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ON THE INFINITE PRODUCT REPRESENTATION
OF SOLUTION AND DUAL EQUATIONS OF
STURM-LIOUVILLE EQUATION WITH TURNING
POINT OF ORDER 4M+1

H. KHEIRI AND A. JODAYREE AKBARFAM

ABSTRACT. The purpose of this paper is studying the infinite
product representation of solution of boundary value problem:

—y" +q(z)y = AR*(z)y, 0<z<l1
y(0) =0 =y(1), ()

where X\ = p? is the spectral parameter and ¢(z) is a integrable
function. We also suppose that

R*(z) = (x — 21)"™" Ro(v)

where 0 < 21 <1, m € N, Ry > 0 for z € [0,1], Ry is twice
continuously differentiable on [0, 1] and R?(x) has one zero in
[0, 1], so called turning point.

The product representation satisfies in the original equation
(I). As a result we substituted the infinite product form in
the equation (I) and derive the associate dual equations.
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1. Introduction

We consider boundary value problems L of the form
Ly = —y"+q(x)y = AR*(x)y,  x€0,1] (1)

y(0) =0=y(1) (2)

where A = p? is the spectral parameter and the functions ¢(z) and
R*(z) satisfy:

(i) R?(x) = Ro(z)(x — z1)" is real and has one zero z; of order
l=4m+1,m € N in [0, 1] and also Ry is positive and twice con-
tinuously differentiable .

(ii) ¢(x) is bounded and integrable on I = [0, 1].

To study the infinite representation of the solution in this paper we
use the asymptotic form of fundamental system of solutions(FSS)
for equation (??) constructed in [?], [?] and we also use the as-
ymptotic form of eigenvalues of equation (??) constructed in [?].
Note that the infinite product representation of solution with sim-
ple turning point has been studied in [?].

2. Notations and preliminary results

Let € > 0 be fixed and sufficiently small, and let D, = [0, 2 —

€] U[z1 + €, 1]. Further, we set u = 2+rl and 6 = 4u. we also denote

I, = {z: R*z) > 0} I_ = {z:R*z) <0}

0 forzel (x
ﬁ(x):{ 1 forxgl_gxg

R% = maz(0, R*(z)) R? = max(0, —R*(x))
v = 2sin(%)

for x € I_(z)
csc() exp(Fi§) for x € I (z)

N for x € I_(x)
Ki(z) = { 2sin(%) exp(xif) for x € I ().
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Let
krm (k+1)m
S = {olarg pe [, BTk — o),

In [?] it is shown that for each fixed sector Si(k =0, 1) there exits
a FSS of (??) {z1(x,p),z(x,p)}, x € I, p € Sk such that the
functions (z,p) — 29 (z,p)(s = 1,2; j = 0,1) are continuous for
x € I, p € S and holomorphic for each fixed x € I with respect to
p € Sg; moreover for |p| = 00, p € Sy, x € D, j=1,2

2w, p) = (Fip)! |R(x) |72 (exp(FigE(x)) exp(p i |R-(t)|dt)
x exp(Eip [y | Ry (8)|dt) K+(2)k(z, p), (3)

(. p) = (Fip)! |R(x) =2 (exp(Fi%E(x)) exp(—p [ |R-(t)|dt)
xexp(Fip [y | By (1)|dt) KL (x)k(z, p), (4)

zl(xap) Z2(xap) — ;
Alwp) o) |~ TEO
Here and in the following:
(i) The upper or lower signs in formulae correspond to the sectors
So, S1 respectively.
(i) 1] =1+ O(p%) uniformly in z € D..
(iii) (z, p) = O(1) as |p| — oo, p € S.

3. Representation of the solution in the form of infinite
product

Let ¢(z, A) be solution of equation (??) with initial conditions

0(0,)) = 0 g—f(o, N = 1. (5)

Using the FSS {z(z, p), z2(x, p)} we obtain:

o, N) = ﬁwo,pmu,p) — (0, p)a(z, p))
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where w(\) = F(2ip)[1]. By virtue of (?7)-(??), we infer that for
pE Sy, z€D, j=01

@ (@, A) = §(£ip) M R(0)| 2 |R(x)[ % (exp(FiGE(2)) exp(i)
xexp(p [y [B-(t)|dt) exp(ip [g | Ry (1)|dt) K (x)k(2, p)  (6)

and

(2 ] < Clob | exp(p [ |R-(0]dt) exp(xip [ LTS

It follows from (??) that the function ¢’(z,.) are entire of order 3.
The function ¢(x,\) has a zero set for each x, say {\,}, so that
o(x, A\p(z)) = 0 which corresponds to eigenvalues of the Dirichlet
problem for equation (?7?) on the closed interval [0,z]. Note that
An # 0 for any x by Sturm’s comparison theorem since we assume
that ¢(z) > 0. The eigenvalues of the Dirichlet problem on [0, z]
for (??7) , are real and simple (see [?],§10.61), so we have

0

S (@, M) # 0.

