arepsilon-WEAKLY CHEBYSHEV SUBSPACES AND QUOTIENT SPACES

SH. REZAPOUR AND H. MOHEBI

ABSTRACT. It will be determined under what conditions ε -quasi Chebyshev and ε -weakly Chebyshev subspaces are transmitted to and from quotient spaces.

1. Introduction and Preliminaries

Let X be a (complex or real) Banach space, $\varepsilon > 0$ be given and let W be a subspace of X. A point $y_0 \in W$ is said to be a ε -approximation for $x \in X$ if

$$||x - y_0|| < d(x, W) + \varepsilon.$$

For $x \in X$, put

$$P_{W,\varepsilon}(x) = \{ y \in W : ||x - y|| \le d(x, W) + \varepsilon \}$$

and

$$P_W(x) = \{ y \in W : ||x - y|| = d(x, W) \}.$$

It is clear that $P_{W,\varepsilon}(x)$ is a non-empty, bounded and convex subset of X. Also, $P_{W,\varepsilon}(x)$ is closed for all $x \in X$, if W is closed.

We know that a subspace W of a Banach space X is called proximinal (respectively, quasi-Chebyshev or Weakly-Chebyshev)

MSC(2000): Primary 46B50; Secondary 41A65

Keywords: ε -quasi Chebyshev subspace, ε -weakly Chebyshev subspace, Quotient space

Received: 16 December 2003, Revised: 22 May 2004

© 2003 Iranian Mathematical Society.

if $P_W(x)$ is non-empty (and respectively, compact or weakly compact) for all $x \in X$.

Recently, these types of subspaces are investigated (see [3]-[8]). There are some works on sum and quotient of proximinal subspaces of Banach spaces (see [1],[2]). Also, the first author has defined ε -quasi Chebyshev and ε -weakly Chebyshev subspaces of Banach spaces (see [9],[10]).

Definition 1.1. Let X be a Banach space. A subspace W is called ε -quasi Chebyshev (ε -weakly Chebyshev) in X if $P_{W,\varepsilon}(x)$ is a compact (weakly compact) set in X for each $x \in X$.

Note that, every ε -quasi Chebyshev subspace is ε -weakly Chebyshev. But, the converse is not true, (see [10]).

Let M be a proximinal subspace of a Banach space X, and let $f \in M^{\perp}$ be arbitrary. Define the linear functional T_f on X/M by $T_f(x+M)=f(x)$ for all $x+M\in X/M$. Since M is proximinal, $T_f\in (X/M)^*$ and $\|T_f\|\leq \|f\|$.

We conclude this section by a list of known lemmas needed in the proof of the main results.

Lemma 1.2. [12; Theorem 4]. Let W be a subspace of a normed linear space X, $x \in X \setminus \overline{W}$ and $g_0 \in W$. Then, $g_0 \in P_W(x)$ if and only if $||x - g_0|| = ||x - g_0||_{W^{\perp}}$, where $||x - g_0||_{W^{\perp}} = \sup\{|f(x - g_0)| : ||f|| \le 1, f \in W^{\perp}\}$.

Lemma 1.3. [9; Theorem 2.11]. Let W be a closed subspace of a Banach space X and $\varepsilon > 0$ be given. Then, W is ε -quasi Chebyshev subspace of X if and only if W is finite dimensional.

Lemma 1.4. [10; Theorem 2.7]. Let W be a closed subspace of a Banach space X and $\varepsilon > 0$ be given. Then, W is ε -weakly Chebyshev subspace of X if and only if W is reflexive.

2. Main Results

Now, we are ready to state and prove our main results.

Theorem 2.1. Let M be a proximinal subspace of a Banach space X, $\varepsilon > 0$ be given and let W be a ε -quasi Chebyshev subspace of X such that M is a subspace of W. Then, $\frac{W}{M}$ is ε -quasi Chebyshev in $\frac{X}{M}$.

