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Abstract. In this paper, we find a relation between the proportionality

factors which arise from the functional equations of two families of local
Rankin-Selberg convolutions for irreducible admissible representations of
orthogonal groups, or unitary groups. One family is that of local integrals

of the doubling method, and the other family is that of local integrals
expressed in terms of spherical Bessel models.
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1. Introduction

Let G′ be an orthogonal group, or a unitary group, in n + 1 variables over
a local field F , and consider a subgroup G ⊂ G′, which is the stabilizer of
an anisotropic vector, so that G is an orthogonal group, or a unitary group,
in n variables. Let π be an irreducible, admissible representation of G′. In
this paper, we compare two families of local Rankin-Selberg integrals, which
represent, at the unramified level, the standard L-function of π, twisted by
characters. The first family is the one arising from the doubling method, first
introduced by Piatetski-Shapiro and Rallis in [7], and later deeply studied by
Lapid and Rallis in [6]. The second family is of integrals expressed in terms of
a ”spherical Bessel model” of π, that is a nontrivial element c in

HomG(π ⊗ σ, 1),

where σ is an irreducible, admissible representation of G, with a diagonal action
of G on π ⊗ σ. These integrals are a special case of the family of integrals
studied by Ginzburg, Piatetski-Shapiro and Rallis in [4], representing standard
L-functions for pairs of representations of orthogonal groups and general linear
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groups. See [5] for an analogue for unitary groups. We compare the local
functional equations satisfied by the above two families. Let us denote the
proportionality factor, which appears in the functional equation of the second
family, by Γsph(π, σ, χ, s). This is a meromorphic function in the complex
variable s. Here χ is a character of F ∗ in case our group is orthogonal, or of
E∗ in case our group is unitary and corresponds to a quadratic extension E/F .
Fix a nontrivial character ψ of F . We prove in a straightforward way, that up
to an explicit function of s, which depends on χ, ψ and G′,G (but not on π, or
σ), Γsph(π, σ, χ, s) is

γ(π × χ, s, ψ)

γ(σ̂ × χ, s− 1
2 , ψ)

,

where the functions in the numerator and denominator are the local gamma
factors of irreducible, admissible representations of G′, G respectively (twisted
by characters). These are the local gamma factors, which fit in the theory of
standard L-functions for these groups. They were defined by Lapid and Rallis
in [6, Section 9].

The starting point of the proof appears already in [4, Section 1], where it is
shown that integrals of the second family, corresponding to a certain choice of
sections in the parabolic induction from χ| · |s⊗σ, are equal to typical integrals
of the first family. The main work of this paper is to push this further and see
how the last relation of integrals from both families is affected when we apply
local intertwining operators. We had a sketch of the result presented here quite
sometime ago. The proof turned to be quite delicate, as the order of applying
the local functional equations is important. Sadly, Steve Rallis passed away in
2012, but, nevertheless, he should have his signature on this paper.

It is a pleasure to dedicate this paper to Freydoon Shahidi, who made such
fundamental contributions to automorphic forms and representation theory of
reductive groups, in particular, through his theory of local coefficients, which
also lead to the definition of local gamma factors of generic representations,
thus relating to the main topic of this contribution.

David Soudry

2. Notations and preliminaries

Let F be a local field of characteristic zero. If F is a p-adic field, we denote by
q the number of elements in its residue field. Let E be either F or a quadratic
extension of F . For x ∈ E, denote, in the first case, x̄ = x, and in the second
case, denote by x̄ the Galois conjugate of x over F . When [E : F ] = 2, we
take the absolute value |a|E = |aā|F . In both cases, we will simply denote the
absolute value of a ∈ E by |a|.

Let V ′ = V ⊕Eu0 be a finite dimensional space over E, of dimension n+1,
equipped with a non-degenerate E-bilinear form b′, which is symmetric in case
E = F and Hermitiean in case [E : F ] = 2. Assume that u0 is orthogonal to V .
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Denote by b and b0 the restrictions of b
′ to V ×V and to Eu0×Eu0 respectively.

Let U(V ′) (resp. U(V )) denote the isometry group of (V ′, b′) (resp. (V, b)).
Thus, when E = F , U(V ′) = O(V ′) = On+1 is an orthogonal group in n + 1
variables, and when E/F is quadratic, U(V ′) = Un+1 is a unitary group in n+1
variables. Similarly, for U(V ). We regard U(V ) as the subgroup of elements of
U(V ′), which fix u0.
In the sequel, we will need to fix a norm, h 7→ ∥h∥, on the group U(V ′). When
we realize U(V ′) as a matrix group, we will simply take the maximum absolute
value of the matrix coordinates of h.

Consider the doubled space

(W ′, ⟨, ⟩) = (V ′ ⊕ V ′, b′ ⊕−b′),

the orthogonal sum of (V ′, b′) and (V ′,−b′). We identify U(V ′) × U(V ′) as a
subgroup of U(W ′). For g1, g2 ∈ U(V ′), we think of (g1, g2) as the element of
U(W ′), which acts on W ′ by

(g1, g2) · (u1, u2) = (g1u1, g2u2), u1, u2 ∈ V ′.

Let

V ′
∆ = {(u, u)|u ∈ V ′}, V ′

−∆ = {(u,−u)|u ∈ V ′}.
These are two dual maximal isotropic subspaces of W ′, and we have the polar-
ization

W ′ = V ′
∆ + V ′

−∆.

