ON THE INFINITE PRODUCT REPRESENTATION OF SOLUTION AND DUAL EQUATIONS OF STURM-LIOUVILLE EQUATION WITH TURNING POINT OF ORDER 4M+1

H. KHEIRI AND A. JODAYREE AKBARFAM

ABSTRACT. The purpose of this paper is studying the infinite product representation of solution of boundary value problem:

$$-y'' + q(x)y = \lambda R^{2}(x)y, 0 \le x \le 1$$

y(0) = 0 = y(1), (I)

where $\lambda = \rho^2$ is the spectral parameter and q(x) is a integrable function. We also suppose that

$$R^{2}(x) = (x - x_{1})^{4m+1}R_{0}(x)$$

where $0 < x_1 < 1$, $m \in N$, $R_0 > 0$ for $x \in [0,1]$, R_0 is twice continuously differentiable on [0,1] and $R^2(x)$ has one zero in [0,1], so called turning point.

The product representation satisfies in the original equation (I). As a result we substituted the infinite product form in the equation (I) and derive the associate dual equations.

MSC(2000): Primary 34E

Keywords: Asymptotic distribution, Turning point, Sturm-Liouville problem, infinite

product, dual equations

Received: 02 May 2004, Revised: 9 July 2004

corresponding author: H. Kheiri

 $\ \, \textcircled{c}$ 2003 Iranian Mathematical Society.

1. Introduction

We consider boundary value problems L of the form

$$Ly = -y'' + q(x)y = \lambda R^2(x)y, \qquad x \in [0, 1]$$
 (1)

$$y(0) = 0 = y(1) \tag{2}$$

where $\lambda = \rho^2$ is the spectral parameter and the functions q(x) and $R^2(x)$ satisfy:

(i) $R^2(x) = R_0(x)(x - x_1)^l$ is real and has one zero x_1 of order $l = 4m + 1, m \in N$ in [0, 1] and also R_0 is positive and twice continuously differentiable.

(ii) q(x) is bounded and integrable on I = [0, 1].

To study the infinite representation of the solution in this paper we use the asymptotic form of fundamental system of solutions (FSS) for equation (??) constructed in [?], [?] and we also use the asymptotic form of eigenvalues of equation (??) constructed in [?]. Note that the infinite product representation of solution with simple turning point has been studied in [?].

2. Notations and preliminary results

Let $\epsilon > 0$ be fixed and sufficiently small, and let $D_{\epsilon} = [0, x_1 - \epsilon] \bigcup [x_1 + \epsilon, 1]$. Further, we set $\mu = \frac{1}{2+l}$ and $\theta = 4\mu$. we also denote

$$I_{+} = \{x : R^{2}(x) > 0\} \qquad I_{-} = \{x : R^{2}(x) < 0\}$$

$$\xi(x) = \begin{cases} 0 & \text{for } x \in I_{+}(x) \\ 1 & \text{for } x \in I_{-}(x) \end{cases}$$

$$R_{+}^{2} = \max(0, R^{2}(x)) \qquad R_{-}^{2} = \max(0, -R^{2}(x))$$

$$\gamma = 2\sin(\frac{\pi\mu}{2})$$

$$K_{\pm}(x) = \begin{cases} 1 & \text{for } x \in I_{-}(x) \\ \frac{1}{2}\csc(\frac{\pi\mu}{2})\exp(\mp i\frac{\pi}{4}) & \text{for } x \in I_{+}(x) \end{cases}$$

$$K_{\pm}^{*}(x) = \begin{cases} \pm i & \text{for } x \in I_{-}(x) \\ 2\sin(\frac{\pi\mu}{2})\exp(\pm i\frac{\pi}{4}) & \text{for } x \in I_{+}(x) \end{cases}$$

Let

$$S_k = \{ \rho | \arg \rho \in \left[\frac{k\pi}{4}, \frac{(k+1)\pi}{4} \right] \}, \qquad k = \{0, 1\}.$$

