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A FRACTAL NON-CONTRACTING CLASS OF
AUTOMATA GROUPS

M. J. MAMAGHANI

ABSTRACT. We present an automorphism group of the regular
rooted tree of order 2 that is generated by a three state au-
tomaton and show that this group is fractal, non-contracting,
weakly branch and contains a copy of the lamplighter group.

1. Introduction

The notions of automaton, fractal and branch group have re-
ceived great attention of a wide range of mathematicians due to
the recent works of Bartholdi-Grigorchuk [2], [3], Grigorchuk-Zuk
[10],[11] [12], Grigorchuk [8] and [12] and Brunner-Sidki-Viera [5].
Automata Groups are groups generated by invertible automata and
act on rooted regular trees as automorphisms. These groups have
origin in 1960’s and were used initially to answer Burnside problems
[1] and [13]. We got acquainted with this subject in a talk given by
Grigorchuk at Sharif University of Technology in Tehran in 1994.
In their recent papers Grigorchuk-Zuk introducing an automaton
group that is generated by a three state automaton [10, 11] have
quoted "It is a question of great importance to continue the study
of groups generated by automata and first of all automata with a
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small number of states.” This paper has grown out to reply this
question partially.
Our aim in this paper is to prove the following theorem.

Theorem 1.1. Let G be the group generated by the automaton from
figure 1, then G has the following properties

(1) G is fractal,

(2) G is not contracting,

(3) G is weakly branch,

(4) G contains a copy of the lamplighter group.

The point is that G is an example of a weakly branch non-
contracting group generated by a small automaton.

2. Preliminaries

The group G that we study is generated by a three state
automaton. To be specific we describe this automaton by a quadru-
ple A = (D,Q,¢,v¢), where D = {0,1} is the input and out-
put alphabet, () is the set of states consisting of three elements,
v Q x D — (@ is the transition function and ¢ : Q x D — D is
the exit function. A is said to be invertible if for any ¢ € @ the
function ¢ (q,) : D — D is bijective, i.e. ¥(q,.) € So where S, is
the symmetric group of D, and hence v(q,.) is either i or € where

(1) (0)

The invertible automaton A can be described simply by a directed
labeled graph I'(A), the set of vertices of T'(A4) is @, an edge con-
nects ¢ € @ to s € @ with label ¢ if and only if p(¢,t) = s and a
vertex ¢ is labeled by the unique bijection o, = 9(q, .).

We observe that the automaton A is non-initial. To obtain an ini-
tial automaton A, from A we initialize it at ¢ € @), i.e. we choose
the state ¢ as the initial state and obtain the initial automaton
A, = (¢,D,Q,p,1¢). Accordingly we get three initial automata
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corresponding to the elements of (). The automaton A acts on fi-
nite and infinite strings of alphabet from left to right via the initial
automata A, and changes them to the same kind of strings. In fact
if we feed the string w = tuv ... to A starting from the state ¢ then
A, will come into play and will read ¢ the first letter of w. This
means that the values ¢ = ¢(q,t) and ¢ = 1 (q,t) will be calcu-
lated and then A will substitute A, and ¢t by Ay and u respectively
and will go on calculations until to terminate the reading of w and
producing the output w' = t'u'v". ...

We can visualize D* the set of all strings over D as the binary
rooted tree T,. The root vertex corresponds the null string. From
the above discussion we conclude that the initial automaton A, acts
on 75 as an automorphism, i.e. A, preserves the root and respects
edge incidence. For more details refer to [10].

The initial automata A,,¢ € @ corresponding to the automaton
A = (D,Q,0,1) generate a group G(A) =< Ay, Agy, Ay > [10]
that acts on Ty by automorphisms. This group is called the group
generated by automaton A.

There is a close relationship between Automata Groups and wreath
products. To match the needs of this paper we describe this rela-
tionship in detail. Consider the groups G(A), Sy, G(A)P. The
latter is the group of all functions from D to G(A). The function
f € G(A)P is determined by its values fy and f; at 0 and 1 respec-
tively. Therefore we can write f = (fo, f1). S2 acts on D via the
right action

or = (z,0) =0 'z,7 € D,0 € 5,.
Therefore Sy also act on G(A)P via

(fa 0) = (f()m fla)-

Using these data we can define the wreath product G(A) S as
follows: The elements of G(A)1 S, are the elements of the cartesian
product G(A)P x S, and the composition of (f, o) and (g,d) with

f=(fo, f1) and g = (go, 91) is
(f,0)(g,6) = (h,06)
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where h = (hg, hy) and h; = f;g;;. Now we can embed G(A) in the
wreath product G(A) S, via the map

Ay — (Ago, Agi) oy,

where in fact A,;, 7 = 0,1 is the automaton to which we connect
A, with edge of label j. The expression (A, A4 1)0, is called the
wreath decomposition of A, [11]. Using this embedding we will
identify A, and (Ago, Ag1)o,, will write A, = (Agp, Ag1)o, and
will omit o, when o, = i.