Similarly, we have the doubled space with polarization W = V∆ + V−∆, when
we replace V ′, b′ by V and b, and we identify, as above, U(V ) × U(V ) as a
subgroup of U(W ). Denote P ′ = P (V ′

∆) (resp. P = P (V∆)) the maximal
parabolic subgroup of U(W ′) (resp. U(W )) which preserves V ′

∆ (resp. V∆).
For g in the Levi part of P ′, NE/F (det(g)) = 1 (if E = F , this means that
det(g) = 1). Let g ∈ U(V ′). Then

(2.1) (g, g) ∈ P ′.

Indeed, for u ∈ V ′, (g, g) · (u, u) = (gu, gu) ∈ V ′
∆. Similar statements hold for

P . Let

H1,1 = (Eu0 ⊕ Eu0, b0 ⊕ (−b0)).
Let V1 = V ⊕ 0 ⊂ W and V2 = 0 ⊕ V ⊂ W . Similarly, let V ′

1 = V ′ ⊕ 0 ⊂ W ′,
V ′
2 = 0 ⊕ V ′ ⊂ W ′. Then we have the following chains of inclusions, with

identifications as above,

(2.2) U(V ′
1)×U(V2) ⊂ U(V1 ⊕H1,1)×U(V2) ⊂ U(W ′),

U(V ′
1)×U(V2) ⊂ U(V ′

1)×U(V ′
2) ⊂ U(W ′),

U(V1)×U(V2) ⊂ U(W ) ⊂ U(W ′),

U(V1)×U(V2) ⊂ U(V ′
1)×U(V2).
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The spaces V1 and V2 are naturally identified with V , and the groups U(V1),
U(V2) are naturally identified with U(V ). We will make such identifications
when convenient. We introduced these slight distinctions due to H1,1, which
”occupies two coordinates”. Thus in the inclusion U(V1 ⊕ H1,1) × U(V2) ⊂
U(W ′), we point to the fact H1,1 is taken together with the first copy of V .
In practice, we will write the elements of U(V1 ⊕ H1,1) × U(V2) ⊂ U(W ′) as
(g1, g2), where g1 ∈ U(V1⊕H1,1) and g2 ∈ U(V ). This is the element that acts
as follows: for all v1, v2 ∈ V, a1, a2 ∈ E,

(2.3) (g1, g2) · (v1 + a1u0, v2 + a2u0) = g1 · (v1 + a1u0, a2u0) + (0, g2v2).

In order to be fully consistent with our notation, we should have denoted the
last element as ((g1, 1V ), (1V1⊕H1,1 , g2)), but this is too cumbersome, and we
will avoid this. We use similar interpretations and identifications in all other
inclusions in (2.2).
Let Q ⊂ U(V1 ⊕H1,1) be the parabolic subgroup which preserves the isotropic
line E(u0, u0). Note the decomposition

V1 ⊕H1,1 = E(u0, u0) + V1 + E(u0,−u0).

Of course, V1 is orthogonal to H1,1 = E(u0, u0) + E(u0,−u0), (u0,±u0) are
isotropic and ⟨(u0, u0), (u0,−u0)⟩ = 2b′(u0, u0). Let r ∈ Q. Then there is
t ∈ E∗, such that

(2.4) r · (u0, u0) = t(u0, u0),

and there arem ∈ U(V ), x ∈ V ∗, such that for all v ∈ V (i.e. for all (v, 0) ∈ V1),

(2.5) r · (v, 0) = (mv, 0) + x(v)(u0, u0).

Lemma 2.1. Let r ∈ Q. Then, with notation as in (2.4), (2.5), (r,m) ∈ P ′,
and

detV ′
∆
(r,m) = t det(m).

Proof. As explained in (2.3), the element (r,m) lies in U(V1 ⊕H1,1) × U(V2),
which, as in (2.2), we view as a subgroup of U(W ′). Take an element (v +
au0, v + au0) ∈ V ′

∆, where v ∈ V , a ∈ E. Then

(r,m) · (v + au0, v + au0) = (r,m) · (v, 0) + (r,m) · (0, v) + a(r,m) · (u0, u0) =

(mv, 0) + x(v)(u0, u0) + (0,mv) + at(u0, u0).

This is equal to (mv + (x(v) + at)u0,mv + (x(v) + at)u0) ∈ V ′
∆. This shows

that (r,m) ∈ P ′, and its determinant on V ′
∆ is t det(m). □
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3. A certain family of sections in Ind
U(V1⊕H1,1)
Q (χ| · |s ⊗ σ)

Let χ be a character of E∗ and s a complex number. Consider the parabolic
inductions (normalized)

(3.1) ρ′χ,s = Ind
U(W ′)
P ′ χ(detV ′

∆
·)|detV ′

∆
· |s,

(3.2) ρχ,s = Ind
U(W )
P χ(detV∆ ·)|detV∆ · |s.

Let fχ,s be a smooth holomorphic section in ρ′χ,s. When F is p-adic, we

assume that it is a polynomial (in q±s) section. We have the following very
easy lemma.

Lemma 3.1. The restriction of fχ,s to U(W ) lies in ρχ,s+ 1
2
.

