurs in π
∣∣
G′(A)

we have S(π′) ⊂ S(π) and LS(π)(s, π, r) =

LS(π)(s, π′, r′). It is now easy to conclude the assertion of the lemma from
Remark 2.3. □

3. Global normalizing factors and L-functions

In this section we consider the global normalizing factors associated to inter-
twining operators. We switch therefore to a slightly different setting. Let G be
an isotropic reductive group defined over F , andM a proper Levi subgroup of G
containing a fixed maximal F -split torus T0. As usual, we let P(M) be the set
of all parabolic subgroups of G, defined over F , with Levi subgroupM . For any
P ∈ P(M) with unipotent radical NP let A2(P ) be the space of automorphic

forms φ on NP (A)M(F )\G(A) such that δ
− 1

2

P φ(·k) ∈ L2
disc(AMM(F )\M(A))

for all k ∈ K, where δP denotes the modulus function of P (A). For each pair
P,Q ∈ P(M) there is a global intertwining operator

MQ|P (λ) : A2(P ) → A2(Q),

which has meromorphic continuation in λ ∈ a∗M,CC [1, Section 1].
Let ΣM ⊂ a∗M be the set of reduced roots of TM on the Lie algebra of G,

and for any P ∈ P(M) let ΣP ⊂ ΣM be the set of reduced roots of TM on
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the Lie algebra nP of NP . We say that two parabolic subgroups P,Q ∈ P(M)
are adjacent along α ∈ ΣM , and write P |αQ, if ΣP ∩ −ΣQ = {α}. The study
of the operators MQ|P (λ) reduces to this case. Let π ∈ Πdisc(M(A)). We
are interested in the corresponding normalizing factors nα(π, s) introduced by
Langlands and Arthur (see [1, Section 6], [2]). They are meromorphic functions
of a complex variable s, and are closely connected to certain automorphic L-
functions studied by Langlands and Shahidi. (As the notation suggests, nα
depends only on α and not on the choice of parabolic subgroups P |αQ. The
precise definition of nα and its relation to the intertwining operators MQ|P (λ)
is described in [1]. We will not need it here.)

To describe the relevant representations of the L-group LM , let Uα be the
unipotent subgroup of G corresponding to α (so that the eigenvalues of TM
on the Lie algebra of Uα are positive integer multiples of α). Let Mα be the
group generated by M and U±α. It is a Levi subgroup of G defined over F

containing M as a co-rank one Levi subgroup. Let M̂α be the subgroup of
Mα ∩ Gder generated by U±α. By [13, Proposition 4.11] M̂α is a connected

normal subgroup of Mα defined over F . Hence M̃α := M ∩ M̂α is a normal
subgroup of M . Moreover, since M has co-rank one in Mα, precisely one
simple root β of Mα restricts to α, which implies that the root system of M̂α

is the irreducible component of the root system of Mα containing β. The
group M̂α is therefore F -simple, and M̃α is a Levi subgroup of co-rank one.
(In particular, M̃α is connected.) Let M̂ sc

α be the simply connected cover of

M̂α, and p̃sc : M̂ sc
α → M̂α the natural projection. By abuse of notation we

write M̃ sc
α = (psc)−1(M̃α). (Of course M̃ sc

α is not semisimple.) We denote by

psc : M̃ sc
α → M̃α the restriction of p̃sc to M̃ sc

α . We note that psc(M̃ sc
α (A)) =

p̃sc(M̂ sc
α (A)) ∩ M̃α(A).

The L-group LMα ofMα admits a parabolic subgroup LPα = LM⋉LUα cor-
responding to α whose Levi part LM is the L-group of M . The representation
of LM relevant for the theory of intertwining operators is (the contragredient
of) the adjoint representation of LM on Lie(LUα). We have a sequence of
homomorphisms of reductive groups

M̂ sc
α −↠ M̂α ↪−→Mα,

which restricts to

M̃ sc
α −↠ M̃α ↪−→M.

The dual sequences of homomorphisms of L-groups are

LMα −→ LM̂α −→ L(M̂ sc
α ) = (LM̂α)

ad

and
LM −→ LM̃α −→ L(M̃ sc

α ) = LM̃α/Z(
LM̂α),
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respectively. The adjoint action of LM on Lie(LUα) clearly factors through
the composed homomorphism. We decompose the contragredient of the ad-
joint representation of LM̃α on Lie(LUα) as ⊕l

j=1rj , where the (irreducible)
subrepresentation rj is the eigenspace of weight −j of the fundamental weight

corresponding to α, considered as a cocharacter of the center of LM̃α/Z(
LM̂α).

The normalizing factor nα(π, s) is closely related to the L-functions
LS(js, π, rj), j = 1, . . . , l, which emerged in the famous computation by Lang-
lands of the constant term of the corresponding Eisenstein series [81]. Lang-
lands used this to show the meromorphic continuation of these L-functions to
the entire complex plane (at least in the cuspidal case, but the general case
follows from the cuspidal case as in the argument of Lemma 2.12). These L-
functions are also known to have finite order as meromorphic functions. In the
cuspidal case this is [39, Theorem 2], which is based on the results of Müller
[92, 93]. The general case follows once again from the argument of Lemma
2.12. However, the finer analytic properties of LS(s, π, rj), such as properties
(FE+) and (CC) considered in this paper, are more elusive (cf. Remark 3.7
below).
We now summarize the pertinent properties of the normalizing factors nα(π, s).

The first one is the functional equation

nα(π, s)nα(π,−s̄) = 1,

which is equivalent to

|nα(π, it)| = 1, t ∈ R.

The second is a factorization

nα(π, s) =
∏
v

nα,v(π, s)

as an absolutely convergent product for Re s sufficiently large. The local factors
nα,v(π, s) are assumed to satisfy the following properties.

(1) For all finite v, nα,v(π, s) is a rational function in X = q−s
v , whose

degree is bounded in terms of G only and which is regular and non-
zero at X = 0.

(2) If v ∈ S∞, then

nα,v(π, s) = cv

Nv∏
i=1

ΓR(jis+ αi)

ΓR(jis+ αi + 1)
,

where cv ̸= 0, α1, . . . , αNv ∈ CC and the integers Nv ≥ 1 and ji ≥ 1,
i = 1, . . . , Nv, are bounded in terms of G only.