Proof. Let $\pi: X \longrightarrow \frac{X}{M}$ be the canonical map. Since $P_{\frac{W}{M},\varepsilon}(x+M) = \pi(P_{W,\varepsilon}(x))$ for all $x \in X$ and π is continuous, $\frac{W}{M}$ is a ε -quasi-Chebyshev subspace of $\frac{X}{M}$. \square

Theorem 2.2. Let M be a finite dimensional subspace of a Banach space X, $\varepsilon > 0$ be given and let W be a closed subspace of X. Then the followings are equivalent:

- (a) M + W is ε -quasi Chebyshev in X.
- (b) $\frac{M+W}{M}$ is ε -quasi Chebyshev in $\frac{X}{M}$.

Proof. It is an immediate consequence of Lemma 1.2 and the relation $dim(M+W)=dim(\frac{M+W}{M})+dim(M)$, which implies that M+W is finite dimensional if M and $\frac{M+W}{M}$ are finite dimensional. \square

Corollary 2.3. Let M be a finite dimensional subspace of a Banach space X, $\varepsilon > 0$ be given and let W be a closed subspace of X such that M is a subspace of W. If $\frac{W}{M}$ is ε -quasi Chebyshev in $\frac{X}{M}$,

then W is ε -quasi Chebyshev in X.

The following example shows that finite dimensionality of M can not omit in Corollary 2.3.

Example 2.4. Let $X=c_0, W=\{\{x_n\}_{n\geq 1}\in X: x_1=0\}$ and $M=\{\{x_n\}_{n\geq 1}\in X: x_1=x_2=0\}$. Then, it is easy to show that M and W are proximinal subspaces of X. Since $dim\frac{W}{M}=1$, by Lemma 1.2, $\frac{W}{M}$ is ε -quasi Chebyshev in $\frac{X}{M}$, but W is not ε -quasi Chebyshev in X.

Theorem 2.5. Let M be a proximinal subspace of a Banach space X, $\varepsilon > 0$ be given and let W be a ε -weakly Chebyshev subspace of X such that M is a subspace of W. Then, $\frac{W}{M}$ is ε -weakly Chebyshev in $\frac{X}{M}$.

Proof. It is an immediate consequence of Lemma 1.3 and the well known fact ([11]) that a reflexive space has every its quotient spaces reflexive. \Box

Lemma 2.6. Let X be a Banach space and S a finite dimensional subspace of a X such that $\frac{X}{S}$ is reflexive. Then, X is reflexive.

Proof. It is well known that X is reflexive if and only if the unit ball B of X is weakly compact. As a consequence of the Eberlein-Šmulian Theorem B is weakly compact if and only if every sequence $\{a_n\}_{n\geq 1}$ in B has a weakly convergent subsequence. Let $\{a_n\}_{n\geq 1}$ be a sequence in B. Since S is finite dimensional, S is complemented subspace of X. That is, there exists a projection $P: X \longrightarrow S$. That means that P is a linear bounded and onto map with $P^2 = P$. We note that W := ker(P) is a complement of S. That is W is closed, S + W = X and $S \cap W = \{0\}$.

We note that $\{a_n + S\}_{n\geq 1}$ belongs to the unit ball of $\frac{X}{S}$. Thus, from reflexivity of $\frac{X}{S}$ we obtain a subsequence $\{a_{n_k} + S\}_{n\geq 1}$ converging weakly to an element $a + S \in \frac{X}{S}$. Since S is finite dimensional and $m_k := P(a_{n_k} - a) \in S$ and $||m_k|| \leq 2||P||$ we can suppose, without loss of generality, that there exists $m_0 \in S$ with $||m_k - m_0|| \longrightarrow 0$.

Now, we can consider the subset of X^* defined by

$$V = \{ f \in X^* : f(x) = f(P(x)) \text{ for all } x \in X \}.$$

It is easy to check that V is a closed subspace of X which is a complement of S^{\perp} (in fact, $V = (\text{Range}(I - P))^{\perp})$. that means, V is closed, $V \cap S^{\perp} = \{0\}$ and $V + S^{\perp} = X^*$. As is well known we can identify S^{\perp} with $(\frac{X}{S})^*$. Let $f \in X^*$ be arbitrary. We can split f in the form $f = f_1 + f_2$ with $f_1 \in S^{\perp}$ and $f_2 \in V$. Therefore, we have

$$f(a_{n_k}) = f_1(a_{n_k}) + f_2(a_{n_k}) = T_{f_1}(a_{n_k} + S) + f_2(a_{n_k}).$$
 We have that $T_{f_1}(a_{n_k} + S) \longrightarrow T_{f_1}(a + S) = f_1(a).$

On the other hand,

$$f_2(a_{n_k}) = f_2(a_{n_k} - a) + f_2(a) = f_2(P(a_{n_k} - a)) + f_2(a)$$

= $f_2(m_k) + f_2(a) \longrightarrow f_2(m_0) + f_2(a)$.

