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DISTINGUISHED POSITIVE REGULAR REPRESENTATIONS

F. MURNAGHAN

This paper is dedicated to Freydoon Shahidi on the occasion of his 70th birthday.

Abstract. Let G be a tamely ramified reductive p-adic group. We study
distinction of a class of irreducible admissible representations of G by the
group of fixed points H of an involution of G. The representations corre-
spond to G-conjugacy classes of pairs (T, ϕ), where T is a tamely ramified

maximal torus of G and ϕ is a quasicharacter of T whose restriction to
the maximal pro-p-subgroup satisfies a regularity condition.

Under mild restrictions on the residual characteristic of F , we derive

necessary conditions for H-distinction of a representation corresponding
to (T, ϕ), expressed in terms of properties of T and ϕ relative to the
involution.

We prove that if an H-distinguished representation arises from a pair

(T, ϕ) such that T is stable under the involution and compact modulo
(T ∩ H)Z (here, Z is the centre of G), then the representation is H-
relatively supercuspidal.
Keywords: Distinguished representation, relatively supercuspidal.

MSC(2010): Primary: 22E50; Secondary: 20G05, 20G25.

1. Introduction

Let G = G(F ) be the F -rational points of a connected reductive F -group G
that splits over a tamely ramified extension of F , where F is a nonarchimedean
local field of characteristic zero and odd residual characteristic.

Suppose that θ is an involution of G (that is, θ is an F -automorphism of
G of order two) and H = Gθ is the group of θ-fixed points in G. A smooth
representation π of G is said to be H-distinguished if the space HomH(π, 1) of
H-invariant linear functionals on the space of π is nonzero. In this paper, we
study distinction of particular irreducible admissible (complex) representations
of G, which we refer to as positive regular representations.

We say that an irreducible admissible representation of G is tame if its
cuspidal support consists of supercuspidal representations arising via Yu’s con-
struction [18]. This paper is one of a series of papers devoted to the general
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study of distinction of tame representations, the first of which is joint work with
Hakim [4] on distinction of tame supercuspidal representations. Methods used
here to obtain information about symmetry of tori and quasicharacters from
which H-distinguished positive regular representations arise are also applied
(with minor adjustments to the more general context of tame representations)
in the study of distinction and tame types carried out in [13]. However, other
more technically elaborate arguments also play an essential role there.

Before proceeding with a description of the contents of the paper, we point
out that we assume throughout that the residual characteristic p of F is not
a bad prime for G, and also that p does not divide the order of the funda-
mental group of the derived group of G. Recently, Kaletha [6] has shown that
these conditions on p guarantee that the hypotheses assumed in [4] hold (see
Section 3).

We now discuss the positive regular representations. A torus of G is called
tame if it splits over a tamely ramified extension of F . Suppose that ϕ is a
quasicharacter of a tame maximal torus T of G and T0+ is the maximal pro-
p-subgroup of T . We say that the quasicharacter ϕ is G-regular on T0+ if ϕ
does not agree on T0+ with the restriction of any quasicharacter of a twisted
Levi subgroup of G that strictly contains T . (Here, a twisted Levi subgroup
of G is a subgroup of the form G′(F ), where G′ is a connected reductive F -
subgroup of G that becomes a Levi subgroup over a Galois extension of F .)
It is easily seen that G-regularity is preserved under G-conjugation of pairs of
the form (T, ϕ). Positive regular supercuspidal reprsentations are defined in
Section 5. It follows from Kaletha’s extensions of the results of [4] concerning
equivalence of tame supercuspidal representations that the equivalence classes
of positive regular supercuspidal representations of G are parametrized by the
G-conjugacy classes of pairs (T, ϕ) such that T is an elliptic tame maximal torus
and ϕ is G-regular on T0+ . (In [4] and [11], the positive regular supercuspidal
representations were referred to as toral supercuspidals.)

The positive regular supercuspidals lie inside a much larger set of tame
supercuspidals, the regular supercuspidal representations of [6]. As shown in
[6], the regular supercuspidal representations are parametrized by G-conjugacy
classes of pairs (T, ϕ) where T is a tame elliptic maximal torus of G and ϕ is
a quasicharacter of T satisfying a root-theoretic regularity condition involving
values of ϕ on all of T . (Our regularity condition is stronger than Kaletha’s,
and involves only the restriction of ϕ to the set of positive-depth elements
of T , hence the terminology.) The parametrization of the positive regular
supercuspidals referred to above is simply a special (and elementary) case of
Kaletha’s parametrization of regular supercuspidals.

Let T (G) be the set of pairs (T, ϕ) such that T is a tame maximal torus of G
and ϕ is a quasicharacter of T that is G-regular on T0+ . Given (T, ϕ) ∈ T (G),
the pair (T, ϕ) belongs to T (M), where M is the centralizer of the maximal
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F -split subtorus of T . Since T is elliptic in M , there is a unique equivalence
class of positive regular supercuspidal representations of M associated with the
M -conjugacy class of (T, ϕ). Parabolic induction gives rise to an irreducible
admissible representation of G. The positive regular representations are the
representations obtained through this process. Their equivalence classes are
parametrized by the G-conjugacy classes in T (G) (Proposition 6.3).

Now we summarize the contents of the rest of the paper.
General notation and selected definitions appear in Section 2.
Section 3 begins with brief comments about the conditions on p referred to

above and the hypotheses of [4]. Next, for ϕ a quasicharacter of a tame twisted
Levi subgroup G′ of G, we recall (from [11]) the notions of G-factorization of ϕ
and of G-regularity of ϕ on the topologically unipotent subset G′

0+ of G′. When
G′ is a tame maximal torus of G, a G-factorization is essentially the restriction
to the maximal pro-p-subgroup of a Howe factorization (as defined in [6, Sec-
tion 3.5]). Finally, after defining the notion of θ-symmetric G-factorization, we
show that if G′ is θ-stable and ϕ is trivial on G′ ∩H, then ϕ has a θ-symmetric
factorization on G′

0+ .
Fix (T, ϕ) ∈ T (G) and a point y in the (extended) Bruhat-Tits building

B(T ) of T . In Section 4, y and ϕ are used to define a compact open subgroup
K+ of G and a linear character ϑ(ϕ) of K+. In Proposition 4.4, we prove that
(for any choice of y) if ϑ(ϕ) is trivial on K+∩H, then, upon replacing (T, ϕ) by
a suitable K+-conjugate, T is θ-stable and ϕ has a θ-symmetric G-factorization
on T0+ . In addition, T contains G-regular θ-split elements. (Here, an element
g of G is θ-split if θ(g) = g−1.) This is the main result of the section and is
an essential tool (utilized in Section 7) in establishing necessary conditions for
distinction of a positive regular representation associated with (T, ϕ).

Given (T, ϕ) ∈ T (G), we denote a positive regular representation of G associ-
ated with the G-conjugacy class of (T, ϕ) by πG

(T,ϕ). In Proposition 7.1, we prove

that an H-distinguished positive regular representation is of the form πG
(T,ϕ),

where T is θ-stable, ϕ has a θ-symmetric G-factorization on T0+ and T contains
θ-split G-regular elements. However, if a pair (T, ϕ) has these properties, this
is not sufficient for distinction of πG

(T,ϕ). But, as shown in Proposition 7.4, it is

sufficient to guarantee distinction of πG
(T,χϕ) for some depth-zero quasicharac-

ter χ of T . It is important to note that there may not exist θ-split G-regular
elements in G. In this case, positive regular representations of G are never H-
distinguished. This was previously proved for positive regular supercuspidals
in [12].

The next definition is from [7] (see also [9]). Let Z be the centre of G.