The automata group G that will be studied in this paper is the
group generated by the automaton of figure (1). Here we have
a — (¢,a)i, ¢ — (byc)i and b — (c,b)e. Therefore we write
a=(c,a),c=(bc)and b= (c,b)e.

To facilitate the study of G we now define other concepts that are
necessary for this purpose. The length |u| of u € D* is the number
of letters that constitute u. Let n» > 0 be an integer, the set of all
vertices of Ty with length n is denoted by L,, and is called the n—th
level of T5.

There are four types of subgroups of G that are very useful: sta-
bilizer of a vertex of Ty, stabilizer of a level of Ty, rigid stabilizers
and stabilizer of an element of the boundary of T, (the so called
parabolic subgroups of G[10]).

Definition 2.1. We denote the subgroup of G' that stabilizes the
vertex u of Ty by Stg(u), i.e.
Ste(u) = {g € Glug = u}.
Also the subgroup of G that stabilizes the level L,, of T, is denoted
by Stg(n). We have
Sta(n) ={g € Glug = u,u € L,}

By the z-length of the word w € S* is the number of occurrences
of x in w, we denote this by |w|,.

The fact that the subgroups Stg(n),n = 1,2,... are normal is
proved in [4]. Considering g € Sts(1) as an automaton we observe
that g corresponds to a pair ((go,91),1) = (g0, 91)7 = (go, g1) in the
wreath product G(A) 1 Sy, i.e. the label of the start state of g is i
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(this is the crucial fact that ¢ fixes 0 and 1) and we connect g to go
and ¢g; with edges labeled 0 and 1 respectively. Consequently there
is a well defined embedding

¥ Sta(l) = G x G,¥(9) = (90, 91)
and hence well defined canonical projections ¢; : Stg(1) — G,i =
0,1;0:(9) = ¢i;,i = 0,1 from Sts(1) to the base group G.
Similarly one can define the projections ¢, : Stg(u) — G for any
vertex u.

Figure 1. An automaton on ) and D

Definition 2.2. A group G that acts by automorphisms on a rooted
tree T is called fractal if for every vertex u, ¢,(Stg(u)) = G after
the identification of the tree with the sub-tree T, with root at .

Lemma 2.3. G acts on levels of T transitively

Proof. The proof is the same as the proof of the Proposition 36 in
chapter 8 of [6]. O

3. Fractal and non-contracting

In this section we prove that G is fractal but not contracting.

Proposition 3.1. G is a fractal group.
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Proof. As indicated in the last section we define the homomor-
phism ¢ : Ste(1) — G x G by ¥ = (¢o, ¢1) where

Y(a) = (¢o(a), d1(a)) = (¢, a), ¥ (b*) = (¢o(b*), 1(b%)) = (cb, be)

(
¥(c) = (¢o(c), d1(c)) = (b, 0),
(b tab) = (gbg(b Yab), ¢1 (b tab)) = (b tab,c)
(b teb) = (go(b eb), di (b teb)) = (b teb, ¢ the)

we observe that

a ‘bab 'a =[a,b ]a € G
dola,b a=a
and also
dolbeh '] =
¢1[beb ] = b
Therefore each of the projections of Stg(1) in G is G itself, i.e. G
is fractal.O]

Definition 3.2. A group G is called contracting if there is A < 1
and C, L € N such that for any vertex u of level [ > L we have
l9ul < Algl+C

For information on g, refer to [11].

Proposition 3.3. 0™ =1 if and only if n = 0.

This proposition will be proved through the following lemmas.
But before proceeding we introduce some notations.
For a fixed positive integer n define the elements 0,,, 1,, and w, of
D* as follows.

——
0,=00...0
/—L
1, =11...1

and
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n—1
w,=01...1=0l,_4,....n > 1.

We note that each of these words is of length n except for w; which
is of length 1 .

Lemma 3.4. For any positive odd integer n we have b™ # 1.