In [?] it is shown that for each fixed sector $S_k(k=0,1)$ there exits a FSS of (??) $\{z_1(x,\rho), z_2(x,\rho)\}, x \in I, \rho \in S_k$ such that the functions $(x,\rho) \to z_s^{(j)}(x,\rho)(s=1,2; j=0,1)$ are continuous for $x \in I$, $\rho \in S_k$ and holomorphic for each fixed $x \in I$ with respect to $\rho \in S_k$; moreover for $|\rho| \to \infty$, $\rho \in S_k$, $x \in D_{\epsilon}$, $y \in S_k$

$$z_1^j(x,\rho) = (\pm i\rho)^j |R(x)|^{j-\frac{1}{2}} (\exp(\mp i\frac{\pi}{2}\xi(x))^j \exp(\rho \int_0^x |R_-(t)| dt) \times \exp(\pm i\rho \int_0^x |R_+(t)| dt) K_\pm(x) \kappa(x,\rho),$$
(3)

$$z_2^j(x,\rho) = (\mp i\rho)^j |R(x)|^{j-\frac{1}{2}} (\exp(\mp i\frac{\pi}{2}\xi(x))^j \exp(-\rho \int_0^x |R_-(t)| dt) \times \exp(\mp i\rho \int_0^x |R_+(t)| dt) K_+^*(x) \kappa(x,\rho), \tag{4}$$

$$\begin{vmatrix} z_1(x,\rho) & z_2(x,\rho) \\ z'_1(x,\rho) & z'_2(x,\rho) \end{vmatrix} = \mp (2i\rho)[1].$$

Here and in the following:

- (i) The upper or lower signs in formulae correspond to the sectors S_0, S_1 respectively.
- (ii) $[1] = 1 + O(\frac{1}{\rho^{\theta}})$ uniformly in $x \in D_{\epsilon}$.
- (iii) $\kappa(x,\rho) = O(1) \ as \ |\rho| \to \infty, \rho \in S_k.$

3. Representation of the solution in the form of infinite product

Let $\varphi(x,\lambda)$ be solution of equation (??) with initial conditions

$$\varphi(0,\lambda) = 0$$
 $\frac{\partial \varphi}{\partial x}(0,\lambda) = 1.$ (5)

Using the FSS $\{z_1(x,\rho), z_2(x,\rho)\}$ we obtain:

$$\varphi(x,\lambda) = \frac{1}{\omega(\lambda)} (z_1(0,\rho)z_2(x,\rho) - z_2(0,\rho)z_1(x,\rho))$$

where $\omega(\lambda) = \mp (2i\rho)[1]$. By virtue of (??)-(??), we infer that for $\rho \in S_k$, $x \in D_{\epsilon}$, j = 0, 1

$$\varphi^{j}(x,\lambda) = \frac{1}{2} (\pm i\rho)^{j-1} |R(0)|^{-\frac{1}{2}} |R(x)|^{j-\frac{1}{2}} (\exp(\mp i\frac{\pi}{2}\xi(x))^{j} \exp(\pm i\frac{\pi}{2}) \times \exp(\rho \int_{0}^{x} |R_{-}(t)| dt) \exp(\pm i\rho \int_{0}^{x} |R_{+}(t)| dt) K_{\pm}(x) \kappa(x,\rho)$$
(6)

and

$$|\varphi^{j}(x,\lambda)| \le C|\rho|^{j-1} |\exp(\rho \int_{0}^{x} |R_{-}(t)|dt) \exp(\pm i\rho \int_{0}^{x} |R_{+}(t)|dt)|.$$
 (7)

It follows from (??) that the function $\varphi^j(x,.)$ are entire of order $\frac{1}{2}$. The function $\varphi(x,\lambda)$ has a zero set for each x, say $\{\lambda_n\}$, so that $\varphi(x,\lambda_n(x))=0$ which corresponds to eigenvalues of the Dirichlet problem for equation (??) on the closed interval [0,x]. Note that $\lambda_n \neq 0$ for any x by Sturm's comparison theorem since we assume that $q(x) \geq 0$. The eigenvalues of the Dirichlet problem on [0,x] for (??), are real and simple (see $[?],\S10.61$), so we have

$$\frac{\partial \varphi}{\partial \lambda}(x, \lambda_n(x)) \neq 0.$$

We consider the Dirichlet problem corresponding to equation (??) on [0, x] for fixed $x, x < x_1$. By result of [?] this problem has an infinite number of negative eigenvalues, which we denote by $\{\lambda_n\}$. By the Hadamard's theorem, the product formula is of the form

$$\varphi(x, \lambda) = C(x) \prod_{n=1}^{\infty} \left(1 - \frac{\lambda}{\lambda_n}\right)$$
 (8)

where φ satisfies in initial condition (??) and C(x) is a function of x and independent of λ , by [?], each function λ_n is of the form