Definition 1.1. An H-distinguished admissible representation π of G is said
to be H-relatively supercuspidal if for every λ ∈ HomH(π, 1) and every vector v
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in the space of π, the function g 7→ λ(π(g−1)v) is compactly suported modulo
HZ.

Kato and Takano in [7, Theorem 7.1] proved a p-adic symmetric space ana-
logue of Jacquet’s subrepresentation theorem which elucidates the importance
of the problem of classifying relatively supercuspidal representations. A para-
bolic subgroup P of G is said to be θ-split if P ∩ θ(P ) is a Levi factor of P .
The symmetric space subrepresentation theorem says that if π is an irreducible
admissible H-distinguished representation of G, then there exists a θ-split par-
abolic subgroup P of G and an irreducible admissible (P ∩H)-relatively super-
cuspidal representation ρ of P ∩H such that π occurs as a subrepresentation
of IndGP ρ.

As indicated above, positive regular representations arise via parabolic in-
duction from positive regular supercuspidals. What’s more, the filtrations of
their Jacquet modules arising from the Geometric Lemma ([2, Theorem 5.2])
involve positive regular representations of Levi subgroups. Consequently, if a
parabolic subgroup P of G has a θ-stable Levi factor M , then we may apply
Proposition 7.1 to establish necessary conditions for distinction of the Jacquet
module rP (π) of a positive regular representation π. Combining this with the
characterization of H-relatively supercuspidal representations given in [7, The-
orem 6.9], we deduce (Proposition 8.3) that if T is θ-stable and compact modulo
(T ∩H)Z (that is, T is θ-elliptic) and πG

(T,ϕ) is H-distinguished, then πG
(T,ϕ) is

H-relatively supercuspidal. Here is the main result of the paper (Theorem 8.5):

Theorem 1.2. Let (T, ϕ) ∈ T (G) and let M be the centralizer of the maxi-
mal F -split subtorus of T . Assume that T is θ-elliptic and ϕ |T0+ ∩ H = 1.
Then there exists a depth-zero quasicharacter χ of T such that πM

(T,χϕ) is Mθ-

distinguished. Furthermore,

(1) HomMθ (πM
(T,χϕ), 1) is isomorphic to a subspace of HomH(πG

(T,χϕ), 1),

(2) πG
(T,χϕ) is H-relatively supercuspidal.

Further constructions ofH-relatively supercuspidal tame representations are
carried out in [14]. The arguments there are more complicated than the ele-
mentary arguments involving one dimensional types and the Geometric Lemma
that we have employed in this paper.

2. Notation and definitions

Let F be a nonarchimedean local field of characteristic zero and odd residual
characteristic. If G is an F -group, then G denotes the group of F -rational
points G(F ) of G. A connected reductive F -group G (or its F -rational points
G) is tame if G splits over a tamely ramified extension of F .

For the remainder of the paper, we assume that G is a tame connected
reductive F -group. We denote the centre of G by Z and the maximal F -split
subtorus of Z by AG.
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If G′ is a subgroup of G and g ∈ G, then gG′ = gG′g−1. Let CG(g) and
CG(G

′) denote the centralizers in G of g and G′, respectively, and NG(G
′)

the normalizer of G′ in G. If ρ is a representation of G, then the function
x 7→ gρ(x) := ρ(g−1xg) on gG′ defines a representation of gG′.

A subgroup T of G is called a torus of G if T = T (F ) for some F -torus T
of G. The same notational convention is applied to parabolic subgroups, their
Levi factors, their unipotent radicals, and to twisted Levi subgroups. Recall
from the introduction that a twisted Levi subgroup ofG is a connected reductive
subgroup of G that becomes a Levi subgroup of G over a finite extension of

F . A (tame)twisted Levi sequence of G is a sequence G⃗ = (G0, . . . , Gd) where
G0 ⊂ · · · ⊂ Gd = G and each Gi (0 ≤ i ≤ d − 1) is a (tame) twisted Levi
subgroup of G.

Given a Levi subgroup M of G, the set of parabolic subgroups having M as
a Levi factor is denoted by P(M). If π is a smooth representation of G and P
is a parabolic subgroup of G, the Jacquet module of π along P will be denoted
by rP (π).

Let B(G) be the extended Bruhat-Tits building of G (cf. [3, Definition
7.4.2]). As in [10], we can associate to any point x in B(G) a parahoric subgroup
Gx,0 of G and a filtration {Gx,r |r ∈ R, r ≥ 0 } of the parahoric. (The indexing
of the filtration depends on a choice of affine roots, hence on a normalization
of valuation on F , which for our purposes may be ignored.) For r ∈ R such
that r ≥ 0, let Gx,r+ = ∪s>rGx,s and Gr+ = ∪x∈B(G) Gx,r+ .

If G′ is a tame twisted Levi subgroup of G, then there exists a collection
of embeddings B(G′) ↪→ B(G) having a canonical image, see [17, 2.6.1]. All
embeddings of buildings mentioned in the paper are assumed to be of this form.
Given such an embedding and a point x in B(G′), we typically identify x with
its image in B(G). In that case, G′

x,r = Gx,r ∩G′, for r > 0.
Throughout the paper, we fix an involution θ of G. That is, θ is an F -

automorphism of G of order two. If G′ is a (not necessarily θ-stable) subgroup
of G, let G′θ be the group of θ-fixed elements of G′. Set H = Gθ Given g ∈ G,
we define an involution g · θ of g by (g · θ)(x) = gθ(g−1xg)g−1, x ∈ G. Note
that gH = Gg·θ. The space G/H is often referred to as a p-adic symmetric
space.

An element g of G is said to be θ-split if θ(g) = g−1. A torus T of G is
said to be θ-split if every element of T is θ-split. If T is a θ-stable torus in G,
let T− be the maximal θ-split subtorus of T . When T is a θ-stable maximal
torus of G, then AT is θ-stable and we say that T is θ-elliptic if A−

T = A−
G.

This is equivalent to compactness of T/T θZ (and of T−/A−
G). Recall that a

maximal torus T of G is elliptic if T/AG is compact. The θ-elliptic maximal
tori are the symmetric space analogues of the elliptic maximal tori. Note that
a maximal torus of G may have several θ-stable conjugates in G, some of which
are θ-elliptic and others are not.
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Remark 2.1. Suppose that G′ is a connnected reductive p-adic group, G =
G′ × G′ and θ is the involution of G given by θ(g1, g2) = (g2, g1), for g1,
g2 ∈ G′. The θ-elliptic maximal tori of G are the θ-stable elliptic maximal tori
of G.

A parabolic subgroup P of G is said to be θ-split if P ∩ θ(P ) is a Levi factor
of P . In this case, P and θ(P ) are opposite parabolic subgroups relative to the
Levi subgroup P ∩ θ(P ).

Remark 2.2. If P is a proper θ-split parabolic subgroup of G andM = P∩θ(P ),
then M = CG(A

−
M ). In particular, A−

M strictly contains A−
G. This means that

M does not contain any θ-elliptic maximal torus of G. (This is analogous to
the fact that a proper Levi subgroup of G does not contain any elliptic maximal
torus of G.)

3. Quasicharacters and factorizations

As mentioned in the introduction, in addition to the assumption that the
residual characteristic p of F is odd, throughout the paper the following re-
strictions are imposed on p:

(C1) p is not a bad prime for G.
(C2) p does not divide the order of the fundamental group of the derived

group of G.

Remark 3.1. Depending on the types of the components of G, condition (C1)
may exclude p = 3 and p = 5, see [16, I,4.3].