Proof. This is obvious from the definition of b. O

Lemma 3.5. Let n be a positive even integer. For any positive
integer m we have

" (Lpyr) = 00" (1) (3.1)

Proof. We calculate

" (Ling1) = " H0)b(1,,) = 0b™(1,,)
(I

Lemma 3.6. If for some n = 2% and for some word x € D* the
relations

b (wnx) = wy_1¢" " 2be(1z) = wy,_100" () (3.2)
hold then we have
(be)? (1n-17) = 1n_ac" be(1x) (3.3)

Proof. using the relations b(0x) = le(x) and b(1z) = 0b(x) re-
peatedly we have

b (wyx) = b"(01,_17) = o(bc)® (1,_12)

comparing the words in (4.2) by the right hand side of this relation
we obtain

o(be)® (1n_12) = 01,_pc" 2bc(1z).
Therefore using the notion of equality of words we have

(b€) 2 (Ln_12) = 1,_sc" 2be(12).
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The proof is complete. O
We remark that under the conditions of Lemma 3.6 we have

(be) 2 (1y—17) = 1,,_s0b" " c(x) (3.4)

Lemma 3.7. Forn =2k =1,2,... and for any v € D* we have
b (wy, 117) = w, 1¢" ?be(17) (3.5)

Proof. For n = 2 we have
b2 (wi1z) = b*(013) = b(le(1x)) = wic* ?be(1x).

Therefore (3.5) is true for k = 1. Let (3.5) be true for k. For k41
we write n = 2% and

m =28 =22% =2

so that assuming the truth of (3.5) we have to prove the truth of
V" (W 117) = Wy, " 2be(12)

or the truth of
V" (wop_112) = wop_1c*"2be(1x)

Using the hypothesis of induction we write

V" (wop_1 1) = "™ (wy_11,17) = " (wy_1c" 2be(1,12)) 56
3.6

Now using again the hypothesis of induction (or Lemma 3.6)we
have

" 2be(1,12) = " ?be(11,2)) = 0™ te(1,2) (3.7)
We put from (3.7) in (3.6) and obtain
V" (won_117) = 0" (wp_ 106" c(1,7)) (3.8)
Now again in (3.7) we apply induction hypothesis and obtain
V2" (wop_112) = wy_1c" (06" c(1,2)) (3.9)

We use the relations n = 2%, ¢(0) = 0b, ¢(1) = 1¢, b(0) = 1c and
b(1) = 1b and write(3.9) as follows

V" (wop_117) = wpc" 0" c(1,2) = w0 e(11,_12) =
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w1 (V)e(ly 12) = whpne" (eh) 2ol 1x) =

W 1™ (ch) ? (L41)
The proof of the Lemma (3.7) is complete. O

We remark here that for n = 2k and for the word w = 0,,_1110
one can prove a"(w) # w and hence a” # 1. Therefore by the
following lemma 0™ # 1 forn =1,2,....

Lemma 3.8. For the integer n, the relations b® =1, ¢ =1 and
a” =1 are equivalent .

Proof. Let b™ = 1. From ¢ = (b, ¢) we obtain that

A =0"c") =1,
Therefore by definition of ¢ we have ¢” = 1
Conversely let ¢ = 1. Then by definition of ¢ we have

1=(b"1)
which together with the definition of b imply ™ = 1. We observe
that a” = 1 is equivalent to ¢ = 1. The proof is complete. O

Proposition 3.9. G is not contracting

Proof. For x = z, the empty word and for n = 2% k = 1,2, ...
from Lemma 3.7 we obtain

b (wy,) = wp—10

and hence b2* # 1fork =1,2,.... This together with the definition
of b imply that

b= (b)), (b))
This implies that

62| = 28 < 281 = | (b)) | + |(be)? T (3.10)

Now let k£ be any positive integer and consider the element a2* whose
leftmost coordinate at any level of T5 is ¢®" and the left coordinate
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of this last element is b2°. This together with (3.10) implies that G
is non-contracting. The proof of the Proposition 3.3 is complete. O

4. G is weakly branch

In this section we show that GG is weakly branch.

Definition 4.1. A group H that acts spherically transitively on
tree T} is called weakly branch if none of its rigid stabilizers Risty (u)
is trivial.

Recall that by Risty(u) we mean a subgroup of H that acts trivially
out of T,, in T5. Of course here we deal with T, and H = G.

Lemma 4.2. Rists(0) and Ristg(1) are nontrivial.

Proof. Let
be ' =(c,b)e(b e ) = (1,1)e
and
t=a"'b=(c",a " (c,b)e = (1,a'b)e = (1, t)e.
Observe that te = (1,t) € Ristg(1) and (¢, 1) = €(te)e € Rists(0).
This proves the lemma. O

Lemma 4.3. The subgroups Ristg(11), Rist;(10) and Rists(01)
and Riste(00) are nontrivial.

Proof. We write € for (1,1)e. Observe that [b,c™'] = (b7'c,c7'b) €
G and therefore u = (¢,¢) € G. We have (1,t)u = (e,te) =
((1,1)e,(1,¢)). Therefore ((1,%)u)? = (1,1,1,#?) € Ristg(11).
From (t7'e)u = (¢t71,1,(1,1)¢) we conclude that (¢72,1,1,1) €
Ristc(00).