$$\sqrt{\lambda_n} = \frac{n\pi}{p(x)}i + O(\frac{1}{n}), \qquad x < x_1$$

where

$$\lim_{x \to 0} \lambda_n(x) = -\infty, \qquad \lambda_1 > \lambda_2 > \dots$$

and

$$p(x) = \int_0^x |R(t)| dt. \tag{9}$$

In order to estimate C(x) we rewrite the infinite product as

$$\varphi(x,\lambda) = C(x) \prod_{n=1}^{\infty} (1 - \frac{\lambda}{\lambda_n})$$

$$= C(x) \prod_{n=1}^{\infty} \frac{\lambda_n - \lambda}{\lambda_n}$$

$$= C_1(x) \prod_{n=1}^{\infty} \frac{\lambda - \lambda_n}{z_n^2}$$
(10)

with

$$C_1(x) = C(x) \prod_{n=1}^{\infty} \frac{-z_n^2}{\lambda_n(x)}$$

$$\tag{11}$$

where $z_n = \frac{n\pi}{p(x)}$.

It follows from the asymptotic form of eigenvalues, $-\frac{z_n^2}{\lambda_n} = 1 + O(\frac{1}{n^2})$, then the infinite product $\prod_{n=1}^{\infty} \frac{-z_n^2}{\lambda_n(x)}$ is absolutely convergent on any compact subinterval of $(0, x_1)$.

For $x \in (x_1, 1]$, fixed, the Dirichlet problem for (??) on [0, x] has an infinite number of positive and negative eigenvalues, which we denote by $\{u_n\}$, $\{r_n\}$ respectively, it follows from results of [?]

$$\sqrt{u_n(x)} = \frac{n\pi - \frac{\pi}{4}}{f(x)} + (\frac{1}{n}), \qquad x_1 < x$$

where

$$f(x) = \int_{x_1}^x |R(t)|dt \tag{12}$$

and $r_n(x)$ is of the form

$$\sqrt{r_n(x)} = \frac{n\pi - \frac{\pi}{4}}{p(x_1)}i + (\frac{1}{n}), \qquad x_1 < x.$$

where p(x) is defined in (??). By Hadamard's theorem, the solution on [0, x] for $x > x_1$ is of the form:

$$\varphi(x,\lambda) = C(x) \prod_{n=1}^{\infty} \left(1 - \frac{\lambda}{r_n}\right) \prod_{n=1}^{\infty} \left(1 - \frac{\lambda}{u_n}\right). \tag{13}$$

Let \tilde{j}_m be the positive zeros of $J_1'(z)$, then

$$\tilde{j}_m = m^2 \pi^2 - \frac{m\pi^2}{2} + O(1)$$

for more details (See [?],§9.5.11). Consequently we have

$$\frac{\tilde{j}_n^2}{f^2(x)u_n(x)} = 1 + O(\frac{1}{n^2}),$$
$$\frac{-\tilde{j}_n^2}{p^2(x_1)r_n(x)} = 1 + O(\frac{1}{n^2})$$

where p(x) and f(x) are defined in (??) and (??) respectively. Therefore the infinite products $\prod_{n=1}^{\infty} \frac{\tilde{j}_n^2}{f^2(x)u_n(x)}$ and $\prod_{n=1}^{\infty} \frac{-\tilde{j}_n^2}{p^2(x_1)r_n(x)}$ are absolutely convergent for each $x > x_1$. Then we may write

$$\varphi(x,\lambda) = C_2(x) \prod_{n=1}^{\infty} \frac{(\lambda - r_n(x))p^2(x_1)}{\tilde{j}_n^2} \prod_{n=1}^{\infty} \frac{(u_n(x) - \lambda)f^2(x)}{\tilde{j}_n^2}$$

where

$$C_2(x) = C(x) \prod_{n=1}^{\infty} \frac{\tilde{j}_n^2}{f^2(x)u_n(x)} \prod_{n=1}^{\infty} \frac{-\tilde{j}_n^2}{p^2(x_1)r_n(x)}.$$

Now we will first approximate infinite products, then by using the asymptotic form of $\varphi(x, \lambda)$, we will determine C_i , i = 1, 2.

Lemma 3.1. Let $z_m = \frac{m\pi}{p(x)}$ and $\lambda_m(x), 1 \leq m$ be a sequence of continuous functions such that for each x

$$\lambda_m(x) = -\frac{m^2 \pi^2}{p^2(x)} + O(1)$$
 $0 < x < x_1.$

Then the infinite product

$$\prod_{m=1}^{\infty} \left(\frac{\lambda - \lambda_m}{z_m^2} \right)$$

is an entire function of λ for fixed x in $(0, x_1)$ whose roots are precisely $\lambda_m(x), 1 \leq m$. Moreover

$$\prod_{m=1}^{\infty} \left(\frac{\lambda - \lambda_m}{z_m^2}\right) = \frac{\sinh(\rho p(x))}{\rho p(x)} (1 + O(\frac{\log m}{m})),$$

uniformly on the circles $|\lambda| = \frac{(n+\frac{1}{2})^2\pi^2}{p^2(x)}$, where $\rho = \sqrt{\lambda}$ and p(x) is a function of x as defined in (??)