We refer to a smooth one-dimensional representation ofG as a quasicharacter
of G. Many of the results of [4] (also [11] and [12]) are proved subject to
hypotheses on quasicharacters of G and of the groups occurring in tame twisted

Levi sequences G⃗ of G. These hypotheses (the statements of which can be found

in [4, Section 2.6]) are labelled C(G) and C(G⃗).

Lemma 3.2 ([6, Lemma 3.3.3]). If p satisfies (C2), then Hypotheses C(G)

holds and Hypothesis C(G⃗) holds for any tame twisted Levi sequence G⃗ of G.

In [18, Section 9], Yu defined the notion of G-generic quasicharacter of a
tame twisted Levi subgroup. The definition involves the choice of a point in the
Bruhat-Tits building of the twisted Levi subgroup. One useful consequence of
Lemma 3.2 is that the G-genericity property is independent of the point (under
the above restrictions on p), see [11, Lemma 4.7(2)].

Remark 3.3. Taking into account of Lemma 3.2, and the fact that we assume
p is odd (this is used in many arguments involving involutions), when we apply
arguments and results of [4] and [11], we need not mention hypotheses. More-
over, we may freely apply those results and definitions from [6] that require p
to satisfy (C1) and (C2).
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The depth of a quasicharacter ϕ of G is the smallest nonnegative real number
r such that ϕ |Gr+ = 1. (According to [4, Lemma 2.45], this is equivalent to
the definition of depth of ϕ due to Moy and Prasad [10].)

Definition 3.4. Let ϕ be a quasicharacter of a tame twisted Levi subgroup G′

of G. A G-factorization of ϕ (on G′
0+) is of a pair (G⃗, ϕ⃗) consisting of a tame

twisted Levi sequence G⃗ = (G0, . . . , Gd) of G and a sequence ϕ⃗ = (ϕ0, . . . , ϕd),
where, for 0 ≤ i ≤ d, ϕi is a quasicharacter of Gi, satisfying:

(1) G′ ⊂ G0.

(2) ϕ =
∏d

i=0 ϕi |G′ (ϕ |G′
0+ =

∏d
i=0 ϕi |G′

0+).
(3) 0 < r0 < · · · < rd−1, where ri is the depth of ϕi for 0 ≤ i < d.
(4) For 0 ≤ i < d, ϕi is G

i+1-generic.
(5) If d ≥ 1 and ϕd is nontrivial, then the depth rd of ϕd satisfies rd > rd−1.

In two G-factorizations of a quasicharacter of a tame twisted Levi subgroup,
the twisted Levi sequences are the same. Moreover, if d is the number of groups
in the twisted Levi sequence, then, for 0 ≤ i ≤ d, the two quasicharacters of
the ith group of the twisted Levi sequence have equal depth. Further relations
between the quasicharacters occurring the two G-factorizations are described
in [11, Proposition 5.4].

In the case where ϕ is a quasicharacter of a tame maximal torus T of G,
Kaletha ([6, Definition 3.5.1]) defines the notion of Howe factorization of (T, ϕ).
(If G = GLn(F ), this definition agrees with the usual definition of Howe fac-
torization.) A Howe factorization of (T, ϕ) involves a twisted Levi sequence

G⃗ = (G0, . . . , Gd) and a sequence of quasicharacters ϕ0, . . . , ϕd of G0, . . . , Gd,
respectively. There is also a depth-zero quasicharacter ϕ−1 of T , such that ϕ−1

is trivial on T0+ and ϕ =
∏d

i=−1 ϕi |T . For 0 ≤ i < d, the quasicharacters ϕi

satisfy the same genericity requirement as in Definition 3.4. Thus, dropping the
depth-zero quasicharacter from the Howe factorization of (T, ϕ) produces a G-
factorization of ϕ. (We remark that, each of the quasicharacters ϕi, 0 ≤ i ≤ d,
in a Howe factorization have the additional property of restricting trivially to
the simply connected cover of the derived group of Gi.)

Kaletha shows ([6, Proposition 3.5.4]) that Howe factorizations exist (even
when p does not satisfy condition (C2)). Returning to the more general setting
where G′ is not necessarily a maximal torus of G, we produce a G-factorization
of ϕ by choosing a tame maximal torus T ⊂ G′ and then dropping the depth-
zero quasicharacter from a Howe factorization of (T, ϕ). As a consequence,
wherever results of [11] which assume existence of factorizations of quasichar-
acters are applied, it is now sufficient to assume that p satisfies (C1) (though
usually (C2) is also required to guarantee that other hypotheses hold).

Definition 3.5. A quasicharacter ϕ of a twisted Levi subgroup G′ of G is
G-regular on G′

0+ if for any quasicharacter of a twisted Levi subgroup of G
strictly containing G′, (χ |G′)ϕ has positive depth.
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This regularity condition may also be stated in root-theoretic terms: if R is
a root system of T in G, then the subsystem R0+ defined in [6, Section 3.5]
must equal R.

The following lemma is immediate from Definition 3.5 and the fact that if
G′ is a twisted Levi subgroup of a twisted Levi subgroup G′′ of G, then G′ is
a twisted Levi subgroup of G.

Lemma 3.6. If G′ and G′′ are twisted Levi subgroups of G such that G′ ⊂ G′′,
and ϕ is a quasicharacter of G′ that is G-regular on G′

0+ , then ϕ is G′′-regular
on G′

0+ .

Recall that, as remarked above, the twisted Levi sequences occurring in two
different factorizations of a quasicharacter are the same.

Lemma 3.7 ([11, Corollary 6.5, Lemma 5.6]). Let ϕ be a quasicharacter of a
tame twisted Levi subgroup G′ of G. Let G0 be the smallest Levi subgroup in
the Levi sequence occurring in a G-factorization of ϕ. Then

(1) ϕ is G-regular on G′
0+ if and only G′ = G0.

(2) If g ∈ NG(G
′) is such that ϕ |G′

0+ = gϕ |G′
0+ , then g ∈ G0.

Recall that we have fixed an involution θ of G.

Definition 3.8. Let ϕ be a quasicharacter of a (tame) twisted Levi subgroup
G′ of G.

(1) If θ(G′) = G′, then we say that ϕ is θ-symmetric (on G′
0+) if ϕ◦θ = ϕ−1

( ϕ ◦ θ |G′
0+ = ϕ−1 |G′

0+).

(2) We say that a G-factorization (G⃗, ϕ⃗) = ((G0, . . . , Gd), (ϕ0, . . . , ϕd)) of
ϕ is θ-symmetric (on G′

0+) if θ(Gi) = Gi and ϕi is θ-symmetric (on

Gi
0+) for 0 ≤ i ≤ d.

Lemma 3.9. Let G′ be a θ-stable tame twisted Levi subgroup of G and ϕ a
quasicharacter of G′ that is G-regular on G′

0+ . If ϕ is θ-symmetric (on G′
0+),

then ϕ has a θ-symmetric factorization (on G′
0+). Moreover, the set of θ-split

elements g in the centre of G′ satisfying CG(g) = G′ is nonempty.

Proof. Let

(G⃗ = (G0, . . . , Gd), ϕ⃗ = (ϕ0, . . . , ϕd))

be a G-factorization of ϕ. Then

(θ(G⃗), θ(ϕ⃗−1)) := ((θ(G0), . . . , θ(Gd)), (ϕ−1
0 ◦ θ, . . . , ϕ−1

d ◦ θ))
is aG-factorization of ϕ−1◦θ. If ϕ is θ-symmetric, then these areG-factorizations
of the same quasicharacter of G′. By [12, Proposition 5.4], for 1 ≤ i ≤ d − 1,
θ(Gi) = Gi and the depth ri of ϕi is equal to the depth of ϕ−1

i ◦ θ, for
1 ≤ i ≤ d− 1. ∏

j=i

ϕj |Gi
r+i−1

=
∏
j=i

ϕ−1
j ◦ θ |Gi

r+i−1

, 1 ≤ i ≤ d.
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That is, the quasicharacter
∏

j=i ϕj |Gi is θ-symmetric on Gi
r+i−1

.