Let σ be an irreducible admissible representation of U(V ). Let vσ be a
vector in Vσ, a (smooth) realization space of σ that we fix. We will restrict
fχ,s to U(V1⊕H1,1)×U(V2), view σ as a representation of U(V2) and integrate
χ−1(det(g2))σ(g2)vσ against the kernel function fχ,s(g1, g2) (g1 ∈ U(V1⊕H1,1),
g2 ∈ U(V )) to obtain a function on U(V1 ⊕H1,1), with values in Vσ. See (2.3).
Thus, define, for g1 ∈ U(V1 ⊕H1,1),

(3.3) Λvσ,fχ,s(g1) =

∫
U(V )

fχ,s(g1, g2)χ
−1(det(g2))σ(g2)vσdg2.

Before we make sense out of this integral, let us show formally

Lemma 3.2. The function Λvσ,fχ,s lies in the space of Ind
U(V1⊕H1,1)
Q (χ|·|s⊗σ).

Proof. Let r ∈ Q and use the notation as in Lemma 2.1. Then

Λvσ,fχ,s(rg1) =

∫
U(V )

fχ,s(rg1, g2)χ
−1(det(g2))σ(g2)vσdg2.

Change variable g2 7→ mg2. We get

(3.4) χ−1(det(m))σ(m)(

∫
U(V )

fχ,s((r,m)(g1, g2))χ
−1(det(g2))σ(g2)vσdg2).

By Lemma 2.1,

fχ,s((r,m)(g1, g2)) = χ(t det(m))|t|s+
n+dimE−1

2 fχ,s(g1, g2)(3.5)

= χ(t det(m))|t|sδ
1
2

Q(r)fχ,s(g1, g2).

The last equality is easy to check. Using (3.4), (3.5), we get

Λvσ,fχ,s(rg1) = χ(t)|t|sδ
1
2

Q(r)σ(m)(Λvσ,fχ,s(g1)).

□
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Let us interpret (3.3) precisely. We first view it in the weak sense, that is as
a linear functional on Vσ̂, the space of smooth linear functionals on Vσ. Thus,
let ξσ̂ ∈ Vσ̂, and consider the integral

(3.6) ℓg1,fχ,s,vσ (ξσ̂) =

∫
U(V )

fχ,s(g1, g2)χ
−1(det(g2))⟨σ(g2)vσ, ξσ̂⟩dg2.

Since fχ,s(g1, g2) = ρ′χ,s(g1, IV )fχ,s(IV1⊕H1,1 , g2), we may assume that g1 is
the identity element. The point now is that (IV1⊕H1,1 , g2), as an element of
U(V1⊕H1,1)×U(V2) ⊂ U(W ′), is the same element as (IV , g2) ∈ U(V )×U(V ) ⊂
U(W ). Thus, by Lemma 3.1, it is enough to consider a smooth holomorphic
section ϕχ,s+ 1

2
in ρχ,s+ 1

2
and consider the integral

(3.7) lϕ
χ,s+1

2
,vσ (ξσ̂) =

∫
U(V )

ϕχ,s+ 1
2
(IV , g2)χ

−1(det(g2))⟨σ(g2)vσ, ξσ̂⟩dg2.

This integral is equal to

(3.8)

∫
U(V )

ϕχ,s+ 1
2
(g, IV )⟨vσ, σ̂(g)ξσ̂⟩dg,

which is a local integral that arises in the doubling method for σ̂. We know
that it converges absolutely in a certain right half plane, which depends only
on σ, and it continues to a meromorphic function in the complex plane. In case
F is p-adic, this function is a rational function of q−s. We know that ϕχ,s+ 1

2

can be written as a finite sum of sections of the form

φ ⋆ ϕ′χ,s+ 1
2
=

∫
U(V )

φ(x)ρχ,s+ 1
2
(x, IV )ϕ

′
χ,s+ 1

2
dx,

where φ ∈ C∞
c (U(V )) and ϕ′

χ,s+ 1
2

is a smooth holomorphic section in ρχ,s+ 1
2
. In

the p-adic case, we may take ϕ′
χ,s+ 1

2

= ϕχ,s+ 1
2
and φ the characteristic function

of a small compact open subgroup K0 ⊂ U(V ), divided by its measure, and
K0 is such that K0 × IV fixes ϕχ,s+ 1

2
. In the Archimedean case, this is a

consequence of the theorem of Dixmier-Malliavin [3]. Thus, let us assume that
ϕχ,s+ 1

2
is of the form φ ⋆ ϕ′

χ,s+ 1
2

. Note that

ϕ′χ,s+ 1
2
((IV , g2)(x, IV )) = χ(det(x))ϕ′χ,s+ 1

2
(IV , x

−1g2).