(3) Write π = ⊗πv. If v is finite, M̃α is unramified at v and the pull-back

πv ◦ psc of πv to M̃ sc
α (Fv) contains an unramified subrepresentation σv,
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then

(3.1) nα,v(π, s) =

l∏
j=1

Lv(js, σv, rj)

Lv(js+ 1, σv, rj)
.

Remark 3.1. The first and second property are clear from [2] (and moreover
nα,v(π, s) depends only on πv, or in fact on πv ◦ psc – cf. [27, Theorem 3.3.4]).
For v ∈ S∞, by [2, §3] we have in fact

nα,v(πv, s) =

l∏
j=1

Lv(js, rj ◦ ϕv)
Lv(js+ 1, rj ◦ ϕv)

,

where ϕv : Wv → LM is the Langlands parameter associated to πv. However,
we will only need the qualitative property stated above. The third property is
implicit in [2]. We omit the details.

Remark 3.2. We can rewrite the assumption on πv in (3) in an equivalent way
by saying that πv|M̃α(Fv)

contains an irreducible subrepresentation of the form

σvχv, where σv is an unramified representation of M̃α(Fv) and χv is a character

of M̃α(Fv)/p
sc(M̃ sc

α (Fv)).

We now introduce the property (TWN+), which is the main object of this
paper.

Definition 3.3. The group G satisfies property (TWN+) (tempered winding
numbers, strong version) if, for any proper Levi subgroup M of G defined over
F , and any root α ∈ ΣM we have the estimate∫ T+1

T

|n′α(π, it)| dt≪ log(|T |+ Λ(π∞; psc) + level(π; psc))

for all π ∈ Πdisc(M(A)) and all real numbers T .

Recall that the invariants Λ(π∞; psc) and level(π; psc) are defined in Section
2.3. (Of course, the ambient group is M in our case.) As explained in [35,
Remark 5.3, part 2], this property implies property (TWN) for G formulated
in [35, Definition 5.2], which is relevant to the limit multiplicity problem.

In view of the description of the unramified factors of nα(π, s), it is no
wonder that the property (TWN+) is intimately related to analytic properties
of the automorphic L-functions LS(s, π, rj). In the special cases G = GL(n)
and G = SL(n) this was spelled out in [35, Proposition 5.5]. Here, we will
analyze it in the general case.

Definition 3.4. We say that G satisfies property (L), if for any standard
Levi subgroup M , any α ∈ ΣM , and any irreducible constituent r = rj of the

representation (AdLUα
)∨ of the group LM̃α, the pair (M̃α, r) satisfies properties

(FE+) and (CC).
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Remark 3.5. It is clear from the definition that property (L) depends only on
the derived group of G.

Remark 3.6. We expect that every group satisfies property (L). Using [42,
Proposition 3.1], it is possible to reduce this question to the constituent r1.

Remark 3.7. Suppose that G is quasi-split and that π is a generic cuspidal
representation of M(A). (If M is isogenous to a product of general linear
groups, then this condition is satisfied for all cuspidal representations π.) By
the results of Shahidi, the meromorphic function LS(π)(s, π, r) satisfies then a
functional equation of the form (2.1). Moreover, local factors γShv (s, πv, r) are
defined and satisfy (FE’), (ΓF) and (CL) [103]. Shahidi’s work also gives that
under some mild assumptions which are known in almost all cases (see [74]
and the references therein), these L-functions admit finitely many poles and
are of order one (see [42], with some complements in [39]). However, the poles
are controlled by those of the corresponding Eisenstein series in the right-half
plane, and in general it is not clear how to bound the number of the latter in
terms of G only. (This is known in several cases and is expected to hold in
general.) Therefore, even granted the reduction to the generic case, without
additional input we cannot conclude from Shahidi’s work by itself that r has
property (FE+).

In addition, it is not clear how to approach property (CC’) using the
Langlands-Shahidi method (although it is certainly not excluded that this is
possible).

In the cases at hand we will supplement the information from Shahidi’s work
by using integral representations of Rankin–Selberg type, which give better
control of the poles of (at least) the partial L-functions as well as of the local
γ-factors.

We now have the following implication.

Proposition 3.8. Suppose that G satisfies property (L). Then it satisfies prop-
erty (TWN+).

This result essentially follows from Proposition 2.6. We first need a simple
lemma to account for the ramified local factors.

Lemma 3.9. Let P be a polynomial of degree d and let f(s) = P (p−s). Then∫ T+1

T

∣∣∣∣Re f ′(it)f(it)

∣∣∣∣ dt ≤ d(π + log p)

for all T ∈ R. Similarly let f(s) = ΓR(s+α)
ΓR(s+1+α) for some α ∈ CC. Then∫ T+1

T

∣∣∣∣Re f ′(it)f(it)

∣∣∣∣ dt≪ 1

for all T ∈ R.
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Proof. For the first part, it is enough to consider the case P (z) = 1− αz with
α ∈ CC. (The left-hand side vanishes for P (z) = z.) Absorbing the argument
of α into T , we may also assume without loss of generality that α ∈ R. Note
that then

log p

∫ ∣∣∣∣Re 1

1− αp−it
− 1

2

∣∣∣∣ dt = 1

2
log p

∫ ∣∣1− α2
∣∣

1 + α2 − 2α cos(t log p)
dt

= arctan(

∣∣∣∣1 + α

1− α

∣∣∣∣ tan( t log p2
)) + C,

and hence, since the integrand is periodic with period 2π/ log p,

log p

∫ T+1

T

∣∣∣∣Re 1

1− αp−it
− 1

2

∣∣∣∣ dt ≤ π +
1

2
log p.

Thus, ∫ T+1

T

∣∣∣∣Re f ′(it)f(it)

∣∣∣∣ dt = log p

∫ T+1

T

∣∣∣∣Re αp−it

1− αp−it

∣∣∣∣ dt ≤ π + log p.

For the second part we can assume once again that α ∈ R. Note that

Γ′
R(z)

ΓR(z)
− Γ′

R(z + 1)

ΓR(z + 1)
=

∞∑
k=0

( 1

z + 2k + 1
− 1

z + 2k

)
=

∞∑
k=0

1

(z + 2k)(z + 2k + 1)
.