We use the above information to produce a θ-symmetric factorization of ϕ,
as follows. Because ϕd is θ-symmetric on Gr+d−1

, there exists a θ-symmetric qua-

sicharacter ϕ̇d of G such that ϕ̇d |Gr+d−1
= ϕd |Gr+d−1

. (Existence of θ-symmetric

extensions is straightforward – see [4, Remark 5.16]). Set ϕ′
d−1 = ϕd−1ϕ̇

−1
d ϕd.

Next, observe that ϕ′
d−1 is θ-symmetric on Gd−1

r+d−2

. Fix a θ-symmetric qua-

sicharacter ϕ̇d−1 of Gd−1 such that ϕ̇d−1 extends ϕ′
d−1 |G

d−1

r+d−2

. Continuing in

this manner, we obtain θ-symmetric quasicharacters ϕ̇i of G
i, 1 ≤ i ≤ d, such

that

ϕ̇i |Gi
r+i−1

= ϕi

d∏
j=i+1

ϕj ϕ̇
−1
j , 1 ≤ i ≤ d.

Finally, let

ϕ̇0 = ϕ0

d∏
j=1

ϕj ϕ̇
−1
j .

Note that G′ = G0, by the G-regularity of ϕ on G′
0+ . Thus ϕ̇0 = ϕ

∏d
j=1 ϕ̇

−1
d , so

θ-symmetry of ϕ̇0 follows from that of ϕ and ϕ̇i, 1 ≤ i ≤ d. Set
⃗̇
ϕ = (ϕ̇0, . . . , ϕ̇d).

Then as shown in the discussion following [11, Definition 5.3], (G⃗,
⃗̇
ϕ) is a G-

factorization of ϕ.
If ϕ is θ-symmetric on G′

0+ , then there exists a depth-zero quasicharacter
η of G′ such that ϕη is θ-symmetric, so ϕη has a G-factorization that is θ-
symmetric. Upon multiplying the first quasicharacter in the corresponding
sequence by η−1, we obtain a G-factorization of ϕ that is θ-symmetric on G′

0+ .
To obtain the second conclusion of the lemma, we may argue as in [12,

Lemmas 5.3, 6.5, 6.6, Proposition 6.7]. The results of [12] are proved in the
supercuspidal setting and involve θ-symmetric cuspidal G-data. However, the
proofs depend only on θ-symmetry of the quasicharacters in the datum on the
topologically unipotent sets of the twisted Levi subgroups. Thus, in order to see
that the arguments of [12] give the desired result, existence of a G-factorization
of ϕ that is θ-symmetric on G′

0+ is sufficient. □

4. Preliminary results

In our study of distinguished representations we will work with linear char-
acters of compact open subgroups of G that are associated to factorizations of
quasicharacters of tori. We summarize some of their properties here.

Throughout this section, we fix a tame maximal torus T of G and a qua-
sicharacter ϕ of T that is G-regular on T0+ .

Choose a G-factorization (G⃗ = (T = G0, . . . , Gd), ϕ⃗ = (ϕ0, . . . , ϕd)) of ϕ.
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Fix a sequence of embeddings

B(T ) = B(G0) ↪→ B(G1) ↪→ · · · ↪→ B(Gd) = B(G).

For 0 ≤ i ≤ d− 1, let si = ri/2, where ri is the depth of ϕi. Fix y ∈ B(T ). For
1 ≤ i ≤ d, we define compact open subgroups Ki

+ of Gi as in [18, Section 3]:

Ki
+ = T0+G

1
y,s+0

G2
y,s+1

· · ·Gi
y,s+i−1

.

(Here we are abusing notation and identifing y with its image in B(Gi) for

1 ≤ i ≤ d.) Because the twisted Levi sequence G⃗ and the depths ri are
independent of the choice of G-factorization, the group Ki

+ depends on y, on
ϕ |T0+ and on the chosen sequence of embeddings of buildings, but not on the
choice of factorization.

For 0 ≤ i ≤ d, let ϕ̂i be the character of K+ defined as in [18, Section 4]. In

particular, ϕ̂i |Ki
+ = ϕi |Ki

+. Set ϑ(ϕ⃗) =
∏d

i=0 ϕ̂i. Then ϑ(ϕ⃗) |T0+ = ϕ |T0+ .

Lemma 4.1. Let (G⃗, ϕ⃗′) be another G-factorization of ϕ. Then ϑ(ϕ⃗) = ϑ(ϕ⃗′).

Proof. The proof is inductive, using the relations between two different G-
factorizations of ϕ, as described in [11, Proposition 5.4]. The details are omit-
ted. □

From this point on, we use the notation ϑ(ϕ) instead of ϑ(ϕ⃗).
If P = MN ∈ P(M), let P = MN ∈ P(M) be the opposite parabolic

subgroup. We say that a compact open subgroup K of G decomposes with
respect to (N,M,N) if K = (K ∩N)(K ∩M)(K ∩N).

The next lemma is proved in [8, Lemma 6.3 and proof].

Lemma 4.2. Let the notation be as above. Fix P ∈ P(M). Then

(1) The group K+ decomposes with respect to (N,M,N).

(2) For 0 ≤ i ≤ d, ϕ̂i is trivial on K+ ∩N and K+ ∩N .

Lemma 4.3. Let K+ be as above. Suppose that θ(M) = M and χ is a character
of K+ such that for every P = MN ∈ P(M), χ is trivial on K+ ∩ N and
K+ ∩N . If χ | (K+ ∩M)θ = 1, then χ |Kθ

+ = 1.

Proof. Let J = K+ ∩ θ(K+). Since Kθ
+ = Jθ and (K+ ∩M)θ = (J ∩M)θ, it

suffices to prove that

Jθ = (J ∩M)θ(Kerχ)θ.

Note that θ(P ) and θ(P ) are opposite parabolic subgroups in P(θ(M)) =
P(M).

By Lemma 4.2(1), K+ decomposes with respect to (N,M,N) and also with
respect to (θ(N),M, θ(N)). A straightforward argument which combines this
with injectivity of the product map N ×M ×N → G shows that J decomposes
with respect to (N,M,N).
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Let U = Kerχ ∩ θ(Kerχ). By assumption, the subgroups J ∩ N , J ∩ N ,
J ∩ θ(N) and J ∩ θ(N) belong to Kerχ. This, together with the fact that J
decomposes with respect to (N,M,N), can be used to show that J = (J∩M)U .

Finally, because J ∩ M ∩ U is a θ-stable subgroup of My,0+ , the image of
the function u 7→ uθ(u)−1 on J ∩ M ∩ U is the set of all θ-split elements in
J ∩ M ∩ U (see, for example, [4, Proposition 2.12]). As U is normalized by
J ∩M , it follows that Jθ = (J ∩M)Uθ ([4, Lemma 2.9]). □

Proposition 4.4. Let K = G1
y,s0G

2
y,s1 · · ·G

d
y,sd−1

. Then ϑ(ϕ) |Kθ
+ = 1 if

and only if there exists k ∈ K such that kT is θ-stable and kϕ | kT θ
0+ = 1.

Furthermore, if k is as above, then

(1) The quasicharacter kϕ has a θ-symmetric G-factorization on kT0+ .
(2) The torus kT contains G-regular θ-split elements.