Substituting in (3.7), we switch the order of integrations (for Re(s) large),
change variable g2 7→ xg2 and switch the order of integrations again,

lφ⋆ϕ′
χ,s+1

2

,vσ
(ξσ̂) =(3.9) ∫

U(V )

∫
U(V )

ϕ′χ,s+ 1
2
(IV , g2)χ

−1(det(g2))φ(x)⟨σ(g2)vσ, σ̂(x−1)ξσ̂⟩dxdg2

= lϕ′
χ,s+1

2

,vσ (σ̂(φ̌)ξσ̂).
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Here, φ̌(x) = φ(x−1). This shows that the functional lφ⋆ϕ′
χ,s+1

2

,vσ is a smooth

functional on Vσ̂. Going back to (3.3), we conclude that there is a unique vector
in Vσ, which we denote by Λvσ,fχ,s(g1), such that for all ξσ̂ ∈ Vσ̂,

(3.10) ⟨Λvσ,fχ,s(g1), ξσ̂⟩ =
∫
U(V )

fχ,s(g1, g2)χ
−1(det(g2))⟨σ(g2)vσ, ξσ̂⟩dg2,

first for Re(s) sufficiently large and then the left hand side of (3.10) is equal
to the meromorphic continuation of the right hand side (rational in q−s, in the
p-adic case). Finally, Λvσ,fχ,s is smooth. The argument is similar. Again, we
may assume that, for all g ∈ U(W ′),

fχ,s(g) = φ1 ⋆ f
′
χ,s(g) =

∫
U(V ′)

φ1(y)f
′
χ,s(g(y, IV ))dy,

where φ1 ∈ C∞
c (U(V ′)) and f ′χ,s is a smooth holomorphic section. (We keep

using the symbol ⋆ to denote convolutions.) Then, for all g1 ∈ U(V ′),

Λvσ,φ1⋆f ′
χ,s

(g1) = (φ1 ⋆ Λvσ,f ′
χ,s

)(g1)

=

∫
U(V ′)

φ1(y)Λvσ,f ′
χ,s

(g1y)dy.

Thus, Λvσ,fχ,s is a smooth meromorphic (rational in q−s, in the p-adic case)

section in Ind
U(V1⊕H1,1)
Q (χ| · |s ⊗ σ).

4. Local Rankin-Selberg convolutions for U(V ′) (spherical models)

Let π be an irreducible, admissible representation of U(V ′), which admits
a spherical model with respect to σ. By definition, this means that there is
a nontrivial (continuous) bilinear form c : Vπ × Vσ 7→ C, such that for all
g ∈ U(V ), vπ ∈ Vπ, vσ ∈ Vσ,

(4.1) c(π(g)vπ, σ(g)vσ) = c(vπ, vσ).

Recall that we view U(V ) as a subgroup of U(V ′). By [1], the space of forms
satisfying (4.1) is at most one dimensional.
The local Rankin-Selberg integrals from [4] ([5] for unitary groups) correspond-
ing to L-functions for U(V ′) × ResE/FGL1, for π with the given form c, have
the form

(4.2) L(vπ, ησ,χ,s) =
∫
U(V )\U(V ′)

c(π(h)vπ, ησ,χ,s(h))dh,

where ησ,χ,s is a smooth holomorphic (polynomial in q±s for p-adic F ) section

in Ind
U(V1⊕H1,1)
Q (χ| · |s ⊗ σ), and we view V ⊂ V ′ as the subspaces V1 ⊂

V ′
1 ⊂ V1 ⊕ H1,1. We know that the integral (4.2) converges absolutely for

Re(s) sufficiently large, depending on π, σ only, and that it has a meromorphic
continuation to the complex plane, being rational in q−s in the p-adic case.
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(We may also take ησ,χ,s to be a smooth meromorphic section, rational in q−s

in the p-adic case.) Recall that if E = F is p-adic, π, σ and χ are unramified,
vπ = v0π is an unramified vector, ησ,χ,s = η0σ,χ,s is an unramified section, such

that its value at the identity element is v0σ, an unramified vector in Vσ, and
finally, the form c is such that c(v0π, v

0
σ) = 1, then when n is even

L(v0π, η0σ,χ,s) =
L(π × χ, s+ 1

2 )

L(σ × χ, s+ 1)
,

and when n is odd,

L(v0π, η0σ,χ,s) =
L(π × χ, s+ 1

2 )

L(σ × χ, s+ 1)L(χ2, 2s+ 1)
.

If E/F is a quadratic unramified extension of the p-adic field F , then with
similar assumptions and notations, we have

L(v0π, η0σ,χ,s) =
L(π × χ, s+ 1

2 )

L(σ × χ, s+ 1)L(χ,Asai, 2s+ 1)
.

Let us substitute in (4.2) the meromorphic section Λvσ,fχ,s instead of ησ,χ,s.

Lemma 4.1. With notation as before, we have, for Re(s) sufficiently large,

(4.3) L(vπ,Λvσ,fχ,s) =

∫
U(V ′)

c(π(h)vπ, vσ)fχ,s(h, IV ′)dh.

Proof. Given v′π ∈ Vπ, the functional on Vσ, vσ 7→ c(v′π, vσ) is U(V )-smooth.
This follows from (4.1). By (3.10), we conclude that for h ∈ U(V ′) (and Re(s)
large),

c(π(h)vπ,Λvσ,fχ,s(h)) =

∫
U(V )

fχ,s(h, g2)χ
−1(det(g2))c(π(h)vπ, σ(g2)vσ)dg2.

Since (g2, g2) ∈ P ′, fχ,s(h, g2) = χ(det(g2))fχ,s(g
−1
2 h, IV ). Using this and (4.1),

we get

L(vπ,Λvσ,fχ,s) =

∫
U(V )\U(V ′)

∫
U(V )

fχ,s(g
−1
2 h, IV )c(π(g

−1
2 h)vπ, vσ)dg2dh.