Proof. See [?].

Lemma 3.2. Let \tilde{j}_n be the positive zeros of $J'_1(z)$ and for fixed x in $(x_1, 1)$

$$u_n(x) = \frac{n^2 \pi^2}{f^2(x)} - \frac{n\pi^2}{2f^2(x)} + O(1) \qquad 1 \le n$$

be a positive sequence of continuous functions. then the infinite product

$$\prod_{n=1}^{\infty} \frac{(u_n(x) - \lambda)f^2(x)}{\tilde{j}_n^2}$$

is an entire function of λ for fixed x, whose roots are precisely $u_n(x), 1 \leq n$. Moreover

$$\prod_{n=1}^{\infty} \frac{(u_n(x) - \lambda)f^2(x)}{\tilde{j}_n^2} = 2J_1'(f(x)\rho)\{1 + O(\frac{\log n}{n})\}$$

uniformly on the circles $|\lambda| = \frac{n^2 \pi^2}{f^2(x)}$.

Proof. See [?] and [?].

Lemma 3.3. Let \tilde{j}_n be the positive zeros of $J'_1(z)$ and for fixed x in $(x_1, 1)$

$$r_n(x) = -\frac{n^2 \pi^2}{p^2(x_1)} + \frac{n\pi^2}{2p^2(x_1)} + O(1) \qquad 1 \le n$$

be a negative sequence of continuous functions. then the infinite product

$$\prod_{n=1}^{\infty} \frac{(\lambda - r_n(x))p^2(x_1)}{\tilde{j}_n^2}$$

is an entire function of λ for fixed x, whose roots are precisely $r_n(x), 1 \leq n$. Moreover

$$\prod_{n=1}^{\infty} \frac{(\lambda - r_n(x))f^2(x)}{\tilde{j}_n^2} = 2J_1'(ip(x_1)\rho)\{1 + O(\frac{\log n}{n})\}$$

uniformly on the circles $|\lambda| = \frac{n^2 \pi^2}{p^2(x_1)}$.

Proof. See [?] and [?].

Theorem 3.4. Let $\varphi(x, \lambda)$ be the solution of (??) with the initial conditions (??), then for $0 \le x < x_1$,

$$\varphi(x,\lambda) = |R(0)R(x)|^{-\frac{1}{2}}p(x)\prod_{k=1}^{\infty} \frac{\lambda - \lambda_k(x)}{z_k^2}$$

where p(x) is defined (??), $z_k = \frac{k\pi}{p(x)}$ and $\{\lambda_k(x)\}$ is the sequence of eigenvalues for the Dirichlet problem associated with (??) on [0, x].

Proof. For $0 < x < x_1, \rho \in S_0, |\rho| \to \infty$ by virtue of (??) we calculate

$$\varphi(x,\rho) = \frac{1}{2} (i\rho)^{-1} |R(0)R(x)|^{-\frac{1}{2}} \exp(i\frac{\pi}{2})$$

$$\times \exp(\rho \int_0^x |R(t)|dt) k_+(x) \kappa(x,\rho)$$
(14)

Now from (??) and (??) we have

$$\varphi(x,\rho) = C_1 \prod_{n=1}^{\infty} \frac{\lambda - \lambda_k}{z_k^2}$$

$$= \frac{1}{2} (i\rho)^{-1} |R(0)R(x)|^{-\frac{1}{2}} \exp(i\frac{\pi}{2})$$

$$\times \exp(\rho \int_0^x |R(t)| dt) k_+(x) \kappa(x,\rho).$$

From Lemma 3.2, uniformly on the circles $|\lambda| = \frac{(n+1/2)^2\pi^2}{p^2(x)}$, we have

$$\prod_{k=1}^{\infty} \frac{\lambda - \lambda_k}{z_k^2} = \frac{\sinh(\rho p(x))}{\rho p(x)} (1 + O(\frac{\log k}{k}))$$