We consider the Dirichlet problem corresponding to equation
(??) on [0,z] for fixed x, x < ;. By result of [?] this problem
has an infinite number of negative eigenvalues, which we denote by
{A\n}. By the Hadamard’s theorem, the product formula is of the
form

oo 2) =€) [T = 1) ©)

n

where ¢ satisfies in initial condition (??) and C'(z) is a function of
z and independent of A, by [?], each function A, is of the form

1
\/E:pn—ﬂi—l—O(—), T < Ty

where
lim )\n(l') = —00, AL > A >

and

ple) = [ IR(O)d. ()
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In order to estimate C(z) we rewrite the infinite product as

o)) =@ Il
— @) T K;A

A=
%

(10)

n=1
= Cy(2) []
n=1
with

—Z

An()

Ci(x) = C(x) ﬁ 2

n=1

(11)

where 2z, = z%'

It follows from the asymptotic form of eigenvalues, —% = 1+O(#),

then the infinite product [];2, A_?i) is absolutely convergent on any

compact subinterval of (0, z).

For = € (x1, 1], fixed, the Dirichlet problem for (??7) on [0, z] has
an infinite number of positive and negative eigenvalues, which we
denote by {u,}, {r,} respectively, it follows from results of [?]

4"‘(—), T <

where
fle) = [ 1R@)at (12)

and r,(z) is of the form
i+ (=), T < .

ro(x) = o) "

where p(x) is defined in (??). By Hadamard’s theorem, the solution
on [0, z] for z > z; is of the form:
e A= A
p(z,\)=C(z) [JTAa-—) Q- —). (13)

n=1 n p=1 n

nmt—2 1
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Let j,, be the positive zeros of J/(z) , then
2

~ 2 2 mi

m = m -
J T 5

for more details (See [?],8§9.5.11). Consequently we have

+0(1)

n 1
fQ(SU)ifn(SU) =1 + O(ng)a

—Jn  _ 1
p2($1)rn($) =1+ O(ng)

where p(z) and f(z) are defined in (??) and (??) respectively.
Therefore the infinite products [[;2, Wz(m) and [[>2, Pl —Jn

Zn = z1)Tn ()
are absolutely convergent for each x > ;. Then we may write

p(z,A) = Ca(x) ﬁ (A = (@) (1) ﬁ (un(z) - A ()

) 2
n=1 jn n=1 ]n

where
o0 (o0}

Coli) = O) TT 2 [ 2

net L2 (@)un () o5 PP (30)ra ()
Now we will first approximate infinite products, then by using
the asymptotic form of ¢(x, \), we will determine Cj,i =1, 2.

Lemma 3.1. Let 2z, = ;o5 and Am(2),1 < m be a sequence of

continuous functions such that for each x

m2n?

Am(2) = ——— + O(1 0 .
() pZ(x)+ (1) <z <
Then the infinite product
A=A

)

2
“m

i

is an entire function of X for fized x in (0,21) whose roots are
precisely Ap(x),1 < m. Moreover

5 A=A, sinh(pp(z)) logm
ngl( 2 )Tl VTG
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12,2
uniformly on the circles |\| = %

a function of © as defined in (77)

, where p = /X and p(x) is

Proof. See [?].
]

Lemma 3.2. Let j, be the positive zeros of Ji(z) and for fired x
in (z1,1)
_ n’n? nm?
fAz)  2f%(z)
be a positive sequence of continuous functions. then the infinite
product

+O(1) 1<n

£ (iale) ~ N7

n=1 ]727,
is an entire function of \ for fired x, whose roots are precisely
un(x),1 < n. Moreover

2 (u,(x) — ) f2(x , logn
[ A o+ o)
uniformly on the circles |\| = ;}22(7;2).