The relation €(1,t)eu = (te, €) implies that (1,¢%,1,1) € Ristg(01).
Finally we have (et7'u)?> = (1,1,t72,1) € Ristg(10). Since t* =
(t,t) # 1 the proof is complete. O

Proposition 4.4. Forn € N and u = ujuy - - -u, € D*, Ristg(u)
is nontrivial.
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Proof. The proof is easily carried out by induction taking into

account the proof of the above lemma.

For example from W = (1,1, 1,#%) € G, t* = (,t) and (te) = (1,t%)

we obtain W2 = (1,1, 1, 1,1,1,#%,#%) and W’ = (1,1,1,1,1, (1,¢?),
t?) = (1,1,1,1,1, (te)? t,t). Therefore (W')*W 2 = (1,1,1,1,1, (te)?

,1,1) together with te 7é 1 prove that Ristg(101) is nontrivial. The

proof is complete. O

5. G and lamplighter group

In this section we prove that G contains a copy of the lamplighter
group. The lamplighter group L is an automaton group that is
generated by the automaton from figure 2 [10].

ni mﬂ ﬁl

o 1 i)
Figure 2.
According to [10] p 223, L has a presentation of the form
L=<a,ly* =1, 7"]i,j €L >

Where v = o '3. Let H be the subgroup of G that is generated
by elements b and c.

Lemma 5.1. H and L are isomorphic.

Proof. Comparing the automata generating H and L we define the
function ¢ : L — H by defining it in generators as ¢(a) = b~" and
¢(B) = ¢! and extending it linearly to obtain a homomorphism .
Now we prove ¢ is in fact an isomorphism. To this end we show
that if R is a relator of L then p(R) = 1. For R = * we have

o(v?) = pla ' Ba™B) = be b =1
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Alsoif R=R;; = (v, 7] we compute

p(R) = (b)), ()]

Let A = be™" we have \b™" = biyh~".
For i = 2k and j = 2l even and nonnegative we have b* = ((cb)*¥, (be)*)
and therefore we observe that

A= ((eb)¥, (be)*)(1, 1)e((eb) ™, (be) *) =
((cb)*(be) ™", (be)*(cb) ™ )e = (6, 0p e
where 0, = (cb)*(bc)*. Therefore we have
©(R) = (61,61 V)e(6y, 0 ek, 0 H)e(S1, 6, He =
Ok, 0 0) (06", 01 0y) =
(0k0y " 0k0, ", 0~ 010" 0y)

Now by induction on k we prove p(R) = 1 for any fixed [. For
k =0 we have d; = 1 and so

p(R) = (672,67
Now we compute §;>. We have
62 = (cb)'(be) ' (cb)! (be) ™

Since ¢b = (be, cb)e, bt = (b2, ¢ H)e, b lec = ¢,¢b = (b, c) = ¢, we
have

(be) 2 (eb)? = "o e ebeb = ¢ e e = ¢ 'b T eh = ceb

Thus for [ = 2h even We have proved (bc)~!(cb)! = 1. Therefore 6,
reduces to

62 = (cb)!(be)™
Therefore we have
62 = (be)'(be) " (cb) (be) ™" = (be)!(be) ™ =1

Thus when [ is even and k£ = 0 we have p(R) =1 .
Now let [ = 2h + 1 be odd and k£ = 0. We have

o(R) = (52h+1_2, 52h+12)
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and

Oan1” = (¢b)"* (be) ™' [(be) " (cb)*"](eb) (be) >~
And this regarding the case [ even and cbe b tebe bt = 1 easily
reduces to 1. Therefore we have proved the induction step.
Now assume that for a fixed but arbitrary [ and for £ < n we have
¢(R) =1 . We prove

QO(R) = (5n+15l_16n+15l_17 6n+1_15l6n+1_15l) =1
We write
Ons101 101" = 010,01 0,0 01016, = 6161018,

By inversions and conjugations and using the induction hypothesis
we observe that

615l615l_1 — 5l51_16l_151_1 — 51_15151_151_1
— 5171515171515172 — (5[72.
Since 6,72 = 1 the proof is complete in this case .
The proof in other two cases is quite similar. The proof of the
lemma is complete. O

Being isomorphic to an automata group L acts on 75 by automor-
phisms. Therefore as a corollary for Lemma 4.1 we have:

Corollary 5.2. The lamplighter as an automata group is non-
contracting

We note that this corollary implies that any automata group that
contains a copy of L is non-contracting.

Corollary 5.3. Any automata group containing an isomorphic copy
of the lamplighter group s non-contracting
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