Proof. First we prove that ϑ(ϕ) |Kθ
+ = 1 implies existence of existence of k ∈ K

such that kT is θ-stable and kϕ has a θ-symmetric G-factorization on kT0+ .
The property ϑ(ϕ) |Kθ

+ = 1 corresponds to what is called weak compatibility
in [4]. If the torus T is elliptic in G, existence of an element of K as above is
a special case of [4, Proposition 5.7(1)]. The proof of [4, Proposition 5.7(1)]
depends on the choice of y ∈ B(T ) and on the factorization of ϕ occurring
in the G-datum, but other properties of the cuspidal datum are not needed.
Consequently, the proof carries over to nonelliptic T .

Taking into account Lemma 3.9, one direction of the proof of the proposition
is now complete. Moreover, for the other direction, it suffices to show that if
k ∈ K is such that kT is θ-stable and kϕ | (kT0+)

θ = 1, then ϑ(ϕ) |Kθ
+ = 1.

Since ϑ(ϕ) |Kθ
+ = 1 if and only if ϑ(ϕ) |Kk·θ

+ = 1, we may adjust our notation

so that k = 1. That is, we assume that θ(T ) = T and ϕ |T θ
0+ = 1.

By Lemma 3.9, there exists a G-factorization (G⃗, ϕ⃗) of ϕ that is θ-symmetric
on T0+ . By Lemma 4.1,

ϑ(ϕ) = ϑ(ϕ⃗) =
∏
i=1

ϕ̂i.

Hence it suffices to show that ϕ̂i |Kθ
+ = 1 for 1 ≤ i ≤ d. Let M = CG(AT ).

Then θ(T ) = T implies θ(M) = M . Taking into account, Lemma 4.2(2) and

Lemma 4.3, if ϕ̂i | (K+ ∩M)θ = 1, then ϕ̂i |Kθ
+ = 1.

To complete the proof, we show that ϕ̂i | (K+ ∩M)θ = 1 for 1 ≤ i ≤ d. Let
M i = M ∩ Gi. Then M i is a tame twisted Levi subgroup of M ([8, proof of
Lemma 2.4]).

By definition of M , T is elliptic in M , hence also in M i. By compactness
of T/AMi , M i

x1,r+
= Mx2,r+ for all points x1 and x2 ∈ B(T ). Because T is

θ-stable and y ∈ B(T ), we have θ(y) ∈ B(T ).
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Using this information and the property θ(M i
y,r+) = M i

θ(y),r+ , we conclude

that M i
y,r+ is θ-stable. It follows that K+ ∩ M = T0+M

0
y,r+0

· · ·Md
y,r+d−1

is θ-

stable. An elementary argument using K+ ∩M ⊂ My,0+ and [4, Lemma 2.13]

shows that if χ is a character of K+ ∩M , then χ | (K+ ∩M)θ = 1 if and only
if χ ◦ θ = χ−1.

Equality of ϕ̂i◦θ and ϕ̂−1
i follows from the definition of ϕ̂i and θ-symmetry of

ϕi onM i
0+ . In particular, there exists a θ-stable subgroup U i ofK+∩M∩Ker ϕ̂i

that is normalized by K+ ∩M i, and

K+ ∩M = (K+ ∩M i)U i, ϕ̂i |K+ ∩M i = ϕi |K+ ∩M i.

□

Let M = CG(AT ). For 1 ≤ i ≤ d, let M i = CGi(AT ). Then, as observed
in [8, Lemma 2.4], if 1 ≤ i ≤ j ≤ d, M i is a twisted Levi subgroup of M j .
The twisted Levi subgroups M i of M are not necessarily distinct and form a
generalized twisted Levi sequence in M = Md, as defined on [18, p. 616].

Fix a commutative diagram of embeddings of buildings

B(T ) = B(G0) ↪→ B(G1) ↪→ · · · ↪→ B(Gd)

↪→ ↪→ ↪→

B(T ) = B(M0) ↪→ B(M1) ↪→ · · · ↪→ B(Md).

In what follows below, we use the embeddings in the top row of the diagram
when defining K+.

Remark 4.5. In [8], the results of Kim and Yu concerning types and G-covers
are proved subject to a genericity assumption on the commutative diagram of
embeddings. Our results are independent of the choice of commutative diagram
and we don’t require the results of [8] on types and covers, so we don’t make
any assumptions regarding genericity of the embeddings.

In general, the pair ((T = M0, . . . ,Md), (ϕ0 |M0, . . . , ϕd |Md)) is not an

M -factorization of ϕ. Starting with a G-factorization (G⃗, ϕ⃗), we can produce

an M -factorization (M⃗, ϕ⃗M ) of ϕ as follows. For 1 ≤ j ≤ d, let Sj be the set of

i such Gi ∩M = M j . Set ϕ′
j =

∏
i∈Sj

ϕi |M j . The twisted Levi sequence M⃗

consists of the distinct groups M i. If M ij is the jth group in the sequence M⃗ ,

then the jth quasicharacter in the sequence ϕ⃗M is ϕ′
ij
. Now, [8, Lemma 5.3]

can be used to show the required genericity. The sequence of embeddings of
buildings on the bottom row of the commutative diagram above restricts to a
sequence of embeddings of the buildings of the twisted Levi subgroups occuring

in M⃗ . We use the M -factorization of ϕ, together with the point y ∈ B(T ), to
define a compact open subgroup KM,+ and a character ϑM (ϕ) = ϑM (ϕ⃗M ) of
KM,+.
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Because we have chosen the M -factorization of ϕ in a way that is compatible
with the original G-factorization, the following lemma follows easily from the
definitions of ϑ(ϕ) and ϑM (ϕ) in terms of these factorizations.

Lemma 4.6. KM,+ = K+ ∩M and ϑ(ϕ) |KM,+ = ϑM (ϕ).

Remark 4.7. The definition of KM,+ involves a choice of y ∈ B(T ), the depths
of the quasicharacters occurring in an M -factorization of ϕ, and a sequence of
embeddings of buildings of the twisted Levi subgroups appearing in the M -
factorization. Because T is elliptic in M , if y is replaced by another point
in B(T ), or if the sequence of embeddings of buildings is changed, the associ-
ated subgroup KM,+ does not change, see [18, Remark 3.4]. As observed in
Lemma 4.1, ϑM (ϕ) is independent of the choice of M -factorization of ϕ. Thus
KM,+ and ϑM (ϕ) are dependent on T and on ϕ |T0+ , but are independent of
other choices.

When T is not elliptic in G, then both K+ and ϑ(ϕ) do depend on the choice
of point y in B(T ), and on the sequence of embeddings of buildings, although
K+ ∩M = KM,+ and ϑ(ϕ) |K+ ∩M = ϑM (ϕ) do not.

5. Positive regular supercuspidal representations

Yu’s construction [18] associates irreducible supercuspidal representations of
G to cuspidal (generic) G-data. As stated in the introduction, we refer to such
representations as tame supercuspidal representations.

In [4], an equivalence relation on the set of (reduced, generic) cuspidal G-
data is defined. [4, Theorem 6.6], which was proved subject to hypotheses
on quasicharacters of twisted Levi subgroups of G, says that two cuspidal G-
data belong to the same equivalence class if and only if the associated tame
supercuspidal representations of G are equivalent. Recent work of Kaletha [6,
Corollary 3.3.5] shows that the theorem holds without the hypotheses.

Each cuspidal G-datum includes a twisted Levi sequence. For the next
definition, it is useful to recall that the twisted Levi sequences appearing in
equivalent G-data are G-conjugate.