Thus,

Γ′
R(α+ it)

ΓR(α+ it)
− Γ′

R(α+ it+ 1)

ΓR(α+ it+ 1)
= A+B,

where upon writing α = n+ δ with n ∈ Z and −1
2 < δ ≤ 1

2 , we have

A =

{
(−1)n+1

δ+it if α < 1
2 ,

0 otherwise,

and

|B| ≤ 1

|δ + it+ (−1)n|
+

∑
k≥0, k ̸=⌊−n

2 ⌋

1

|α+ it+ 2k| |α+ it+ 2k + 1|

≤ 1

|δ + (−1)n|
+

∑
k ̸=⌊−n

2 ⌋

1

|α+ 2k| |α+ 2k + 1|
≪ 1.

It remains to note that∫ T+1

T

∣∣∣∣Re 1

δ + it

∣∣∣∣ dt = |δ|
∫ T+1

T

dt

δ2 + t2
< π. □
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Proof of Proposition 3.8. Assume that G satisfies property (L), and let M ,
α, and π ∈ Πdisc(M(A)) be given. We apply Lemma 2.13 with respect to

psc : M̃ sc
α → M̃α ◁M . Let σ ∈ Πdisc(M̃α(A)) and χ be as in that lemma. Then

by Remark 3.2 we have

(3.2)
∏

v/∈S(σ)

nα,v(π, s) =
l∏

j=1

LS(σ)(js, σ, rj)

LS(σ)(js+ 1, σ, rj)
.

As in §2.1 define

(3.3) m(σ, s) =
l∏

j=1

ϵred(1, σ, rj)L
red(js, σ, rj)

Lred(js+ 1, σ, rj)
.

By Proposition 2.6 we have |m(σ, it)| = 1 for all t ∈ R, and∫ T+1

T

|m′(σ, it)| dt≪

log(|T |+ 2) +
∑
j

[log n(σ, rj) + log c∞(σ, rj)] + log level(σ).

By condition (CC) for (M̃α, rj) and Lemma 2.13, for all j we have here

log n(σ, rj) ≪ log level(σ) + 1 ≪ log level(π; psc) + 1,

while
log c∞(σ, rj) ≪ log ΛM̃α(σ∞) + 1 = log Λ(π∞; psc) + 1.

It remains to compare m(σ, s) and nα(π, s). Consider the quotient ϕ(s) =
m(σ, s)/nα(π, s). We have |ϕ(it)| = 1, and therefore ϕ′(it)/ϕ(it) ∈ R for t ∈ R.
On the other hand, from (3.2) and (3.3) we get that

ϕ(s) = c

l∏
j=1

∏
p∈SQ(σ)

Lred
p (js, σ, rj)

Lred
p (js+ 1, σ, rj)

∏
v∈S(σ)

nα,v(π, s)
−1

for some non-zero constant c. By the nature of the local factors Lred
p (js, σ, rj)

and nα,v(π, s), we may conclude from Lemma 3.9 and (2.13) that∫ T+1

T

|ϕ′(it)| dt =
∫ T+1

T

∣∣∣∣Re ϕ′(it)ϕ(it)

∣∣∣∣ dt≪G [F : Q] +
∑

v∈Sf (σ)

log qv

≪ log level(π; psc) + 1.

This concludes the proof of the proposition. □

Remark 3.10. For Proposition 3.8 to hold, we may replace the condition (FE+)
in the definition of property (L) by the weaker condition that (FE+) holds
virtually (cf. Remark 2.7). It would be interesting to know whether one can
further weaken the assumptions in Proposition 3.8.
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In the next sections we will prove:

Theorem 3.11. The following groups satisfy property (L), and hence also
property (TWN+).

(1) GL(n) and its inner forms.
(2) Quasi-split classical groups.
(3) The exceptional group G2.

Thus, by Remark 3.5, the same holds for any group whose derived group coin-
cides with the derived group of any one of the groups above.

The proof is based on a case-by-case analysis of the L-functions appearing in
the definition of property (L). The quasi-splitness assumption in part 3 comes
from the fact that we use functoriality to GL(n), which at the moment is
only available in this case. (See Remark 5.7 below.) In each case we will use
Corollary 2.11 for appropriately defined local factors. We will also often use
Lemma 2.12 to reduce to the cuspidal case.

4. Inner forms of GL(n)

We first consider the groups GL(n) and their inner forms. In order to prove
Theorem 3.11 in this case, in view of Lemma 2.14 it suffices to show the fol-
lowing

Theorem 4.1. Let G = G1×G2, where Gi is an inner form over F of GL(ni),
i = 1, 2, and r = Stn1 ⊗ Stn2 where Stn is the standard n-dimensional repre-
sentation of GL(n,CC). Then the pair (G, r) satisfies properties (FE+) and
(CC).

This theorem will be proved in the rest of this section.

4.1. We start with the case n2 = 1. Let G be an inner form of GL(n) and let
π ∈ Πcusp(GL(n,A)). For any Hecke character χ of F we have

LS(s, π × χ,Stn × St1) = LS(s, π ⊗ χ,St),

where π ⊗ χ denotes the twist of π by χ. Therefore, it suffices to show that
(G,Stn) satisfies (FE+) and (CC). The standard L-function for π was studied
by Godement–Jacquet [49]. In particular, Stn has property (FE+) and the
local factors

γGJ(s, πv,Stn) = ϵGJ(s, πv, Stn)
LGJ(1− s, π∨

v ,Stn)

LGJ(s, πv, Stn)

defined by Godement–Jacquet (with respect to the fixed character ψv as in
Section 2.2 satisfy (FE’), (ΓF) and (CL) (and in particular (AF)). (Of course,
in the case n = 1 these are Tate’s local factors.) For brevity we write for v
finite

c(πv) := eGJ
v (πv,Stn)
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(see (2.16)). This is the usual conductor of πv.
Property (CC’) for (G,Stn) follows from the following standard result.1

Lemma 4.2. Let F be a non-archimedean field with residue field Fq, D a
central division algebra over F of degree d and G = GL(m,D). Let OD be
the maximal order of D and let ϖD be a prime element of D. Let π be an
irreducible representation π of G and let

l = min{i ≥ 0 : πKi ̸= 0},
where K0 = GL(m,OD) and Ki = 1 + ϖi

DMm(OD), i > 0. Then c(π) ≤
n+m(l − 1) where n = md.

Proof. The result follows from the relation between conductor and depth proved
recently in [9]. (See also [20, 18, 19, 82, 22] and the appendix of [6].) For
convenience we provide an easy, self-contained argument.