whence on the circles $|\lambda| = \frac{(n+1/2)^2 \pi^2}{p^2(x)}$ we obtain

$$C_1(x) = \frac{\varphi(x,\rho)}{\prod_{k=1}^{\infty} \frac{\lambda - \lambda_k}{z_k^2}} = |R(0)R(x)|^{-\frac{1}{2}}p(x).$$

as $|\rho| \to \infty$

Theorem 3.5. Let $\varphi(t,\lambda)$ be the solution of the initial value problem (??), (??). Then for $x_1 < x$,

$$\varphi(x,\lambda) = \frac{|R(0)R(x)|^{-\frac{1}{2}}}{2}\pi p^{\frac{1}{2}}(x_1)f^{\frac{1}{2}}(x)\csc(\frac{\pi\mu}{2}) \times \prod_{n=1}^{\infty} \frac{(\lambda - r_n(x))p^2(x_1)}{\tilde{j}_n^2} \prod_{n=1}^{\infty} \frac{(u_n(x) - \lambda)f^2(x)}{\tilde{j}_n^2}$$
(15)

Proof. For $x_1 < x < 1$, $|\rho| \to \infty$ by use of (??) it is obtained

$$\varphi(x,\lambda) = \frac{1}{4} (-i\rho)^{-1} |R(0)R(x)|^{-\frac{1}{2}} (-i) \exp(\rho p(x_1))$$

$$\times \exp(-i\rho f(x)) \csc(\frac{\pi \mu}{2}) \exp(i\frac{\pi}{4}) \kappa(x,\rho)$$

$$= \frac{1}{4\rho} |R(0)R(x)|^{-\frac{1}{2}} \exp(\rho p(x_1))$$

$$\times \cos(\rho f(x) - \frac{\pi}{4}) \csc(\frac{\pi \mu}{2}) (1 + O(\frac{1}{\rho^{\theta}}))$$

By Lemma 3.2 and 3.3, on the circles $|\lambda| = \min\{\frac{n^2\pi^2}{p^2(x_1)}, \frac{n^2\pi^2}{f^2(x)}\}$ we have

$$\varphi(x,\lambda) = C_2(x) \prod_{n=1}^{\infty} \frac{(\lambda - r_n(x))p^2(x_1)}{\tilde{j}_n^2} \prod_{n=1}^{\infty} \frac{(u_n(x) - \lambda)f^2(x)}{\tilde{j}_n^2}
= 4J_1'(f(x)\rho)J_1'(ip(x_1)\rho)\{1 + O(\frac{\log n}{n})\}
= \frac{4\exp(\rho p(x_1))}{\pi p^{\frac{1}{2}}(x_1)f^{\frac{1}{2}}(x)\rho}(\cos(f(x)\rho - \frac{\pi}{4}) + O(\frac{1}{\rho})).$$
(17)

Now by virtue of (??), (??) and let of $|\rho| \to \infty$ it is calculated

$$C_{2}(x) = \frac{\varphi(x,\rho)}{\prod_{n=1}^{\infty} \frac{(\lambda - r_{n}(x))p^{2}(x_{1})}{\tilde{j}_{n}^{2}} \prod_{n=1}^{\infty} \frac{(u_{n}(x) - \lambda)f^{2}(x)}{\tilde{j}_{n}^{2}}}$$
$$= \frac{1}{16} \pi |R(0)R(x)|^{-\frac{1}{2}} \csc(\frac{\pi \mu}{2}) p^{\frac{1}{2}}(x_{1}) f^{\frac{1}{2}}(x)$$

4. Dual equations

By the implicit function theorem $\lambda_n(x)$, $u_n(x)$ and $r_n(x)$ are twice continuously differentiable functions. For $x < x_1$, the condition

$$\varphi(x,\lambda_n(x)) = 0$$

gives, as usual,

$$\frac{\partial \varphi}{\partial x} + \frac{\partial \varphi}{\partial \lambda} \cdot \lambda_n' = 0 \tag{18}$$

and differentiating again

$$\frac{\partial^2 \varphi}{\partial x^2} + 2 \frac{\partial^2 \varphi}{\partial x \partial \lambda} \cdot \lambda_n' + \frac{\partial^2 \varphi}{\partial \lambda^2} \cdot (\lambda_n')^2 + \frac{\partial \varphi}{\partial \lambda} \cdot \lambda_n'' = 0 \tag{19}$$

The first term in (??) is zero at $(x, \lambda_n(x))$ by virtue of (??). Thus

$$2\frac{\partial^2 \varphi}{\partial x \partial \lambda} \cdot \lambda'_n + \frac{\partial^2 \varphi}{\partial \lambda^2} \cdot (\lambda'_n)^2 + \frac{\partial \varphi}{\partial \lambda} \cdot \lambda''_n = 0. \tag{20}$$