Definition 5.1. We say that a supercuspidal representation of G is positive
regular if it arises via Yu’s construction from a cuspidal G-datum having the
property that the first twisted Levi subgroup in the sequence of twisted Levi
subgroups occurring in the G-datum is a (tame) elliptic maximal torus in G.

Remark 5.2. In [4] and [11], the positive regular supercuspidal representations
were referred to as toral supercuspidal representations. Since the term toral
supercuspidal representation has been used by other authors to denote a par-
ticular proper subset of the set of positive supercuspidal representations, in
order to avoid confusion, we do not use the term toral here.
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Definition 5.3. Let T (G) be the set of pairs (T, ϕ), where T is a tame maximal
torus inG and ϕ is a quasicharacter of T that isG-regular on T0+ . Let Tell(G) =
{ (T, ϕ) ∈ T (G) | T is elliptic }.

Note that it is immediate from the definitions that T (G) and Tell(G) are
invariant under conjugation by G.

Let (T, ϕ) ∈ Tell(G). If (G⃗, ϕ⃗) is a G-factorization of ϕ and 1 is the trivial

character of T , then, in the terminology of [4], (G⃗, 1, ϕ⃗) is a reduced, generic
cuspidal G-datum.

An equivalence class of reduced, generic cuspidal G-data corresponds to an
equivalence class of positive regular supercuspidal representations if and only

if it contains a G-datum of the form (G⃗, 1, ϕ⃗), where (G⃗, ϕ⃗) is a G-factorization
of a quasicharacter ϕ occurring in a pair (T, ϕ) ∈ Tell(G). Moreover, two
such G-data are equivalent if and only if the associated pairs in Tell(G) are
G-conjugate. Therefore we have the following parametrization of the positive
regular supercuspidal representations, a weaker version of which was stated,
in different language, subject to hypotheses on quasicharacters, as [11, Corol-
lary 9.4], and is a consequence of [6, Corollary 3.3.5, Proposition 3.5.4] and [4,
Theorem 6.6]. As discussed below, the proposition is also obtained as a special
case of Kaletha’s parametrization of regular supercuspidal representations (cf.
[6, Corollary 3.6.1]).

Proposition 5.4. The set of equivalence classes of positive regular supercuspi-
dal representations of G corresponds bijectively to the set of G-conjugacy classes
of pairs in Tell(G).

Definition 5.5. Let (T, ϕ) ∈ Tell(G). We denote a positive regular supercus-
pidal representation whose equivalence class corresponds to the G-conjugacy
class of (T, ϕ) by πG

(T,ϕ).

We now comment on the relation between the positive regular supercuspidal
representations and the regular supercuspidal representations of [6]. In [6,
Section 3], Kaletha defines notions of regular and extra regular reduced generic
cuspidal G-data. He proves that regularity is preserved under equivalence of
G-data. The associated tame supercuspidal representations are called (extra)
regular (tame) supercuspidal representations.

If T is an elliptic tame maximal torus of G and ϕ is a quasicharacter of T ,
Kaletha calls the pair (T, ϕ) tame elliptic (extra) regular if ϕ satisfies a particu-
lar root-theoretic regularity condition (cf. [6, Definition 3.4.5]). There is a pair
(T, ϕ) associated to each (extra) regular reduced generic cuspidal G-datum, and
Kaletha proves that such a pair is tame elliptic (extra) regular. Equivalence of
such cuspidal G-data corresponds to G-conjugacy of the associated tame ellip-
tic (extra) regular pairs. Furthermore, via a factorization process, called Howe
factorization, each tame elliptic (extra) regular pair is associated to some (ex-
tra) regular tame elliptic pair. Consequently, as stated in [6, Corollary 3.6.1],



305 Murnaghan

this results in a bijective correspondence between the set of G-conjugacy classes
of tame (extra) regular elliptic pairs and the set of equivalence classes of (extra)
regular supercuspidal representations of G.

If (T, ϕ) ∈ Tell(G), then the fact that ϕ is G-regular on T0+ implies that
(T, ϕ) is a tame elliptic (extra) regular pair. Thus Proposition 5.4 is a special
case of [6, Corollary 3.6.1]. We have chosen the terminology positive regular
supercuspidal representations because these are the regular supercuspidal rep-
resentations corresponding to pairs (T, ϕ) to which the regularity condition is
imposed on ϕ |T0+ , that is, on the restriction of ϕ to the positive-depth elements
in T .

6. Positive regular representations

Lemma 6.1. Let (T, ϕ) ∈ T (G). Let M = CG(AT ). Then

(1) The pair (T, ϕ) belongs to Tell(M).

(2) If πM
(T,ϕ) is as in Definition 5.1 and P ∈ P(M), then IndGP πM

(T,ϕ) is

irreducible.

Proof. For the first part, note that, by Lemma 3.6, (T, ϕ) ∈ T (M), and, by
definition of M , T is elliptic in M .

For the second part, suppose that g ∈ NG(M) and gπM
(T,ϕ) is equivalent to

πM
(T,ϕ)ν for some unramified quasicharacter ν of M . By [15, Corollary 2], to

see that IndGP πM
(T,ϕ) is irreducible, it suffices to show that g ∈ M . It follows

from the definitions and the assumptions on g and (T, ϕ), together with the
first part, that (gT, gϕ) ∈ T (G) ∩ Tell(M). Moreover, gπM

(T,ϕ) is equivalent

to πM
(gT,gϕ). Thus, by Kaletha’s results (see Section 5 above), there exists

m ∈ M such that mg ∈ NG(T ) and mgϕ = ϕν. Restricting to T0+ , we have
mgϕ |T0+ = ϕ |T0+ . Since ϕ is G-regular on T0+ , we may apply Lemma 3.7 to
conclude that mg ∈ M . Hence g ∈ M . □

As a consequence of [2, Theorem 2.9] and Lemma 6.1, given (T, ϕ) ∈ T (G), if

M = CG(AT ), the equivalence class of IndGP πM
(T,ϕ) is independent of the choice

of P ∈ P(M).

Definition 6.2. We say that a representation π of G is a positive regular
representation if π is equivalent to a representation of the form IndGP πM

(T,ϕ), for

some (T, ϕ) ∈ T (G), where M = CG(AT ) and P ∈ P(M). In this case we write
π = πG

(T,ϕ).

Proposition 6.3. Fix (T, ϕ) and (T ′, ϕ′) ∈ T (G). The representations πG
(T,ϕ)

and πG
(T ′,ϕ′) are equivalent if and only if the pairs (T, ϕ) and (T ′, ϕ′) are G-

conjugate.
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Proof. Because (cf. Lemma 6.1) the representations πG
(T,ϕ) and πG

(T ′,ϕ) are irre-

ducible, they are equivalent if and only if their cuspidal supports coincide, that
is, if and only if there exists g ∈ G such that M ′ = gM and πM ′

(T ′,ϕ′) ≃
g(πM

(T,ϕ)).

Since g(πM
(T,ϕ)) ≃ π

gM
(gT,gϕ), this amounts to existence of g ∈ G such that

M ′ = gM and πM ′

(T ′,ϕ′) ≃ πM ′

(gT,gϕ). By Proposition 5.4, the pairs (T ′, ϕ′) and

(gT, gϕ) are M -conjugate. □

Lemma 6.4. Let (T, ϕ) ∈ T (G). If K+ and ϑ(ϕ) are as defined in Section 4,
then the space of πG

(T,ϕ) is generated by its (K+, ϑ(ϕ))-isotypic subspace.