If l = 0, i.e. if πK0 ̸= 0, then c(π) = m(d − 1) = n −m [49, Section I.6],
and the lemma is clear. Assume therefore that l ≥ 1. Let Nrd (resp., Trd) be
the reduced norm (resp., trace) on Mm(D). For Φ ∈ S(Mm(D)) and a matrix
coefficient f of π let

Z(s, f,Φ) =

∫
G

f(g)Φ(g) |Nrd(g)|s+
n−1
2 dg.

Consider the functional equation

(4.1)
Z(1− s, f∨, Φ̂)

LGJ(1− s, π∨)
= (−1)n−mϵGJ(s, π, ψ)

Z(s, f,Φ)

LGJ(s, π)
,

where Φ̂ is the Fourier transform of Φ given by

Φ̂(x) =

∫
Mm(D)

Φ(y)ψ(Trd(xy)) dy

for a suitable Haar measure on Mm(D), a non-trivial additive character ψ
of F , and f∨(g) = f(g−1) (a matrix coefficient of π∨). Take f to be a bi-
Kl-invariant matrix coefficient of π such that f(1) = 1 and Φ = 1Kl

. Then

Z(s, f,Φ) ≡ vol(Kl) so that γGJ(s, π) is a scalar multiple of Z(1−s, f∨, Φ̂). On

the other hand, if ψ has conductor OF then Φ̂ is supported in ϖ1−d−l
D Mm(OD)

[113, Chapter X, Section 2, Proposition 5]. Thus, Z(1− s, f∨, Φ̂) is a Laurent
series

∑
aix

i in x = q−s such that ai = 0 for all i > m(d + l − 1). Hence,
the left-hand side of (4.1) is a Laurent polynomial

∑
bix

i with bi = 0 for

1In the case where D = F and πv is generic, it follows from the well-known description

of c(πv) due to Jacquet–Piatetski-Shapiro–Shalika [63], that c(πv) ≥ logq levelv(πv). In

[35, Lemma 5.6] it was incorrectly asserted that we always have c(πv) ≤ logq levelv(πv)
for D = F . Fortunately, replacing this erroneous statement by the correct upper bound

c(πv) ≤ n logq levelv(πv) of the current Lemma 4.2, the rest of the argument of [35] goes

through without further change.
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all i > m(d + l − 1). Since ϵGJ(s, π, ψ) = ϵGJ(0, π, ψ)xc(π), we conclude that
c(π) ≤ m(d+ l − 1) = n+m(l − 1), as required. □

We also remark that for v ∈ S∞ we have

(4.2) Λ(πv) ≪ c∞(π, r)2 ≪ Λ(πv)
n.

4.2. Next consider G = GL(n1) × GL(n2) with the tensor product represen-
tation r = Stn1 ⊗ Stn2 . This L-function was studied independently by Rankin
and Selberg for n1 = n2 = 2 ([98, 100]) and in the general case by Jacquet,
Piatetski-Shapiro and Shalika ([57, 60, 61, 62, 64, 66, 67, 65, 70], see also [29, 30]
and the references therein). In particular, they showed that for π, σ cuspidal
the function

s(s− 1)LS(π)∪S(σ)(s, π × σ, r)

is an entire function of order one. Alternatively, this L-function can be also
studied using the Langlands–Shahidi method. The local factors arising from
either method coincide. We denote them by

γJPSS,Sh
v (s, πv × σv, r) = ϵJPSS,Sh

v (s, πv × σv, r)
LJPSS,Sh(1− s, πv × σv, r

∨)

LJPSS,Sh(s, πv × σv, r)
,

where again implicitly ψv are as in Section 2.2. These γ-factors satisfy (FE’),
(ΓF) and (CL). Thus r has property (FE+). In the non-archimedean case we
set for brevity c(πv × σv) = eJPSS,Sh

v (πv × σv, r) (see (2.16)). By a result of
Bushnell–Henniart [21] we have

(4.3) c(πv × σv) ≤ n2c(πv) + n1c(σv).

(It is worthwhile to mention that this result does not depend on the Bushnell–
Kutzko classification of supercuspidal representations [24], unlike the lower
bound for c(πv ×σv) proved in [23].) By Lemma 4.2 we conclude that property
(CC’) holds for γJPSS,Sh

v (s, πv × σv, r).

4.3. To finish the proof of Theorem 4.1 in the general case, we first recall
the Jacquet–Langlands correspondence [32, 59], proved in this generality by
Badulescu–Grbac [7], using results of Arthur–Clozel [4], with some comple-
ments in [8]. Let G′ = GL(n) and let G be an inner form of G′. Then for any
π ∈ Πdisc(G(A)) there exists a unique π′ ∈ Πdisc(G

′(A)) such that π′
v = πv for

all v where G′ splits. The representation π′ is called the Jacquet–Langlands
transfer of π and will be denoted by JL(π). For any place v we have

(4.4) γGJ
v (s, πv, ψv) = γGJ

v (s, JL(π)v, ψv).

Note that it is not true in general that c(πv) = c(JL(π)v). This is related to
the fact that JL(π)v does not depend only on πv. (It is true however that πv
is determined by JL(π)v.) For instance, if π is the identity representation of
G, then JL(π) is the identity representation of G, so that c(JL(π)v) = 0 for all
finite v. On the other hand, if G does not split at v, then c(πv) > 0. However,
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as was pointed out after (CC’), this is immaterial for our purposes, since (4.4)
implies that in any case

(4.5) |c(πv)− c(JL(π)v)| ≤ n.

Now let G = G1 ×G2 where Gi is an inner form of G′
i = GL(ni), i = 1, 2.

Let π ∈ Πdisc(G1), σ ∈ Πdisc(G2) and let JL(π) and JL(σ) be their Jacquet–
Langlands transfers to G′

1 and G′
2, respectively. We have

(4.6)

LS(π)∪S(σ)(π × σ,Stn1
× Stn2

) = LS(π′)∪S(σ′)(JL(π)× JL(σ), Stn1
× Stn2

).

Since we do not have at our disposal an independent theory of Rankin–
Selberg convolutions for G1 ×G2, we will resort to the one on G′

1 ×G′
2. That

is, we simply define

γJPSS,Sh ◦ JL
v (s, π × σ,Stn1 × Stn2) = γJPSS,Sh

v (s, JL(π)v × JL(σ)v,Stn1 × Stn2).