Similarly for $x_1 < x$, the conditions

$$\varphi(x, u_n(x)) = 0$$

$$\varphi(x, r_n(x)) = 0$$

give the equations

$$2\frac{\partial^{2}\varphi}{\partial x \partial \lambda} u'_{n} + \frac{\partial^{2}\varphi}{\partial \lambda^{2}} (u'_{n})^{2} + \frac{\partial \varphi}{\partial \lambda} u''_{n} = 0$$

$$2\frac{\partial^{2}\varphi}{\partial x \partial \lambda} r'_{n} + \frac{\partial^{2}\varphi}{\partial \lambda^{2}} (r'_{n})^{2} + \frac{\partial \varphi}{\partial \lambda} r''_{n} = 0$$
(21)

If we make use of the infinite product form of $\varphi(x, \lambda)$, substitute this in (??), in the case $x < x_1$ and in (??) for $x > x_1$ it will be

obtained the dual of the equation (??). Indeed we need the various derivatives of $\varphi(x, \lambda)$ at the points $(x, \lambda_n(x))$ for $x < x_1$ and at the points $(x, u_n(x))$ and $(x, r_n(x))$ for $x > x_1$.

Now, we first calculate the various derivatives of $\varphi(x, \lambda)$ for $x < x_1$. In this case, from (??), it can be written

$$\varphi(x,\lambda) = C(x) \prod_{k=1}^{\infty} \left(1 - \frac{\lambda}{\lambda_k(x)}\right)$$
 (22)

where C is a function independent of λ ; by using (??) it is obtained

$$C_1 = |R(0)R(x)|^{-\frac{1}{2}}p(x) = C \prod_{k=1}^{\infty} \frac{-z_k^2}{\lambda_k}$$

where $z_k = \frac{k\pi}{p(x)}$ and p(x) is determined in (??). Therefore

$$C(x) = |R(0)R(x)|^{-\frac{1}{2}}p(x)\prod_{k=1}^{\infty} \frac{-\lambda_k}{z_k^2}.$$
 (23)

We calculate $\frac{\partial \varphi}{\partial \lambda}$, $\frac{\partial^2 \varphi}{\partial \lambda^2}$ and $\frac{\partial^2 \varphi}{\partial x \partial \lambda}$ at the points $(x, \lambda_n(x))$ by using (??). In determining of $\frac{\partial^2 \varphi}{\partial \lambda \partial x}$, the interchange of summation and differentiation in

$$\frac{d}{dx} \sum_{k=1}^{\infty} \log(1 - \frac{\lambda}{\lambda_k(x)})$$

is valid, because by results of [?], the differentiated series

$$\sum_{k \neq n} \frac{-\lambda_n \lambda_k'(x)}{(\lambda_k(x) - \lambda_n) \lambda_k(x)}$$

is uniformly convergent. We define F_n by

$$F_n = F_n(x, \lambda_n(x)) = \prod_{k \neq n, 1 < k} (1 - \frac{\lambda_n(x)}{\lambda_k(x)}).$$
 (24)

Since

$$\frac{\partial \varphi}{\partial \lambda} = C \sum_{i=1}^{\infty} \frac{-1}{\lambda_i(x)} \prod_{k \neq i, 1 < k} (1 - \frac{\lambda}{\lambda_k(x)}),$$

we have

$$\frac{\partial \varphi}{\partial \lambda}(x, \lambda_n) = \frac{-CF_n}{\lambda_n(x)},$$

$$\frac{\partial^2 \varphi}{\partial \lambda^2}(x, \lambda_n(x)) = \frac{2CF_n}{\lambda_n(x)} \sum_{i \neq n, 1 \leq i} \frac{1}{\lambda_i} (1 - \frac{\lambda_n(x)}{\lambda_i(x)})^{-1},$$

$$\frac{\partial^2 \varphi}{\partial \lambda \partial x} = \frac{-C'(x)F_n}{\lambda_n(x)} + \frac{C(x)\lambda'_n F_n}{\lambda_n^2} - C(x)F_n \sum_{i \neq n, 1 \leq i} \frac{\lambda'_i}{\lambda_i^2} (1 - \frac{\lambda_n(x)}{\lambda_i(x)})^{-1}$$

$$-\frac{C(x)F_n \lambda'_n}{\lambda_n} \sum_{i \neq n, 1 \leq i} \frac{1}{\lambda_i} (1 - \frac{\lambda_n(x)}{\lambda_i(x)})^{-1}.$$

