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Abstract. Suppose that Xt is a one-dimensional and real-valued Lévy
process started from X0 = 0, which (1) its nonnegative jumps measure ν
satisfying

∫
R min{1, x2}ν(dx) <∞ and (2) its stopping time τ(q) is either

a geometric or an exponential distribution with parameter q independent
of Xt and τ(0) = ∞. This article employs the Wiener-Hopf Factorization

(WHF) to find, an Lp∗ (R) (where 1/p∗+1/p = 1 and 1 < p ≤ 2), approx-
imation for the extrema’s distributions of Xt. Approximating the finite
(infinite)-time ruin probability as a direct application of our findings has
been given. Estimation bounds, for such approximation method, along

with two approximation procedures and several examples are explored.
Keywords: Lévy processes, positive-definite function, extrema’s distri-
butions, the Fourier transform, the Hilbert transform.
MSC(2010): Primary: 60G51; Secondary: 11A55, 42A38, 60J50,

60E10.

1. Introduction

Suppose that Xt is a one-dimensional and real-valued Lévy process started
from X0 = 0 and defined by a triple (µ, σ, ν): the drift µ ∈ R, the volatility
σ ≥ 0, and the jumps measure ν which is given by a nonnegative function
defined on R \ {0} satisfying

∫
R min{1, x2}ν(dx) <∞. Moreover, suppose that

the stopping time τ(q) is either a geometric or an exponential distribution
with parameter q independent of the Lévy process Xt and τ(0) = ∞. The
Lévy-Khintchine formula states that the characteristic exponent ψ (i.e., ψ(ω) =
ln(E(exp(iωX1))), ω ∈ R) can be represented by

ψ(ω) = iµω − 1

2
σ2ω2 +

∫
R
(eiωx − 1− iωxI[−1,1](x))ν(dx), ω ∈ R.(1.1)
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The extrema of the Lévy process Xt are given by

Mq = sup{Xs : s ≤ τ(q)} & Iq = inf{Xs : s ≤ τ(q)}.

The Wiener-Hopf Factorization (WHF) is a well known technique to study the
characteristic functions of the extrema random variables (see [2]). Namely, the
WHF states that: (i) product of their characteristic functions equal to the
characteristic function of Lévy process Xt at its stopping time τ(q), say Xτ(q)

and (ii) random variable Mq (Iq) is infinitely divisible, positive (negative), and
has zero drift.

In the cases that the characteristic function of Lévy process Xt is either a
rational function or can be decomposed as a product of two sectionally ana-
lytic functions in the closed upper, i.e., C+ := {λ : λ ∈ C and ℑ(λ) ≥ 0},
and lower half complex planes, i.e., C− := {λ : λ ∈ C and ℑ(λ) ≤ 0}. Then
the characteristic functions of random variables Mq and Iq can be determined
explicitly (see [25]). In [17] the authors considered a Lévy process Xt which
its negative jumps is distributed according to a mixture-gamma family of dis-
tributions and its positive jumps measure has an arbitrary distribution. They
established that the characteristic function of such a Lévy process can be de-
composed as a product of a rational function in an arbitrary function, which
are analytic in C+ and C−, respectively. They also provided an analog result
for a Lévy process whose its corresponding positive jumps measure follows from
a mixture-gamma family of distributions while its negative jumps measure is
an arbitrary one, more details can be found in [18].

Unfortunately, in the most situations, the characteristic function of the pro-
cess neither is a rational function nor can be decomposed as a product of
two sectionally analytic functions in C+ and C−. Therefore, the characteristic
functions of Mq and Iq should be expressed in terms of a Sokhotskyi-Plemelj
integral (see Equation, 2.1). But, this form, also, presents some difficulties
in numerical work due to slow evaluation and numerical problems caused by
singularities near the integral contour (see [12]). To overcome these difficulties,
an appropriate (in some sense) approximation method has to be considered.
It is well known that a Lévy process Xt which its jumps distribution follows
from the phase-type distribution has a rational characteristic function (see [8]).
In [14] the authors utilized this fact and approximated a jumps measure ν of a
ten-parameter Lévy processes (named β−family of Lévy process) by a sequence
of the phase-type measures. Then he determined the characteristic functions
of random variables Mq and Iq, approximately. [15] extended [14]’s findings
to class of Meromorophic Lévy processes. Moreover, [16] provided a uniform
approximation for the cumulative distribution function of Mτ(q) whenever Xt

is a symmetric Lévy process. [13] employed the Shannon sampling method to
find the distributions of the extrema for a wide class of Lévy processes.
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This article begins with an extension of [12]’s results for the multiplicative
WHF

Φ+(ω)Φ−(ω) = g(ω) ω ∈ R,(1.2)

where g(·) is a given function with some certain conditions (see below) and
Φ±(·) are to be determined. Then it utilizes such results to approximate the
extrema’s distributions of a class of Lévy processes. Estimation bounds, for
such approximate method, along with two approximation procedures are given.