(In fact, these γ-factors depend only on πv and σv, but we do not need to
use this fact.) These factors satisfy properties (FE’) and (ΓF) by (4.6) and
the fact that γJPSS,Sh

v satisfy (FE’) and (ΓF) for G′
1 × G′

2. Property (AF) for
γJPSS,Sh ◦ JL
v follows from the corresponding result for γJPSS,Sh

v and the fact that
(under a suitable identification) JL(π)v has the same infinitesimal character as
πv [8]. Combining (4.3), (4.5) and Lemma 4.2 (for both πv and σv), we conclude
property (CC’) for the factors γJPSS,Sh ◦ JL

v . Thus, we can apply Corollary 2.11
to conclude the proof of Theorem 4.1.

5. Classical groups

We now consider the case of quasi-split classical groups, i.e. the second part
of Theorem 3.11.

By a classical group we mean either a symplectic group (which is automat-
ically split), a special orthogonal group, or a unitary group. In the latter case
we denote by E the quadratic extension of F pertaining to the hermitian form
defining the unitary group (i.e., the quadratic extension over which the group
splits). In all other cases let E = F . The L-group of a classical group is
equipped with a natural embedding

CanG : LG→ LResE/F GL(m),

where, if r is the F̄ -rank of G, then

m =


2r + 1, in the symplectic case,

2r, in the orthogonal case,

r, in the unitary case.

Here, in the unitary case we have

LResE/F GL(m) ≃ (GL(m,CC)×GL(m,CC))⋊WF ,
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where WF acts on GL(m,CC) × GL(m,CC) via Gal(E/F ) by permuting the
factors.

Let pn : L ResE/F GL(n) → GL([E : F ]n,CC) be the representation given

by the projection LGL(n) → GL(n,CC) if E = F , and, in the case E ̸= F , by
pn((x, y), e) = diag(x, y), x, y ∈ GL(n,CC), and

pn(In, In, σ) =

{
I2n, if the image of σ in Gal(E/F ) is the identity,(

In
In

)
, otherwise,

using the description of LResE/F GL(n) above. We also consider the represen-
tation

Tm,n : L(ResE/F GL(m)× ResE/F GL(n)) → GL([E : F ]mn,CC)
obtained by the composition of pnm with the “tensor product” homomorphism

L(ResE/F GL(m)× ResE/F GL(n)) → L ResE/F GL(mn).

In the case E = F , Tm,n = Stm ×Stn.

Theorem 5.1. The following pairs (G, r) satisfy properties (FE+) and (CC):

(1) (E = F ), G = GL(n) × GL(1), r = ∧2 ⊗ St1, where ∧2 is the exterior
square representation.

(2) (E = F ), G = GL(n) × GL(1), r = Sym2 ⊗ St1, where Sym2 is the
symmetric square representation.

(3) (E ̸= F ), G = ResE/F GL(n), and r = As± is either the Asai or the
twisted Asai representation (cf. [31]).

(4) G = G′ × ResE/F GL(n), where G′ is a quasi-split classical group and
r = Tm,n ◦ (CanG′ ⊗ idn).

This theorem implies Theorem 3.11 for quasi-split classical groups by the
explicit description of the representations appearing in the definition of prop-
erty (L) (e.g., [104, Appendix C]). Actually, for Theorem 3.11, in the first two
parts of Theorem 5.1 it is enough to consider the exterior square and the sym-
metric square representations themselves (without the twist), but we include
the slightly more general statement since it does not incur additional difficulty
and the twisted representations are relevant for the GSpin groups (cf. [5]).
(For the Asai L-function there is no need to consider As± × St1, since we can
incorporate the twist into the representation.)

5.1. In this subsection we consider the first three cases of Theorem 5.1. By
Lemma 2.12 and Theorem 4.1 it is enough to consider the cuspidal case. Let
π ∈ Πcusp(GL(n,AE)). By Remark 3.7, the partial L-function has finitely
many poles and of order one, and local factors γShv (s, π × χ, r) are defined and
satisfy (FE’), (ΓF) and (CL).

There are several methods to study the poles of L-functions. The results of
[50, 51] address the analytic properties of the completed L-functions. They are
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rather delicate and rely on Arthur’s endoscopic classification (extended by Mok
to unitary groups). For our purposes we only care about the partial L-functions
and this can be analyzed using the Rankin–Selberg method in a rather crude
form. We summarize it in the following.

Lemma 5.2. Let π ∈ Πcusp(GL(n,AE)) and χ a Hecke character of E. Then
the following functions are entire and of finite order. (In the first three cases
E = F .)

(1) s(1− s)LS(s, π × χ,Sym2 × St1).
(2) s(1− s)LS(s, π × χ,∧2 × St1), (n even).
(3) LS(s, π × χ,∧2 × St1) (n odd).
(4) s(1− s)LS(s, π × χ,As± × St1).

Proof. The most difficult case is the twisted symmetric square, since it involves
Eisenstein series on a double cover of GL(n) (introduced in [71]). This case
was worked out recently by Takeda [106, 107] who extended earlier work by
Bump–Ginzburg [17].2 The other cases are easier since they involve the well-
understood mirabolic Eisenstein series on GL(n). The argument is completely
standard. For completeness we include it for the Asai L-function of a repre-
sentation π ∈ Πcusp(GL(n,AE)). (The twisted Asai L-function is obtained by
twisting π.)

For any Schwartz-Bruhat function Φ ∈ S(An) let EΦ be the normalized
Eisenstein series on GL(n, F )\GL(n,A) given by

EΦ(g, s) =
∫
R>0

∑
ξ∈Fn\{0}

Φ(ξtg) |det tg|s d∗t.