Proof. See [?] and [?].
O

Lemma 3.3. Let j, be the positive zeros of Ji(z) and for fived =
in (x1,1)

n27r2 7’L7T2

() | 2p%(a)

be a negative sequence of continuous functions. then the infinite
product

ra(x) = — +O(1) 1<n

7 (A= ru(2))p?(z1)

2
n=1 ]n
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is an entire function of \ for fired x, whose roots are precisely
rn(x),1 < n. Moreover

< (N —r,(2) Pz .

I 2=l o g ip(an o)1+ 0

2
n=1 ]n

logn

%))

uniformly on the circles |\| = pgi;rf)-

Proof. See [?] and [?].
|

Theorem 3.4. Let p(x,\) be the solution of (77) with the initial
conditions (?7), then for 0 <z < xy,

_1 o A — Az

o, X) = |ROR()|p(e) TT 22

k=1

where p(z) is defined (7?), z, = % and {\x(z)} is the sequence of

eigenvalues for the Dirichlet problem associated with (?7) on [0, x].

2
R

Proof. For 0 < z < 1, p € Sy, |p| = oo by virtue of (??7) we
calculate

o) = 5lin) IROR@)I explil)
xexp(p [ IR0k (@)k(z, p) (14)
Now from (??) and (??) we have
g0($, p) = 01 lo_j[ A ;}%)\k
1

= (60) " [R(O0) R(@)| " exp(i)

xexplp [ IROIdE)k, (2)A(, ).

From Lemma 3.2, uniformly on the circles |A| = %, we have

A=\ sinh(pp(z)) logk
U= = w UHO5)
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n+1/2)%7?

whence on the circles || = < 7~ we obtain

(@) = 2T RO R@) ().

= I PV

as |p| = oo
|

Theorem 3.5. Let ¢(t, \) be the solution of the initial value prob-
lem (?7?), (??). Then for z; < z,

_RO)R@)|™2 1 | TH
= () 7 (z) ese(=)

" 1°—°[1 (A = rn())p* (1) 1°—°[ (un () :A)fQ(fv) (15)

M

oz, )

2 2
In n=1 In

Proof. For z; <z < 1, |p| = oo by use of (?77) it is obtained

1 1

e(a,)) = 7(=ip) [RO)R()|#(=i) exp(pp(c1))  (16)
x exp(—ipf (x)) ese(5) exp(iT)r(z, p)

- 4ip|R(o)R(x)|% exp(pp(z1))

x cos(pf(z) — %) csc(%)(1 + O(%))

By Lemma 3.2 and 3.3, on the circles |A\| = min{%, }‘;—&2)} we
have

p(z,A) = Ca(x) lo_o[ (A = rn(@)p* (1) lo-o[ (un(r) = A f*(2)

52 )
n=1 jn n=1 ]n

= L (F(@)0) o)) 1+ Oy a7)

_ Aew(pp(@)) ooy T 1
—Wp%(xl)f%(ﬁ)p( (f(@)p 4)+0(p))-
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Now by virtue of (??), (??) and let of |p| — oo it is calculated

B o(z, p)
Colz) = 2o Ora@)p@) o (@M1
n= j2 n= J2

= %67r|R(O)R(x)|% csc(%)p%(xl)f%(x)

4. Dual equations

By the implicit function theorem A, (), u,(z) and r,(z) are twice
continuously differentiable functions. For = < x, the condition

p(w, An(2)) =0

gives , as usual ,

dp  Op
A iy U 1
ox + orx " 0 (18)
and differentiating again
P Py 0%p O
2 DY ()24 == = 1
522 T Zamon e ) g =0 (19)
The first term in (??) is zero at (z, A, (z)) by virtue of (??) . Thus
0%p 0%p Oy
2 A+ —L (A2 4+ LN\ =0. 20
dzon T ane ) F gx A (20)
Similarly for zy < z, the conditions
(2, un(2)) =0
p(x,mn(x)) =0
give the equations
0 0% dyp
2072 w + 22 w2+ L2y =0
dzonn T ()" + Byt
0 0 dp
2 T () + == =0 21
dzox " T g ) g 1)

If we make use of the infinite product form of ¢(x,\), substitute
this in (?7), in the case x < x; and in (??) for z > 2 it will be
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obtained the dual of the equation (??). Indeed we need the various
derivatives of ¢(z, A) at the points (z, A\,(z)) for x < 27 and at the
points (z, u,(z)) and (z,r,(z)) for z > z.