Collapsing the integrations, we get

(4.4) L(vπ,Λvσ,fχ,s) =

∫
U(V ′)

c(π(h)vπ, vσ)fχ,s(h, IV )dh.

This step is justified by the fact that the last integral converges absolutely, for
Re(s) sufficiently large (depending on π, σ). Indeed, by the work of Sakellaridis
and Venkatesh [9], the function c(π(h)vπ, vσ) is of moderate growth in h, which
means that there are positive numbers α = α(vπ, σ) and d = d(π, σ), such that
for all h ∈ U(V ′),

(4.5) |c(π(h)vπ, vσ)| ≤ α∥h∥d.
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Note that the element (h, IV ) in (4.4) viewed as an element of U(V ′
1)×U(V2),

which is a subgroup of U(V1 ⊕ H1,1) × U(V2) ⊂ U(W ′), is the same element
as (h, IV ′), viewed as an element of U(V ′

1) × U(V ′
2) ⊂ U(W ′). Thus, the inte-

grand in (4.4) is majorized by α|fχ,s(h, IV ′)|∥h∥d. For Re(s) sufficiently large,
depending on d only, the last function is integrable. This is what one proves
for the integrals of the doubling method to converge absolutely in a right half
plane. □

Remark 4.2. Technically, the last proof is valid in case the group U(V ) is
split over F . The reason is that this is the assumption made in [9]. Yiannis
Sakellaridis told the second named author that the only obstacle to extending
their results to the non-split case is that the theory of compactification of
spherical varieties has not been developed yet in this case. However, in our
case (and for many other specific spherical varieties) he can easily describe a
compactification using the Galois action on the (known) compactification over
the algebraic closure, and then the rest will follow verbatim.

The integral (4.3) looks like a typical local integral constructed in the dou-
bling method for the representation π, only that the function h 7→ c(π(h)vπ, vσ)
is not a matrix coefficient of π. However, we may replace it in the integrand
by a matrix coefficient, as follows.

Lemma 4.3. There is a matrix coefficient of π, h 7→ ⟨π(h)vπ, ǔ(vσ, fχ,·)⟩,
where ǔ(vσ, fχ,·) is in the smooth dual of Vπ and depends on vσ and on the
section s 7→ fχ,s, such that, for Re(s) sufficiently large,

(4.6) L(vπ,Λvσ,fχ,s) =

∫
U(V ′)

⟨π(h)vπ, ǔ(vσ, fχ,·)⟩fχ,s(h, IV ′)dh.

Proof. As before, we may assume that fχ,s has the following form

(4.7) fχ,s = φ ⋆ f ′χ,s =

∫
U(V ′)

φ(r)ρ′χ,s(IV ′ , r)f ′χ,sdr,

where φ ∈ C∞
c (U(V ′)) and f ′χ,s is a smooth holomorphic section in ρ′χ,s. Since,

for r, h ∈ U(V ′),

f ′χ,s((h, IV ′)(IV ′ , r)) = χ(det(r))f ′χ,s(r
−1h, IV ′),

we get, for Re(s) large,
(4.8)

L(vπ,Λvσ,fχ,s) =

∫
U(V ′)

∫
U(V ′)

χ(det(r))φ(r)c(π(rh)vπ, vσ)f
′
χ,s(h, IV ′)drdh.

The functional

v′π 7→
∫
U(V ′)

χ(det(r))φ(r)c(π(r)v′π, vσ)dr = c(π(φ · χ(det))v′π, vσ)
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is a smooth functional on Vπ, and hence there is a unique vector ǔ(vσ, fχ,·) in
the smooth dual of Vπ, such that, for all v′π ∈ Vπ,

(4.9) c(π(φ · χ(det))v′π, vσ) = ⟨v′π, ǔ(vσ, fχ,·)⟩.

Thus, the function h 7→
∫
U(V ′)

χ(det(r))φ(r)c(π(rh)vπ, vσ)dr is the matrix co-

efficient of π, h 7→ ⟨π(h)vπ, ǔ(vσ, fχ,·)⟩. □

The integral on the right hand side of (4.6) is now an integral which arises
in the doubling method for the representation π on U(V ′). We know that, as
such, it has a meromorphic continuation to the whole plane, where in the p-adic
case it is a rational function of q−s. Of course, we have already known this,
since L(vπ,Λvσ,fχ,s

) is such a function. We will also denote this meromorphic
function by L(vπ, ǔ(vσ, fχ,·), fχ,s).

5. Applying intertwining operators

In Lemma 4.3, we obtained the equality of two local integrals, one arising
from Rankin-Selberg integrals for π on U(V ′), expressed in terms of spherical
models of π, and the other local integral is arising from the doubling method
for π on U(V ′). For both families of local integrals, we have local functional
equations obtained by applying intertwining operators to the sections which
appear in the integrals. We have two parabolic inductions to consider, one
for each local integral, and hence we need to consider two local intertwining
operators. Our main goal is to find the relation between the two proportionality
factors in the two local functional equations.

Let us write the two local functional equations for π without normalization
of intertwining operators.

(5.1) Γsph(π, σ, χ, s+
1

2
)L(vπ,Λvσ,fχ,s) = L(vπ,Mχ,σ,s(Λvσ,fχ,s)),

where Mχ,σ,s is the intertwining operator on Ind
U(V1⊕H1,1)
Q (χ| · |s ⊗ σ), corre-

sponding to the Weyl element w in U(V1⊕H1,1), which flips (u0, u0), (u0,−u0)
and acts as the identity on V1. Γsph(π, σ, χ, s+ 1

2 ) depends on the choice of a
Haar measure on NQ, the unipotent radical of Q.