Here we embed R ↪→ F ⊗ R ↪→ A by x 7→ 1 ⊗ x. As for the Riemann zeta
function, using the Poisson summation formula we have

EΦ(g, s) =
∫ ∞

1

∑
ξ∈Fn\{0}

Φ(ξtg) |det tg|s d∗t− Φ(0)

s
+

∫ ∞

1

∑
ξ∈Fn\{0}

Φ̂(ξtι(g)) |det tg|1−s
d∗t+

Φ̂(0)

s− 1

where ι(g) = tg−1. In particular, the function s(s− 1)EΦ(g, s) is entire.
The Rankin–Selberg integral

(5.1)

∫
GL(n,F )\GL(n,AF )

φ(g)EΦ(g, s) dg

for a cuspidal automorphic form φ on GL(n,E)\GL(n,AE) is a twisted version
of the usual integral for GL(n)×GL(n). It was considered in [36]. Let Nn be

2For our purposes we could have avoided this case by using Remark 2.7.
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the group of upper unitriangular matrices in GL(n). Fix a non-degenerate
character ψN of Nn(AE) which is trivial on Nn(A). Let

W (g) =

∫
Nn(E)\Nn(AE)

φ(ng)ψN (n) dn

be the Fourier coefficient of φ. Assume that φ corresponds to a factorizable
vector in π = ⊗πv (as an abstract representation). Then we can write W (g) =∏

vWv(gv) where Wv is in the Whittaker model of πv (with respect to ψNv ),
and Wv(e) = 1 for all v /∈ S. For Φ = ⊗Φv and Re s large, (5.1) unfolds to

LS(s, π,As+)
∏
v∈S

Iv(s,Wv,Φv)

where

Iv(s,Wv,Φv) =

∫
Nn(Fv)\GL(n,Fv)

Wv(g)Φv(eng) |det g|s dg,

en is the row vector (0, . . . , 0, 1) ∈ Fn. Since s(1 − s)EΦ(g, s) is entire, it
remains to show that for any s ∈ CC we can choose data Wv, Φv such that
Iv(s,Wv,Φv) ̸= 0. We can write

(5.2) Iv(s,Wv,Φv) =

∫
Fn

v

Jv(Wv, ξ, s)Φv(ξ) dξ,

where

Jv(Wv, eng, s) =

∫
Nn(Fv)\Pn(Fv)

Wv(pg) |det pg|s−1
dp

= |det g|s−1
∫
Kn−1,v

∫
Tn−1(Fv)

Wv(tkg) |det t|s−1
δBn−1(t)

−1 dt.

Here Pn is the stabilizer of en, Tn−1 is the group of diagonal matrices with
1 in the right bottom corner, Bn−1 is the group of upper triangular matrices
of GL(n− 1) embedded in GL(n) via b 7→ ( b 0

0 1 ) and Kn−1,v is the standard
maximal compact subgroup of GL(n − 1, Fv). Using the asymptotics of the
Whittaker function (see [26, 83] for the p-adic case, [112, Chapter 15] for the
archimedean case), the function Jv(Wv, ξ, s) admits a meromorphic continua-
tion in s. More precisely, in the non-archimedean case there exists a polynomial
Pv(x) such that for any fixed Wv, Pv(q

−s
v )Jv(Wv, ξ, s) is a polynomial in q−s

v

which is locally constant in ξ ∈ Fn
v \ {0}. In the archimedean case, for any

real number A there exists a polynomial Pv(s) such that Pv(s)Jv(Wv, ξ, s) is
continuous in (ξ, s) ∈ Fn

v \{0}×{Re s > A} and holomorphic in s for Re s > A.
Hence, Pv(s)Jv(Wv, ξ, s), ξ ∈ Fn

v \ {0} is a normal family of analytic functions
on Re s > A. Taking Φv ∈ S(Fn

v \ {0}) we infer that in both the archimedean
and non-archimedean cases (5.2) holds for all s. Assume on the contrary that
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for some fixed s ∈ CC, Iv(s,Wv,Φv) = 0 for all Φv ∈ S(Fn
v \ {0}) and Wv.

Varying Φv we infer that Jv(Wv, ξ, s) = 0 for all ξ. In particular,∫
Nn(Fv)\Pn(Fv)

Wv(p) |det p|s−1
dp = 0

for all Wv. Since we can take Wv such that its restriction to Pv(Ev) is an arbi-
trary smooth left (Nv(Ev), ψv)-invariant function which is compactly supported
modulo Nv(Ev) [43, 58, 72] we get a contradiction.

For the twisted exterior square case one can argue in a similar way using
the Jacquet–Shalika integral representation [69]. (In the even case, the pole
will come from the Eisenstein series as above. In the odd case there is no
Eisenstein series and the zeta integral is entire.) The integral Jv in this case
involves an extra unipotent integration, but its meromorphic continuation (with
the extra uniformity property mentioned above) follows from the argument
of [69]. (See [10] for more details.) Alternatively, one can use the Bump-
Friedberg integral [15] (which does not involve an extra unipotent integration,
and hence the argument above applies with little change) to infer that s2(1−
s2)L

S(s1, π, Stn)L
S(s2, π×χ,∧2×St1) (and hence also s(1−s)LS(s, π×χ,∧2×

St1)) is entire. Strictly speaking, only the case χ = 1 is considered, in [15] but
it is a simple matter to incorporate a non-trivial χ into the integral (and the
unramified calculation is essentially the same).

We also remark that in the case where n is odd, it easily follows from the
theory of Eisenstein series that LS(s, π ⊗ χ,∧2 ⊗ St1) is holomorphic (see [73]
for a more precise result). □

We turn to property (CC’). By standard properties of the Shahidi local
factors we have

ϵShv (s, πv×χv,Sym
2 × St1)ϵ

Sh
v (s, πv×χv,∧2×St1) = ϵJPSS,Sh

v (s, πv×(πv⊗χv)).

In particular,

eShv (πv × χv, Sym
2 × St1) + eShv (πv × χv,∧2 × St1) = eJPSS,Sh

v (πv × πv ⊗ χv),

and by (4.3) we conclude that

eShv (πv × χv,Sym
2 × St1) + eShv (πv × χv,∧2 × St1) ≤

n(c(πv) + c(πv ⊗ χv)) ≤ 2nc(πv) + n2c(χv).

Both eShv (πv × χv,Sym
2 × St1) and eSh(πv × χv,∧2 × St1) are non-negative by

[53] (which relies on the validity of the local Langlands conjecture for GL(n)).
Therefore, we infer (CC’) for Sym2 × St1 and ∧2 × St1 from the corresponding
relation for Stn.