Now , we first calculate the various derivatives of ¢(z, A) for z < z;.
In this case, from (?7?), it can be written

= A
o) =@ I101-305) (22

where C'is a function independent of A; by using (?7) it is obtained
—27
Ci = |R(0)R(x)|">p(x) = C H v

where z, = z% and p(z) is determined in (??). Therefore

00 _)\k
C(x) = [R(0)R( o Il —
k=1
We calculate 22 % and 8‘9 s-a5 at the points (x An(x)) by using
( ??). In determining of 2
differentiation in

(23)

ava, the interchange of summation and

)
Ak ()
is valid, because by results of [?], the differentiated series
Z — A A (@)
(Ak(z) = An) k()

k#n
is uniformly convergent. We define F;, by

Fo=Fy(z, (@)= [ (1-

k#n1<k )‘k ()"

Since
G A
s (1— ),
Z1 k¢g<k Ae(2)
we have
op —CF,

8)\( An) = An(z)’
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o WE, — 1, M)
iz (@ An() (1= ),
?p  —C'(x)F, C(2)\F, Y A() 4
_ nh_ (2)F, L - -
2or () (@) #nzf‘q !N
C(z)F, N, 1 An(x), _
A 2 - )\-(x)) .
no ign1<i i
Placing these terms into ( 7?) we obtain
A ! 1\2
A+ 20°A, + 20, > )‘—;’(1 — /\”(“T))*1 — 2(/\") =0.
c i#n,1<i Vi Ai(z) An (25)

Dividing the above equation by A and integrating from a fixed
number o # 0 up to x , we obtain

where
Sz, M) = ; /; XAA” (A — An) 7t (27)

and C(z) is determined in ( ?77) .
Similarly , for the case x > x; from (??) and theorem 2 , we have

oo =a@ IO~ 2O TT0- 70 o9
with
o) = Sl RORE@I ese(Lpla) £ (o)
) ﬁ fQ(x%gk(x) ﬁ p2<x}>%m<x> )

where f(z),p?(z) are defined in (??), (??) and j, , k=12, ... are
the positive zeros of J{(z) .
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as before , we calculate the various derivatives of ¢(z, ) and evalu-
ate these at the fixed points (x, u,(x)), (x,r,(z)) . Since , by results
of [?], the series

—unup(2)
izn (U (@) — up)ug(z)
is uniformly convergent, we obtain % from (??) in terms of u,
and r, .
Suppose
A
Gplx, \) = 1-—
() = [T~ )
n\<L o rk(x) .
Then ,
Gn:Gn T, Un\T)) = 1-— 30
)= T 0= @
Hy = Hy (o, un(e)) = TL (0 = 2@ (31)
1<k (%)
so that
U () Un |y
1 — =H,(1-—)"". 32
kiggk( rk(x)) ( ri) (32)
We have
8_(,0( ) = —aH, G,
ox " U ()
> 20H,G,, 1
W(L un(@)) = Up () 129 ri(x) — up(x)

2aH,G, 1
un($) 1<i,i#n ul(x) — Unp (SL‘)
—d'(x)H,G,, N a(x)H,G,u,,
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_a(z)HyGruy, 1

" Z i) (o)
-GS () i)
— a(x)H,G, Z;é : z) — up ()™
_a(z)HyGruy, 1

Un 15%:7&7; ui(z) — un(7)

Placing these terms into (??7) we obtain

2
ur 4+ au L+ 2unul { Z u~ — uy(x)) "
i1#n,1<¢
1\2
b ) - ) - 2u —0. (3
1<e Z n
Similarly for negative eigenvalue r,(x ) we get
2 ! l
rl o+ n ot 2r,r Z 7“~ —rp(x)) !
i#n,1<s 't
o r)?
+ Z —ra())7} - 22 =0, (34)
1<z n

Dividing the equation (??) by u! , the equation (??) by r/ and
integrating from z up to 1 , we obtain

I (.CL') _ u?z(x)u;z(l)a2(1)62Tn(m,un,rn)

" uz(1)a?(x)

(35)

,(l‘) — ri(x)r;l(l)aQ(l) 2T ()P ,un)

" rhe@ © (36)

where

T (2, U, 1) Z/ uun ; 1dv+2/ run i — up) ' dv,

i#n (37)
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and a(z) is determined in (77).

The system of equations (??), (??) and (??) are dual to the
original equation (??) and involves only the functions A, (z) , u,(x)
and ry,(z) .

Note that the proof of existence and uniqueness solution for dual
equation (?7?), (??) and (??) in one simple turning point case is
given by authors in submitted paper [?].
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