Placing these terms into (??) we obtain

$$\lambda_n'' + \frac{2C'\lambda_n'}{C} + 2\lambda_n \lambda_n' \sum_{i \neq n, 1 \le i} \frac{\lambda_i'}{\lambda_i^2} (1 - \frac{\lambda_n(x)}{\lambda_i(x)})^{-1} - 2\frac{(\lambda_n')^2}{\lambda_n} = 0.$$
(25)

Dividing the above equation by λ'_n and integrating from a fixed number $\alpha \neq 0$ up to x, we obtain

$$\lambda_n'(x) = \frac{\lambda_n^2(x)\lambda_n'(\alpha)C^2(\alpha)}{\lambda_n^2(\alpha)C^2(x)}e^{-2S_n(x,\lambda_n)}$$
(26)

where

$$S_n(x,\lambda_n) = \sum_{i \neq n} \int_{\alpha}^{x} \frac{\lambda_i' \lambda_n}{\lambda_i} (\lambda_i - \lambda_n)^{-1}$$
 (27)

and C(x) is determined in (??).

Similarly, for the case $x > x_1$ from (??) and theorem 2, we have

$$\varphi(x,\lambda) = a(x) \prod_{k=1}^{\infty} \left(1 - \frac{\lambda}{r_k(x)}\right) \prod_{k=1}^{\infty} \left(1 - \frac{\lambda}{u_k(x)}\right)$$
(28)

with

$$a(x) = \frac{1}{16}\pi |R(0)R(x)|^{-\frac{1}{2}}\csc(\frac{\pi\mu}{2})p(x_1)^{\frac{1}{2}}f^{\frac{1}{2}}(x)$$

$$\times \prod_{k=1}^{\infty} \frac{f^2(x)u_k(x)}{\tilde{j}_k^2} \prod_{k=1}^{\infty} \frac{p^2(x_1)r_k(x)}{\tilde{j}_k^2}$$
(29)

where $f(x),p^2(x)$ are defined in (??), (??) and \tilde{j}_k , $k=1,2,\ldots$ are the positive zeros of $J_1'(z)$.

as before, we calculate the various derivatives of $\varphi(x,\lambda)$ and evaluate these at the fixed points $(x,u_n(x)),(x,r_n(x))$. Since, by results of [?], the series

$$\sum_{k \neq n} \frac{-u_n u_k'(x)}{(u_k(x) - u_n)u_k(x)}$$

is uniformly convergent, we obtain $\frac{\partial^2 \varphi}{\partial \lambda \partial x}$ from $(\ref{eq:convergent})$ in terms of u_n and r_n .

Suppose

$$G_n(x,\lambda) = \prod_{k \neq n, 1 \le k} \left(1 - \frac{\lambda}{u_k(x)}\right)$$
$$H_n(x,\lambda) = \prod_{1 \le k} \left(1 - \frac{\lambda}{r_k(x)}\right).$$

Then,

$$G_n = G_n(x, u_n(x)) = \prod_{k \neq n, 1 < k} (1 - \frac{u_n(x)}{u_k(x)})$$
 (30)

$$H_n = H_n(x, u_n(x)) = \prod_{1 \le k} \left(1 - \frac{u_n(x)}{r_k(x)}\right)$$
(31)

so that

$$\prod_{k \neq i, 1 \le k} \left(1 - \frac{u_n(x)}{r_k(x)}\right) = H_n \left(1 - \frac{u_n}{r_i}\right)^{-1}.$$
 (32)

We have

$$\frac{\partial \varphi}{\partial \lambda}(x, u_n) = \frac{-aH_nG_n}{u_n(x)}$$

$$\frac{\partial^2 \varphi}{\partial \lambda^2}(x, u_n(x)) = \frac{2aH_nG_n}{u_n(x)} \sum_{1 \le i} \frac{1}{r_i(x) - u_n(x)}$$

$$+ \frac{2aH_nG_n}{u_n(x)} \sum_{1 \le i, i \ne n} \frac{1}{u_i(x) - u_n(x)}$$

$$\frac{\partial^2 \varphi}{\partial \lambda \partial x}(x, u_n(x)) = \frac{-a'(x)H_nG_n}{u_n(x)} + \frac{a(x)H_nG_nu_n'}{u_n'}$$

$$- \frac{a(x)H_nG_nu_n'}{u_n} \sum_{1 \le i} \frac{1}{r_i(x) - u_n(x)}$$

$$- a(x)H_nG_n \sum_{1 \le i} \frac{r_i'}{r_i} (r_i(x) - u_n(x))^{-1}$$

$$- a(x)H_nG_n \sum_{1 \le i, i \ne n} \frac{u_i'}{u_i} (u_i(x) - u_n(x))^{-1}$$

$$- \frac{a(x)H_nG_nu_n'}{u_n} \sum_{1 \le i, i \ne n} \frac{1}{u_i(x) - u_n(x)}$$