Similarly, if v is a place of F which is inert in E and w is the place of E
above v then we may view πv as a representation πw of GL(n,Ew) and we have

eShv (πv,As
+) + eShv (πv,As−) = eJPSS,Sh

w (πw × πτ
w, Tn,n)
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where τ is the Galois involution of Ew/Fv. Thus, by [53]

eShv (πv,As
±) ≤ eJPSS,Sh

w (πw × πτ
w, Tn,n),

and therefore

eShv (πv,As
±) ≤ n(c(πw) + c(πτ

w)) = 2nc(πw).

In the split case, if w1, w2 are the places of E above v (with Ew1
, Ew2

≃ Fv)
and πv = πw1 ⊗ πw2 then

ϵShv (πv,As
±) = ϵShv (πw1 × πw2 ,Stn × Stn) ≤ n(c(πw1) + c(πw2)).

In both cases the relation (CC’) for As± follows from the case of Stn.

5.2. Next we consider the case where G = G′ ×ResE/F GL(1) and r = Tm,1 ◦
(CanG′ ⊗ id1), where G′ is a classical group and m, Tm,1 and CanG′ are as
in the beginning of the section. The L-functions in this case were studied by
Piatetski-Shapiro and Rallis using the doubling method [40, 94, 95], see also
[85] for some complements.3 The analysis of poles was carried out in [40, 78]
and completed by Yamana in [114]. In particular, r has property (FE+). Let
γPSR
v (s, π×χ, r) be the local factors conceived by Piatetski-Shapiro–Rallis and

explicated in [85]. They satisfy properties (FE’), (ΓF), and (CL).
We now turn our attention to condition (CC’). It is tempting to try to prove

it using the definition of γPSR
v (s, π×χ, r), analogously to Lemma 4.2. However,

at this stage we are unfortunately unable to carry this idea through. Instead,
we will resort to a different approach using Arthur’s work (adapted by Mok to
the case of unitary groups) on functoriality for classical groups.

First, we recall the following stability result.

Proposition 5.3 ([14, 97]). Let v be a non-archimedean place and π1, π2
irreducible representations of G(Fv). In the unitary case assume that π1 and
π2 have the same central character. Then there exists a constant N = N(π1, π2)
such that

γPSR
v (s, π1 × χ, r) = γPSR

v (s, π2 × χ, r)

for any character χ of E∗
v such that c(χ) > N .

We caution that unfortunately there is a mistake in [14] (in both the state-
ment and the proof), but it is easy to fix the argument to obtain the correct
statement above. We omit the details.

The argument of [97] explicates N(π1, π2). Moreover, by taking π2 to be
a representation induced from a minimal Levi subgroup of G, in which case
γPSR
v (s, π2 × χ, r) is computed explicitly in [85, Theorem 4], we conclude

3See [37, Section 7.2] for a small correction.
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Corollary 5.4. There exists a constant C > 0 such that for any non-archimed-
ean place v, any irreducible representation π of G(Fv) and any character χ of
E∗

v such that c(χ) > C level(π) we have

γPSR
v (s, π × χ, r) = γTatev (s, χ)m−1γTatev (s, χχ1).

Here χ1 is trivial in the symplectic and odd orthogonal cases, while in the even
orthogonal case χ1 is the Hilbert symbol with (−1)m/2D, where D is the dis-
criminant of the quadratic form defining G (we denote this quadratic character
by τD), and χ1(x) = ωπ(x/x

τ ) in the unitary case.

Now we turn to Arthur’s work on classical groups. In order to state the result
that we need, denote by Πaut(GL(n,A)) the set of irreducible representations of
GL(n,A) which are weakly contained in L2(GL(n, F )\GL(n,A)). These are the
representations which are parabolically induced from some σ ∈ Πdisc(M(A))
where M is a Levi subgroup of GL(n). As explained in [3, Section 1.3], by the
Jacquet–Shalika classification theorem [66, 67] and the Mœglin–Waldspurger
description of the discrete spectrum of GL(n) [89], for any finite set S of places
of F , any π ∈ Πaut(GL(n,A)) is determined by the collection tπv

, v /∈ S∪S(π).
Given π ∈ Πdisc(G

′(A)) and σ ∈ Πaut(GL(m,AE)), we say that σ is the transfer
of π if for any v /∈ S(π), σv is unramified and CanG′(tπv

) = tσv
. By the above,

this condition determines σ and its central character is given by

(5.3) ωσ =


1, in the symplectic or odd orthogonal case,

τD, in the even orthogonal case,

ωπ(x/x
τ ), in the unitary case.

We will need the following consequence of Arthur’s work (taking also [88]
into account).4

Theorem 5.5 ([3], [91]). Any π ∈ Πdisc(G
′(A)) admits a transfer Ar(π) ∈

Πaut(GL(m,AE)). Consequently, for any n ≥ 1 and any π′ ∈ Πcusp(GL(n,AE))
we have

(5.4) LS(σ)∪S(π′)(s, π × π′, r) = LS(σ)∪S(π′)(s,Ar(π)× π′, Tm,n).

Thanks to the work of Mœglin and others, a great deal is known about the
local representations πv in terms of Ar(π). For our purposes we will only need
to know the preservation of γ-factors, namely that

(5.5) γPSR(s, πv × χv, r) = γGJ(s,Ar(π)v × χv, Tm,1)

for all v and characters χv of E∗
v . If πv is unramified, this follows from the

multiplicativity properties of the γ-factors on both sides ([49, 85]). If c(χv) is
sufficiently large (with respect to πv and Ar(π)v), then (5.5) follows from the
stability properties of the γ-factors ([68] for the left-hand side and Corollary 5.4

4We thank Colette Mœglin for helpful discussions on Arthur’s local results in [3].
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for the right-hand side) together with the description of the central character
of Ar(π). The general case of (5.5) for finite v follows from the special cases
above by the argument of [52, Theorem 4.1], namely, by using (5.4) (for n = 1)
and comparing the functional equations

LS(s, π × χ, r) =
( ∏
v∈S

γPSR
v (s, πv × χv, r)

)
LS(1− s, π × χ, r∨)

and

LS(s,Ar(π)× χ, Tm,1)

=
( ∏
v∈S

γGJ
v (s,Ar(π)v × χv, Tm,1)

)
LS(1− s,Ar(π)× χ, T∨

m,1)

for suitable Hecke characters χ (with S = S(π)∪S(χ)). For archimedean v one
can argue in a similar way using Lemma 2.15 (with T being the multiplicative
group), replacing Corollary 5.4 by the fact that for any s ∈ CC we have

lim
|t|→∞

γGJ(s,Ar(π)v × |·|it , Tm,1)/γ
PSR(s, πv × |·|it , Tm,1) = 1.