(5.2) Γdbl(π, χ, s+
1

2
)L(vπ, ǔ(vσ, fχ,·), fχ,s) = L(vπ, ǔ(vσ, fχ,·),Mχ,s(fχ,s)),

where Mχ,s is the intertwining operator on ρ′χ,s corresponding to the Weyl
element (IV ′ ,−IV ′) in U(W ′). Note that this element flips V ′

∆ and V ′
−∆. (With

respect to the basis (5.3) below, its matrix, modulo the diagonal subgroup, is
the standard long Weyl element.) Again, Γdbl(π, χ, s + 1

2 ) depends on the
choice of Haar measure on NP ′ , the unipotent radical of P ′. The functions
Γsph(π, σ, χ, s+ 1

2 ), Γ
dbl(π, χ, s+ 1

2 ) are meromorphic. When F is p-adic, they
are rational in q−s. The main theorem of this paper is
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Theorem 5.1. There are compatible choices of Haar measures on the unipotent
radicals NQ, NP , NP ′ , such that

Γsph(π, σ, χ, s) =
Γdbl(π, χ, s)

Γdbl(σ̂, χ, s− 1
2 )
.

The rest of this section is devoted to the proof of the theorem.
We will pass to coordinates using a basis of W ′ as follows. Start with an
orthogonal basis {v1, ..., vn} of V and then take
(5.3)

{(u0, u0), (v1, v1), ..., (vn, vn),
1

2αn
(vn,−vn), ...,

1

2α1
(v1,−v1),

1

2α0
(u0,−u0)},

where αi = b′(vi, vi), 0 ≤ i ≤ n. The Gram matrix of this basis is ϵ2n+2, where
ϵm is them×m permutation matrix, which has 1 along the main skew diagonal.
We start with the functional equation (5.1). We consider the intertwining
operator, given for Re(s) large by

Mχ,σ,s(Λvσ,fχ,s)(h) =

∫
NQ

Λvσ,fχ,s(wuh)du.

We will choose a Haar measure on NQ after passing to coordinates. The matrix
of (w, IV ) with respect to the basis (5.3) is

Jw =

 1
2α0

I2n
2α0

 .

As in (2.5), for u ∈ NQ, the matrix of (u, IV ) has the following form

Nu =


1 x x(2D)−1ϵn y

In 0 −(2D)−1x̄t

In −ϵnx̄t
1

 ,

where D = diag(α1, ..., αn), x = (x1, ..., xn) ∈ En, and y+ ȳ = −
∑n

i=1
1
αi
xix̄i.

Thus, y = −
∑n

i=1
1

2αi
xix̄i + Im(y), where Im(y) = −Im(y). In case E = F ,

this means that Im(y) = 0. We have
(5.4)

JwNu =


1

−α0D
−1x̄t In

In
α0xD

−1ϵn 1

 Jw


1 x 0 z

In 0 0
In −ϵnx̄t

1

 ,

where z = y +
∑n

i=1
1

2αi
xix̄i (so that z + z̄ = 0). Denote the third matrix in

the r.h.s. of (5.4) by u1(x, z). Since det

(
1

−α0D
−1x̄t In

)
= 1, we get, for
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g2 ∈ U(V ), h ∈ U(V ′),

fχ,s(wuh, g2) = fχ,s(Jwu1(x, z)(h, g2)).

Thus, for Re(s) large,

Mχ,σ,s(Λvσ,fχ,s)(h) =(5.5) ∫
En×FdimE−1

∫
U(V )

fχ,s(Jwu1(x, z)(h, g2))χ
−1(det(g2))σ(g2)vσdg2d(x, z).

Here, when E = F , z = 0 and there is no dz-integration, and when [E : F ] = 2,
the dz-integration is over z ∈ E with z + z̄ = 0, a subspace which we identify
with F . We fix a choice of a Haar measure dt on E, and when [E : F ] = 2,
we choose a Haar measure dz on F . We let d(x, z) = dx1...dxndz- the product
measure. Again, when E = F , there is no dz integration. It is easy to see that
the integral (5.5) converges absolutely for Re(s) large in the sense explained in
the end of Section 3. We may then switch the order of integration in (5.5) and
get, for Re(s) large,

(5.6) Mχ,σ,s(Λvσ,fχ,s)(h) =

∫
U(V )

f ′χ,s(h, g2)χ
−1(det(g2))σ(g2)vσdg2,

where, for Re(s) large, g ∈ U(W ′),

(5.7) f ′χ,s(g) =

∫
En×FdimE−1

fχ,s(Jwu1(x, z)g)d(x, z).

This is an intertwining integral on ρ′χ,s, with respect to the Weyl element Jw.
Note that the integration can be realized along the unipotent radical of the
parabolic subgroup of U(W ′), preserving the line through (u0, u0), modulo the
subgroup of matrices of the form

1 0 x 0
In 0 −ϵnx̄t

In 0
1

 , x ∈ En.