Placing these terms into (??) we obtain

$$u_n'' + \frac{2a'u_n'}{a} + 2u_n u_n' \{ \sum_{i \neq n, 1 \le i} \frac{u_i'}{u_i} (u_i(x) - u_n(x))^{-1}$$

$$+ \sum_{1 \le i} \frac{r_i'}{r_i} (r_i(x) - u_n(x))^{-1} \} - 2\frac{(u_n')^2}{u_n} = 0.$$
 (33)

Similarly for negative eigenvalue $r_n(x)$ we get

$$r_n'' + \frac{2a'r_n'}{a} + 2r_n r_n' \{ \sum_{i \neq n, 1 \leq i} \frac{r_i'}{r_i} (r_i(x) - r_n(x))^{-1} + \sum_{1 \leq i} \frac{u_i'}{u_i} (u_i(x) - r_n(x))^{-1} \} - 2\frac{(r_n')^2}{r_n} = 0.$$
 (34)

Dividing the equation (??) by u'_n , the equation (??) by r'_n and integrating from x up to 1, we obtain

$$u'_n(x) = \frac{u_n^2(x)u'_n(1)a^2(1)}{u_n^2(1)a^2(x)}e^{2T_n(x,u_n,r_n)}$$
(35)

$$r'_n(x) = \frac{r_n^2(x)r'_n(1)a^2(1)}{r_n^2(1)a^2(x)}e^{2T_n(x,r_n,u_n)}$$
(36)

where

$$T_n(x, u_n, r_n) = \sum_{i \neq n} \int_x^1 \frac{u_i' u_n}{u_i} (u_i - u_n)^{-1} dv + \sum_i \int_x^1 \frac{r_i' u_n}{r_i} (r_i - u_n)^{-1} dv,$$
(37)

and a(x) is determined in (??).

The system of equations (??), (??) and (??) are dual to the original equation (??) and involves only the functions $\lambda_n(x)$, $u_n(x)$ and $r_n(x)$.

Note that the proof of existence and uniqueness solution for dual equation (??), (??) and (??) in one simple turning point case is given by authors in submitted paper [?].

References

- [1] M. Abramowitz and A. Stegun, *Handbook of mathematical functions*, Dover publications, Inc., New york, 1972.
- [2] W. Eberhard, G. Freiling and A. Schneider, Connection formulae for second-order differential equations with a complex parameter and having an arbitrary number of turning points, *Math. Nachr.* **165** (1994) 205-29.
- [3] G. Freiling and V. Yurko, Inverse poblems for differential equation with turning points, *Journal of Inverse Problems* 13 (1997) 1247-1263.
- [4] E. L. Ince, Ordinery Differential Equations, Dover Publications, INC, New York, 1956.
- [5] A. Jodayree Akbarfam, H. Kheiri and A. B. Mingarelli, The uniquness of the solution of dual equation of an inverse indefinite Sturm-Liouville problem, *Journal of mathematical analysis and applications* (Submitted)
- [6] A. Jodayree Akbarfam and A. B. Mingarelli, The canonical product of the solution of the Sturm-Liouville equation in one turnining point case, Canadian Applied Mathematics Quarterly, 8 (4) (2000) 305-320.
- [7] A. Jodayree Akbarfam and A. B. Mingarelli, Higher order asymptotic distribution of the eigenvalues of nondefinite Sturm-Lioville problems with one turning point, *Journal of comptational and Applied Mathematics* **149** (2002) 423-437.
- [8] A. Jodayree Akbarfam and A. Pourreza, A research note on the second order differential equation, *Int. J. of appl. math.*, **1** (1999) 849-862.

H. Kheiri

Faculty of Mathematical Sciences
Tabriz University
Tabriz
Iran
e-mail:h-kheiri@tabrizu.ac.ir

A. Jodayree Akbarfam

Faculty of Mathematical Sciences Tabriz University Tabriz Iran

e-mail:akbarfam@yahoo.com