Proof. Fix P = MN and P = MN ∈ P(M) such that P ∩ P = M . Since

(Lemma 6.1) IndGP πM
(T,ϕ) is irreducible, it suffices to show that the (K+, ϑ(ϕ))-

isotypic subspace is nonzero.
Let M = CG(AT ), and define KM,+ and ϑM (ϕ) as in Section 4. The su-

percuspidal representation πM
(T,ϕ) is obtained via compact induction from a

representation κM of an open compact-mod-centre subgroup KM of M that
contains KM,+. Moreover, the space of κM coincides with its (KM,+, ϑM (ϕ))-
isotypic subspace (cf. [18, Proposition 4.4]). Hence the (KM,+, ϑM (ϕ))-isotypic
subspace of πM

(T,ϕ) is nonzero. Fix a nonzero vector v in this isotypic subspace.

Then it follows from Lemma 4.6 that there exists a unique function f in the
space of IndGP πM

(T,ϕ) such that f(1) = v and the support of f is equal to PK+.

This function is in the (K+, ϑ(ϕ))-isotypic subspace. □

7. Distinction of positive regular representations

Here we derive necessary conditions for distinction of positive regular repre-
sentations. These conditions are used in the next section to show that certain
representations are relatively supercuspidal.

Proposition 7.1, Corollary 7.2 and Proposition 7.4 were proved in the con-
text of positive regular supercuspidal representations in [4, Proposition 5.2(2)],
[12, Proposition 5.7(2)], [12, Theorem 6.9], and [12, Proposition 6.11], (based
on [4, Proposition 5.31]), respectively. Those results were proved subject to
hypotheses on quasicharacters. Recall (see Remark 3.3) that, due to recent
results of Kaletha, under the conditions we have imposed on p (listed at the
beginning of Section 3) the hypotheses hold.

Proposition 7.1. Let (T, ϕ) ∈ T (G). Suppose that πG
(T,ϕ) is H-distinguished.

Then there exists g ∈ G such that

(1) θ(gT ) = gT and gϕ | gT θ
0+ = 1.

(2) The quasicharacter gϕ of gT has a G-factorization that is θ-symmetric
on gT0+ .

(3) There exist G-regular θ-split elements in gT .
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(4) The group gM is θ-stable and gϕ has a gM -factorization that is θ-
symmetric on gT0+ .

Proof. Fix y ∈ B(T ) and define K+ and ϑ := ϑ(ϕ) as in Section 4. Let
π = πG

(T,ϕ) and let V (K+,ϑ be the (K+, ϑ)-isotypic subspace of the space V of

π. Fix a nonzero λ ∈ HomH(π, 1). By Lemma 6.4, there exists g ∈ G such that
the restriction of λ to π(g)V (K+,ϑ) is nonzero. This implies that gϑ | gKθ

+ = 1.

This is equivalent to ϑ |Kg−1·θ
+ = 1, where (g−1 · θ)(x) = g−1θ(gxg−1)g for

x ∈ G.
According to Lemma 4.4, there exists k ∈ K+ such that kT is g−1 · θ-stable,

kϕ has a g−1 · θ-symmetric factorization on (kT0+)
g−1θ̇ and kT contains G-

regular g−1 · θ-split elements. After replacing g by kg, and rearranging the
notation slightly, we obtain parts (2) and (3).

Part (1) is implied by part (3).
Part (4) is implied by part (2) and Lemma 4.6(4). □
In general, G need not contain θ-split G-regular elements. There are many

examples of this sort, such as G = GL2n(F ), H = Sp2n(F ),

Corollary 7.2. If there exist H-distinguished positive regular representations
of G, then there exist θ-split G-regular elements.

Remark 7.3. Suppose that F ′ is a finite, tamely ramified extension of F , RF ′/F

is restriction of scalars, G = RF ′/FGLn, and θ is any involution of G. The
converse of the corollary was proved in [12] in the positive regular supercus-
pidal setting. Thus existence of H-distinguished positive supercuspidal repre-
sentations of G = GLn(F

′) is equivalent to existence of θ-split tame elliptic
G-regular elements in G. Although we have not verified the details, we expect
that the converse of the corollary holds.

It is immediate from the definition that if ϕ is a quasicharacter of a tame
maximal torus of G and if (T, ϕ) ∈ T (G) and χ is a depth-zero quasicharacter
of T , then (T, ϕ) ∈ T (G) if and only if (T, χϕ) ∈ T (G).

Proposition 7.4. Let (T, ϕ) ∈ T (G) and M = CG(AT ). If π
G
ϕ is H-distinguis-

hed, then, upon replacing (T, ϕ) by a suitable G-conjugate, θ(T ) = T (hence
θ(M) = M), and there exists a depth-zero quasicharacter χ of T such that
πM
(T,ϕχ) is Mθ-distinguished.

Proof. By Proposition 7.1(4), after replacing (T, ϕ) by a G-conjugate, we may

assume that T is θ-stable and ϕ has an M -factorization (M⃗, ϕ⃗) that is θ-

symmetric on T0+ . For eachM i appearing in M⃗ , fix a depth-zero quasicharacter

ηi of M
i such that ηiϕi is θ-symmetric. Set ϕ′

i = ηiϕi and let ϕ⃗′ be the sequence

obtained from ϕ⃗ by replacing each ϕi by ϕ′
i. Set ϕ′ = ϕη, where η =

∏
i ηi.

Then (M⃗, ϕ⃗′) is a θ-symmetric M -factorization of ϕ′.
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Fix y ∈ B(T ) and let χ′ be a depth-zero quasicharacter of T . The four-

tuple Ψ := (M⃗, y, χ′, ϕ′) is a θ-symmetric cuspidal extended M -datum (in the
sense of [4, Definition 3.13]). Moreover, the supercuspidal representation of M
associated to Ψ via Yu’s construction is (equivalent to) πM

(T,χ′ηϕ). We may now

apply [12, Proposition 6.11] (which is a consequence of [4, Proposition 5.31]) to
conclude that there exists a choice of χ′ for which πM

(T,χ′η,ϕ) isM
θ-distinguished.

□

Remark 7.5. Suppose that T is a nonelliptic tame maximal torus in G, M =
CG(AT ), (T, ϕ) ∈ Tell(M), and P ∈ P(M). The representation IndGP πM

(T,ϕ) is

often irreducible, even if ϕ is not G-regular on T0+ . In that case, despite the fact
that πM

(T,ϕ) is a positive regular supercuspidal representation of M , obtaining

precise information about distinction of IndGP πM
(T,ϕ) is more involved than in

the G-regular setting and may involve questions about distinction of depth-zero
types. In particular, although there is an analogue of Proposition 7.4 in this
case, the methods of this paper are not sufficient to prove it. This, and other
more general questions about distinction of tame representations, are treated
in [13]. The methods include analysis of distinction and θ-symmetry of types
arising from associated G-data (defined in [8]). The types involved are more
complicated than the linear characters of the form ϑ(ϕ)).

8. Relatively supercuspidal positive regular representations

Proposition 8.1. Let (T, ϕ) ∈ T (G) be such that θ(T ) = T and ϕ |T θ
0+ = 1.

Let L be a θ-stable proper Levi subgroup of G and let Q ∈ P(L). If the Jacquet
module rQ(π

G
(T,ϕ)) is L

θ-distinguished, then there exists g ∈ G such that gT ⊂ L

and g−1θ(g) ∈ T .