Thus, f ′χ,s(g) has meromorphic continuation to the whole plane, and in the

p-adic case, it is rational in q−s. Keep denoting this meromorphic function by
f ′χ,s. Denote by f̃χ,s the restriction of f ′χ,s to U(W ). Then it is easy to check

that f̃χ,s is an element of ρχ,s− 1
2
. Denote h · fχ,s = ρ′χ,s(h, IV )fχ,s. Then, we

may write the r.h.s. of (5.6) as∫
U(V )

h̃ · fχ,s(IV , g2)χ−1(det(g2))σ(g2)vσdg2,

and this integral, which converges absolutely for Re(s) large, has a meromorphic
continuation to the complex plane, rational in q−s in the p-adic case. We denote
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it (as a meromorphic function) by Λ̃vσ,fχ,s(h). Thus (5.6) reads as

(5.8) Mχ,σ,s(Λvσ,fχ,s)(h) = Λ̃vσ,fχ,s(h).

Let us denote by M̃χ,s− 1
2
the intertwining operator on ρχ,s− 1

2
analogous to

Mχ,s. Each one comes with a choice of a Haar measure on the relevant unipo-
tent radical. Denote

M̃χ,s− 1
2
(f̃χ,s)(h, g2) = M̃χ,s− 1

2
(h̃ · fχ,s)(IV , g2).

Note, again, that as elements in U(W ′), (IV , g2) and (IV ′ , g2) are the same. We
may now consider, first for Re(s) small, and then as meromorphic functions,

Λ̃vσ,M̃χ,s− 1
2
f̃χ,s

(h) =

∫
U(V )

M̃χ,s− 1
2
(f̃χ,s)(h, g2)χ(det(g2))σ(g2)vσdg2.

Lemma 5.2. For all h ∈ U(V ′), vσ, fχ,s,

(5.9) Γdbl(σ̂, χ, s)Λ̃vσ,fχ,s
(h) = Λ̃vσ,M̃χ,s− 1

2
f̃χ,s

(h).

Proof. Let ξσ̂ be an element in Vσ̂. For Re(s) sufficiently large,

⟨Λ̃vσ,fχ,s(h), ξσ̂⟩ =

∫
U(V )

⟨σ(g2)vσ, ξσ̂⟩χ−1(det(g2))h̃ · fχ,s(IV , g2)dg2

=

∫
U(V )

⟨vσ, σ̂(g2)ξσ̂⟩h̃ · fχ,s(g2, IV )dg2.

The last integral is a local integral arising in the doubling method for σ̂.
Now apply the local functional equation, as in (5.2), with σ̂ replacing π, and
s− 1

2 instead of s. We get

Γdbl(σ̂, χ, s)⟨Λ̃vσ,fχ,s(h), ξσ̂⟩ = ⟨Λ̃vσ,M̃χ,s− 1
2
f̃χ,s

(h), ξσ̂⟩.

Since this is true for all ξσ̂, we get (5.9). □

Recall that Γdbl(σ̂, χ, s) depends on the choice of a Haar measure on NP .
From (5.8) and Lemma 5.2, we get

(5.10) Γdbl(σ̂, χ, s)Mχ,σ,s(Λvσ,fχ,s)(h) = Λ̃vσ,M̃χ,s− 1
2
f̃χ,s

(h).

Lemma 5.3. There is a compatible choice of Haar measures on NP , NP ′ , such
that

(5.11) M̃χ,s− 1
2
(f̃χ,s)(h, g2) =Mχ,s(fχ,s)(h, g2).

Proof. It is enough to prove (5.11) for g2 = IV , h = IV ′ and for Re(s) suffi-
ciently large (so that the following integral converges absolutely). In this case,
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the l.h.s. of (5.11) is

(5.12)

∫
Yn

f̃χ,s(

1
J2n,D

1



1

In T
In

1

)dT.

Here Yn is the space of matrices T ∈ Mn(E), such that (ϵnT )
t = ϵnT . Yn is

isomorphic to NP . The matrix J2n,D is the matrix of (IV ,−IV ) as an element
of U(W ).

J2n,D =

(
ϵn(2D)−1

2Dϵn

)
.

We fix a choice of a Haar measure dT , for example a product of Haar measures
on E, F , according to the matrix coordinates of T . Denote

J1
2n,D =

1
J2n,D

1

 .

Denote, also, for T ∈ Yn,

vn(T ) =


1

In T
In

1

 .

By definition, f̃χ,s is the restriction of (5.7) to U(W ). Substitute this in (5.12),
and we get, for Re(s) large,

(5.13)

∫
Yn

∫
En×FdimE−1

fχ,s(Jwu1(x, z)J
1
2n,Dvn(T ))d(x, z)dT.

We have

u1(x, z)J
1
2n,D = J1

2n,D


1 0 xϵn(2D)−1 z

In 0 −ϵn(2D)−1ϵnx̄
t

In 0
1

 ,

and

JwJ
1
2n,D = J2n+2,D′ =

(
ϵn+1(2D

′)−1

2D′ϵn+1

)
,

where D′ = diag(α0, D). Note that J2n+2,D′ is the matrix of (IV ′ ,−IV ′) ac-
cording to the basis (5.3). Hence, in the integrand of (5.13),

Jwu1(x, z)J
1
2n,Dvn(T ) = J2n+2,D′


1 0 xϵn(2D)−1 z

In T −ϵn(2D)−1ϵnx̄
t

In 0
1

 .
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Change variable x 7→ x(2D)ϵn. The measure d(x, z) changes by |2|n| det(D)|,
and (5.13) becomes

(5.14) |2|n| det(D)|
∫
Yn+1

fχ,s(ϵ2n+2

(
In+1 Y

In+1

)
)dY,

where dY is the product measure d

(
x z
T −ϵnx̄t

)
= d(x, z)dT . This defines a

Haar measure on NP ′ , such that (5.14) is equal to∫
NP ′

fχ,s((IV ′ ,−IV ′)u)du =Mχ,s(fχ,s)(I).