Therefore, from $f_1(m_0) = 0$ we get

$$f(a_{n_k}) \longrightarrow f_1(a) + f_2(a) + f_2(m_0) = (f_1 + f_2)(a + m_0) = f(a + m_0).$$

Hence, $\{a_{n_k}\}_{k>1}$ converges weakly to $a + m_0$. \square

Corollary 2.7. Let M be a finite dimensional subspace of a Banach space X, $\varepsilon > 0$ be given and let W be a closed subspace of X such that M is a subspace of W. If $\frac{W}{M}$ is ε -weakly Chebyshev in $\frac{X}{M}$, then W is ε -weakly Chebyshev in X.

The following example shows that finite dimensionality of M can not omit in Corollary 2.7.

Example 2.8. Let $X = \ell^{\infty}$, $W = \ell^{1}$, $M = \{\{x_{n}\}_{n \geq 1} \in W : x_{1} = 0\}$ and let $\varepsilon > 0$ be given. By Lemma 1.3, W is not ε -weakly

Chebyshev in X. Since $dim \frac{W}{M} = 1$, $\frac{W}{M}$ is ε -weakly Chebyshev in $\frac{X}{M}$.

Acknowledgment

The authors express their gratitude to the referees for their helpful suggestions concerning the final version of this paper.

References

- [1] E. W. Cheney and D. E. Wulbert, Existence and unicity of best approximations, *Mathematics Scandinavi*, vol. 24 (1969), 113-140.
- [2] M. Feder, On the sum of proximinal subspaces, *Journal of Approximation Theory*, vol. 49 (1987), 144-148.
- [3] H. Mohebi, H. Radjavi, On compactness of the best approximant set, *J. Nat. Geom.*, 21, no.1-2 (2002), 52-62.
- [4] H. Mohebi, H. Mazaheri, On compactness and weakly compactness of the best approximant set, *Math. Sci. Res. Hot-Line*, 5, no.10 (2001), 31-42.
- [5] H. Mohebi, Sh. Rezapour, On compactness of the set of extensions of a continuous linear functional, J. Nat. Geom., 22, no. 1-2 (2002), 91-102.
- [6] H. Mohebi, Sh. Rezapour, Upper semi-continuity of the projective maps, J. Nat. Geom., 21, no. 1-2 (2002), 63-80.
- [7] H. Mohebi, On quasi-Chebyshev subspaces of Banach spaces, *Journal of Approximation Theory*, vol. 107 (2000), 87-95.
- [8] [8] H. Mohebi, Pseudo-Chebyshev subspaces in L^1 , Korean J. comput. Appl. Math., vol. 7, no.2 (2000), 465-475.
- [9] Sh. Rezapour, ε -pseudo Chebyshev and ε -quasi Chebyshev subspaces of Banach spaces, Technical Report, Azarbaidjan University of Tarbiat Moallem, 2003.
- [10] Sh. Rezapour, ε -weakly Chebyshev subspaces of Banach spaces, Anal Theory Appl., vol. 19, no. 2 (2003), 130-135.
- [11] W. Rudin, Functional Analysis, McGraw-Hill, New York, 1973.
- [12] I. Singer, Best approximation in normed linear spaces by elements of linear subspaces, Springer-Verlag, Berlin, 1970.

Sh. Rezapour

Department of Mathematics
Azarbaidjan University of Tarbiat Moallem
Tabriz
51745-406, Iran
e-mail:sh.rezapour@azaruniv.edu
shahramrezapour@yahoo.ca

H. Mohebi

Department of Mathematics Shahid Bahonar University of Kerman Kerman Iran

e-mail:hmohebi@mail.uk.ac.ir