Proof. Let M = CG(AT ). Fix P ∈ P(M). Because πM
(T,ϕ) is supercuspidal,

the filtration of the Jacquet module rQ(Ind
G
P πM

(T,ϕ)) given by the Geometric

Lemma ([2, Theorem 5.2]) involves a finite number of quotients of the form

IndLL∩gP (
gπM

(T,ϕ)), where each g is such that L ∩ gP is a parabolic subgroup of

L having gM as a Levi factor. Since

IndLL∩gP (
gπM

(T,ϕ)) ≃ IndL∩gP (π
gM
(gT,gϕ)) ≃ πL

(gT,gϕ),

we see that if rQ(π
G
(T,ϕ)) ≃ rQ(Ind

G
P πM

(T,ϕ)) is L
θ-distinguished, then there exists

g ∈ G such that gM ⊂ L and πL
(gT,gϕ), is L

θ-distinguished.

From gT ⊂ gM ⊂ L, (gT, gϕ) ∈ T (G), and Lemma 3.6, we obtain (gT, gϕ) ∈
T (L). Therefore, an application of Proposition 7.1 shows that if πL

(gT,gϕ)

is Lθ-distinguished, then there exists ℓ ∈ L such that ℓgT is θ-stable and
ℓgϕ | (ℓgT )θ0+ = 1. After replacing ℓg by g, we assume gT is θ-stable and
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gϕ | (gT )θ0+ = 1. Because both T and gT are θ-stable, we have g−1θ(g) ∈
NG(T ). Note that

gϕ(θ(gt)) = ϕ(g
−1θ(g)θ(t)), t ∈ T.

Combining this with θ-symmetry of gϕ | gT0+ and ϕ |T0+ yields

gϕ(θ(gt)) = gϕ−1(gt) = ϕ−1(t) = ϕ(θ(t)), t ∈ T0+ .

Thus ϕ(g
−1θ(g)t) = ϕ(t) for all t ∈ T0+ . Because ϕ is G-regular on T0+ , it

follows from Lemma 3.7, that g−1θ(g) ∈ T . □

Corollary 8.2. Let (T, ϕ), L and Q be as in Proposition 8.1. If T is θ-elliptic
and rQ(π

G
(T,ϕ)) is Lθ-distinguished, then A−

L = A−
G.

Proof. Let g be as in Proposition 8.1. Observe that g−1θ(g) ∈ T implies that gT
is θ-stable and (gT )− = g(T−). It follows that (gAT )

− = g(A−
T ) =

gA−
G = A−

G.

That is, gT is θ-elliptic. Next, AgT = gAT ⊃ AL implies A−
G = A−

gT ⊃ A−
L . □

Recall that the definition of H-relatively supercuspidal representation is
given in the introduction – see Definition 1.1.

Proposition 8.3. Let (T, ϕ) ∈ T (G). If T is θ-elliptic and πG
(T,ϕ) is H-

distinguished, then πG
(T,ϕ) is H-relatively supercuspidal.

Proof. Assume that T is θ-elliptic and π := πG
(T,ϕ) is H-distinguished.

Let Q be a proper θ-split proper parabolic subgroup of G and let L =
Q ∩ θ(Q). As shown in [7, Propositions 5.5, 5.6] and [9, Theorem 1], there
exists a unique linear map λ 7→ rQ(λ) from HomH(π, 1) to HomLθ (rQ(π), 1)
exhibiting specific properties (not stated here). According to [7, Theorem 6.9],
π is H-relatively supercuspidal if and only if rQ(HomH(π, 1)) = 0 for any
proper θ-split parabolic subgroup Q of G. Hence it suffices to prove that
HomLθ (rQ(π), 1) = 0 for every proper θ-split parabolic subgroup Q of G.

If Q is a proper θ-split parabolic subgroup of G such that HomLθ (rQ(π), 1)
is nonzero, then it follows from the assumption that T is θ-elliptic and Corol-
lary 8.2 that A−

L = A−
G. Because Q is θ-split, L = CG(A

−
L ). Thus L = G,

contradicting the fact that Q is a proper parabolic subgroup. □

Proposition 8.4. Let (T, ϕ) ∈ T (G) be such that T is θ-elliptic. Let M =
CG(AT ). Then M is θ-stable and HomMθ (πM

(T,ϕ), 1) is isomorphic to a subspace

of HomH(πG
(T,ϕ), 1). Furthermore, if πM

(T,ϕ) is Mθ-distinguished, then πG
(T,ϕ) is

H-relatively supercuspidal.

Proof. Note that T θ-elliptic implies AT is θ-stable. Hence M is θ-stable.
Assume that πM

(T,ϕ) is Mθ-distinguished. By Proposition 8.3, since T is θ-

elliptic, πG
(T,ϕ) is H-relatively supercuspidal. Hence it suffices to prove the first

assertion of the statement of the proposition.
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Fix P = MN ∈ P(M). Because T is θ-elliptic, A−
M = A−

T = A−
G. Hence for

every root α of AM in G, α◦θ = α. It follows that θ(P ) = P . Consequently (see

[5, Proposition 13.3]), PH is closed in G. Let V be the space of π := IndGP πM
(T,ϕ)

and let ρ be the right regular representation of H on the image V (PH) of
restriction of functions in V to PH. Composition with restriction yields an
injection from HomH(ρ, 1) to HomH(π, 1).

Restriction of functions in V (PH) to H is an equivalence of ρ and the unnor-

malized induced representation ρH := indHP θ (δ
1/2
P πM

(T,ϕ) |P
θ). The identity com-

ponent of (P θ)◦ of P θ is an F -parabolic subgroup of H◦. Thus P θ\H is com-
pact, and the representation ρH is compactly induced. Let δP θ be the modular
function of P θ. Integration against a positive semi-invariant measure on P θ\H,

yields an isomorphism between HomH(ρH , 1) and Homθ
M (δ

1/2
P πM

(T,ϕ), δP θ ) ([1,

Proposition 2.29]). Combining this with comments in the previous paragraph

results in a linear injection of the space HomMθ (δ
1/2
P πM

(T,ϕ), 1) into HomH(π, 1).

In general, given a θ-stable parabolic subgroup Q of G with θ-stable Levi

factor L, the functions δ
1/2
Q and δQθ need not agree on Lθ. However, in the

current setting, M contains θ-split G-regular elements(see the following para-

graph). This can be used to show that δ
1/2
P |Mθ = δP θ .

To complete the proof of the first assertion of the proposition (which, as
discussed above, is sufficient to prove the proposition), we observe that some
θ-stable M -conjugate of T contains θ-split G-regular elements. By assumption,
πM
(T,ϕ) is M

θ-distinguished. An application of Proposition 7.1 (to πM
(T,ϕ)) yields

existence of m ∈ M such that mT is θ-stable and mϕ | (mT )θ0+ = 1. Because
(mT,mϕ) ∈ T (G), we may infer from Lemma 3.9 that mT contains θ-split
G-regular elements. □
Theorem 8.5. Let (T, ϕ) ∈ T (G) and M = CG(AT ). If T is θ-elliptic and
ϕ |T θ

0+ = 1, then there exists a depth-zero quasicharacter χ of T such that

πM
(T,χϕ) is Mθ-distinguished. Furthermore, HomMθ (πM

(T,χϕ), 1) is isomorphic to

a subspace of HomH(πG
(T,χϕ), 1) and πG

(T,χϕ) is relatively supercuspidal.

Proof. Let M = CG(AT ). By Proposition 8.4, it suffices to prove the first
assertion of the theorem. As noted in Lemma 3.6, ϕ is M -regular on T0+ .
This allows us to use Lemma 3.9 and the assumption ϕ |T θ

0+ = 1 to conclude
that ϕ has an M -factorization that is θ-symmetric on T0+ . As shown in the
proof of Proposition 7.4, this implies existence of χ as in the statement of the
theorem. □
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