□

From Lemma 5.3, (5.10) and the definition of Λ̃vσ,M̃χ,s− 1
2
f̃χ,s

(h), we conclude

that

(5.15) Γdbl(σ̂, χ, s)Mχ,σ,s(Λvσ,fχ,s)(h) = Λvσ,Mχ,s(fχ,s)(h).

Now, multiply (5.1) by Γdbl(σ̂, χ, s). By (5.15), we get

(5.16) Γdbl(σ̂, χ, s)Γsph(π, σ, χ, s+
1

2
)L(vπ,Λvσ,fχ,s) = L(vπ,Λvσ,Mχ,s(fχ,s)).

By Lemma 4.3, we can rewrite (5.16) as

Γdbl(σ̂, χ, s)Γsph(π, σ, χ, s+
1

2
)L(vπ, ǔ(vσ, fχ,·), fχ,s)(5.17)

= L(vπ, ǔ(vσ,Mχ,·(fχ,·)),Mχ,s(fχ,s)).

In the proof of Lemma 4.3, we see that the vector ǔ(vσ, fχ,·) can be taken
to be the same vector as ǔ(vσ,Mχ,·(fχ,·)). Indeed, according to the proof, we
need to write fχ,s as a finite sum of convolutions φi ⋆ f

i
χ,s, 1 ≤ i ≤ N , as in the

proof of the lemma. The point is that

Mχ,s(φi ⋆ f
i
χ,s) = φi ⋆ Mχ,s(f

i
χ,s),

for all i. Now, look at (4.8), for Mχ,s(f
i
χ,s), and Re(s) small, and then look

at (4.9) to see that each vector ǔ(vσ,Mχ,·(f
i
χ,·)) is equal to ǔ(vσ, f

i
χ,·), and

hence

ǔ(vσ,Mχ,·(fχ,·)) =

N∑
i=1

ǔ(vσ,Mχ,·(f
i
χ,·)) =

n∑
i=1

ǔ(vσ, f
i
χ,·) = ǔ(vσ, fχ,·).

Now, (5.17) becomes

Γdbl(σ̂, χ, s)Γsph(π, σ, χ, s+
1

2
)L(vπ, ǔ(vσ, fχ,·), fχ,s)(5.18)

= L(vπ, ǔ(vσ, fχ,·),Mχ,s(fχ,s)).
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From (5.2), we conclude that

Γdbl(π, χ, s+
1

2
) = Γdbl(σ̂, χ, s)Γsph(π, σ, χ, s+

1

2
).

This concludes the proof of Theorem 5.1.
Let ψ be a nontrivial character of F . In [6, Sections 5,6,9], the local gamma

factors γ(π × χ, s, ψ) and γ(σ̂ × χ, s, ψ) are obtained by dividing the doubling
Γ factors above by certain meromorphic functions (rational functions of q−s in
the p-adic case), which do not depend on the representations:

γ(π × χ, s, ψ) =
Γdbl(π, χ, s)

βU(V ′)(χ, s, ψ)
;

γ(σ̂ × χ, s, ψ) =
Γdbl(σ̂, χ, s)

βU(V )(χ, s, ψ)
.

The functions β in the denominators depend on the choice of Haar measures
defining the intertwining operators above, so that the local gamma factors are
independent of these choices. Thus, from Theorem 5.1 follows

Theorem 5.4.

(5.19) Γsph(π, σ, χ, s) =
βU(V ′)(χ, s, ψ)

βU(V )(χ, s− 1
2 , ψ)

· γ(π × χ, s, ψ)

γ(σ̂ × χ, s− 1
2 , ψ)

.

We remark that the denominator in (5.19) is, in case U(V ) is an even or-
thogonal group, the gamma factor related to the intertwining operator Mχ,σ,s.
In the other cases, there is a missing gamma factor related to χ, for exam-
ple, when U(V ) is an odd orthogonal group, γ(χ2, 2s− 1, ψ). To remedy this,
one needs to write a better expression, suited to our setup, of the ratio of the
functions β in (5.19), and, also, find a ”natural” normalization of Mχ,σ,s.

Finally, let ωπ, ωσ denote the central characters of π, σ. We know from
[8, 2], that when F is p-adic, ωπ(−1)Γdbl(π, χ, s) is stable, in the sense that if τ
is another irreducible admissible representation of U(V ′), then for χ sufficiently
ramified,

ωπ(−1)Γdbl(π, χ, s) = ωτ (−1)Γdbl(τ, χ, s).

Similarly, of course, for ωσ(−1)Γdbl(σ̂, χ, s). Thus, we conclude from Theo-
rem 5.1:

Theorem 5.5. Assume that F is p-adic. Then ωπωσ(−1)Γsph(π, σ, χ, s) is
stable.
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