Indeed, this follows from Stirling’s formula, the description of γGJ and γPSR in
the archimedean case and (5.3).

Finally, we prove property (CC’). By (5.5) it is enough to show that

(5.6) c(Ar(π)v) ≪ logq level(πv)

for every finite place v. We may assume that level(πv) > 0, i.e., that πv is
ramified, since otherwise Ar(π)v is also unramified. We use Corollary 5.4 with
any χv of conductor C level(πv) + 1. We obtain

ePSR(πv × χv) ≪ logq level(πv)

and hence by (5.5),

c(Ar(π)v ⊗ χv) ≪ logq level(πv).

Since c(Ar(π)v) ≤ c(Ar(π)v ⊗ χv) + mc(χv) we deduce that c(Ar(π)v) ≪
logq level(πv) as required.

We also note that by (4.2), and Remark 2.10 for v ∈ S∞ we have

(5.7) Λ(Ar(π)v) ≪ cStmv (Ar(π)v)
2 = cPSR

v (πv)
2 ≪ Λ(πv)

m.

5.3. Finally, consider G = G′ × GL(n) where G′ is a quasi-split classical
group and r = Tm,n ◦ (CanG′ ⊗ idn). We argue as in Section 4.3. Namely, for
π ∈ Πdisc(G

′(A)) and π′ ∈ Πdisc(GL(n,AE)) we take

γJPSS,Sh ◦Ar
v (s, π × π′, r) := γJPSS,Sh

v (s,Ar(π)v × π′
v, Tm,n).

By using (5.6) and (5.7), properties (ΓF), (AF) and (CC’) hold for γJPSS,Sh ◦Ar
v

since they hold for γJPSS,Sh
v .
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Remark 5.6. The same argument will give properties (FE+) and (CC) for
(G, r) = (G′ ×G′′, r = Tm,n ◦ (CanG′ ⊗ idn)), where G

′ is a quasi-split classical
group and G′′ is an inner form of ResE/F GL(n).

Remark 5.7. Once Arthur’s work is extended to general classical groups and
their inner forms, Theorem 3.11 will hold for them as well, with the same proof.
(The stability argument of [97] should carry over to inner forms without too
much trouble.) In fact, one can hope that the methods of Arthur carry over to
the GSpin groups (as well as their inner forms). By the previous remark, once
this is done, Theorem 3.11 and its proof will extend to this case as well.

Remark 5.8. One may contemplate whether Arthur’s work (which invokes the
full force of the stable twisted trace formula) is absolutely necessary for the
question at hand. A possible different approach would be to use the Rankin–
Selberg integrals that were studied in [46, 47]. In the case of generic represen-
tations, a great deal is known about these L-functions. In the general case, it
seems that more input is necessary to address their finer analytic properties.
We also mention the recent preprint [25], where a more uniform approach for
these L-functions is laid out. It seems likely that some further local analysis of
these integrals can shed light on the analytic issues at hand.

6. The exceptional group G2

Finally, the last of Theorem 3.11 follows from Theorem 4.1 (for n1 = 2,
n2 = 1) and the following

Theorem 6.1. The pair

(G = GL(2), r = Sym3 ⊗(∧2)−1 = Sym3 ⊗(det)−1),

where Sym3 is the (four-dimensional) symmetric cube representation of GL(2),
satisfies properties (FE+) and (CC):

Of course, it is enough to consider π ∈ Πcusp(GL(2,A)). Once again by
Remark 3.7 the local factors γShv (s, πv, r) are defined and satisfy (ΓF) and
(CL). The poles of LS(π)(s, π, r) (and in fact, of the completed L-function)
were analyzed by Kim-Shahidi in [75]. Alternatively, we can analyze the poles
using the symmetric cube lift to GL(4), also due to Kim–Shahidi [76]. Even
better, using Remark 3.10 and the fact that r = St∨2 ⊗ Sym2 − St2, we do not
need any information about the poles of LS(π)(s, π, r) (but we need to know
the existence of the symmetric square lift from GL(2) to GL(3) [38] to infer
that St2 ⊗ Sym2 satisfies (FE+)).

Finally, we prove (CC’). Combining [102, Proposition 2.2] and [103, Theo-
rem 3.5] (applied to the exceptional group G2), we have

γSh(s, π, r) = γJPSS,Sh(s, π × Sym2 π, St∨2 ×St3)/γ
GJ(s, π, St∨2 ),
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where Sym2 π is the symmetric square lift of π to GL(3). Thus,

eSh(π, r) ≤ c(π∨ × Sym2 π) ≤ 3c(π) + 2c(Sym2 π).

Also,
γGJ(s, Sym2 π) = γJPSS,Sh(s, π × π)/γTate(s, ωπ),

and therefore
c(Sym2) ≤ c(π × π) ≤ 4c(π).

We conclude that
eSh(π, r) ≤ 11c(π).

Remark 6.2. For higher rank exceptional groups, some of the L-functions on
the list of [81] can be studied by Rankin–Selberg integrals, at least under a
genericity assumption (e.g., [16, 44, 45, 48], to mention a few). One can also
take into account Remark 3.10 to study further cases. However, more work has
to be done in order to show that other exceptional groups satisfy properties
(L) and (TWN+). We will not pursue this matter here any further.
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[10] D. Belt, On the holomorphy of exterior-square L-functions, Arxiv:1108.2200 [math.NT].

[11] A. Borel, Automorphic L-functions, in: Automorphic Forms, Representations and L-
functions (Proc. Sympos. Pure Math., Oregon State Univ. Corvallis, Ore. 1977), Part 2,
pp. 27–61, Proc. Sympos. Pure Math. 33, Amer. Math. Soc. Providence, RI, 1979.

[12] A. Borel and H. Jacquet, Automorphic forms and automorphic representations, with
a supplement “On the notion of an automorphic representation” by R.P. Langlands,
in: Automorphic Forms, Representations and L-functions (Proc. Sympos. Pure Math.
Oregon State Univ. Corvallis, Ore. 1977), Part 1, pp. 189–207, Proc. Sympos. Pure

Math. 33, Amer. Math. Soc. Providence, RI, 1979.



273 Finis and Lapid
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