Section 2 collects some useful elements for other sections. Moreover, it
provides an Lp(R), 1 < p ≤ 2 approximation technique for solving a multi-
plicative WHF (1.2). Section 3 considers the problem of approximating the
extrema’s density functions for a class of Lévy processes. Then it develops two
approximate techniques for situations where those density functions cannot be
determined, explicitly. Error bounds for such techniques are given. Several
examples are given in Sections 4. Section 5 provides concluding remarks along
with some suggestions for other application of our techniques.

2. Preliminaries

The Sokhotskyi-Plemelj integral for s(·), which satisfies the Hölder condition,
is defined by a principal value integral, as follows

ϕs(λ) :=
1

2πi
−
∫
R

s(x)

x− λ
dx, for λ ∈ C.(2.1)

It is worth mentioning that, the Sokhotskyi-Plemelj integral can be existed
for non-integrable function. Therefore, the Sokhotskyi-Plemelj integral ϕs(·)
should be viewed as a principal value integral over R.

The radial limits of the Sokhotskyi-Plemelj integral of s(·), are given by
ϕ±s (ω) = lim

λ→ω+i0±
ϕs(λ) and satisfy the following jump formulas: (1) ϕ±s (ω) =

±s(ω)/2 + ϕs(ω), for ω ∈ R and (2) ϕ±s (ω) = ±s(ω)/2 + Hs(ω)/(2i), where
Hs(ω) stands for the Hilbert transform of s(·) and ω ∈ R.

The multiplicative WHF is the problem of finding an analytic and bounded,
except on the real line, function Φ(·) where its upper and lower radial limits
Φ±(·) satisfy Equation (1.2). Given function g(·) is a bounded above by 1, zero
index1, continuous, and positive function which satisfies the Hölder condition
on R, g(0) = 1, and g(ω) ̸= 0 for all ω ∈ R.

The following extends [12]’s results to the multiplicative WHF (1.2). We
begin with what we term the Resolvent Equation for Sokhotskyi-Plemelj inte-
grals.

1The index of a complex-valued function f on a smooth oriented curve Γ, such that f(Γ)
is closed and compact, is defined to be the winding number of f(Γ) about the origin (see [24],

§1), for more technical details.
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Lemma 2.1. The Sokhotskyi-Plemelj integral of a function f(·) satisfies
ϕf (λ)− ϕf (µ) = (λ− µ)ϕ f(x)

x−λ
(µ), where λ and µ are real or complex values.

Proof. In general, (x − λ)−1 − (x − µ)−1 = (λ − µ)(x − µ)−1(x − λ)−1. Then
see [9], we have an equation of Cauchy integrals, where Γ = R:

1

2πi

∫
Γ

f(x)

x− λ
dx− 1

2πi

∫
Γ

f(x)

x− µ
dx =

λ− µ

2πi

∫
Γ

f(x)

(x− µ)(x− λ)
dx.

The above is valid only for λ and µ not on the real line. However, by
Equation (2.1) the values of ϕf (·) on the real line are obtained by averaging
the limit from above, ϕ+f (·), and the limit from below, ϕ−f . We thus obtain the
stated equation in all cases. □

Lemma 2.2. Suppose Φ±(·) are sectionally analytic functions that satisfy the
multiplicative WHF (1.2). Moveover, suppose that given function g(·) is a
zero index function which satisfies the Hölder condition and g(0) = 1.2 Then
Φ±(λ) = exp{±(ϕln g(λ) − ϕln g(0))}, where ϕln g(·) stands for the Sokhotskyi-
Plemelj integral of ln g(·).

Proof. Using the [11]’s suggestion for solving the homogeneous WHF (1.2)
gives, see also [18]:

Φ±(λ) = exp{± λ

2πi
−
∫
R

ln g(x)/x

x− λ
dx}.

Lemma 2.1 with f ≡ ln g gives ϕln g(λ) − ϕln g(µ) = (λ − µ)ϕ ln g(x)
x−λ

(µ). Let-

ting λ goes to zero from the above, in the complex plane, and using the fact
that ln g(0) = 0, Equation (2.1) lets us to conclude that ϕln g(0) − ϕln g(µ) =
−µϕ ln g(x)

x
(µ). Substituting this into the above equation for Φ±(·) gives our

claimed result. □

Using the jump formula one can conclude that

Φ±(ω) =
√
g(ω) exp{± i

2
(Hln g(0)−Hln g(ω))},(2.2)

where Hln g(·) stands for the Hilbert transform of ln g(·).
The Carlemann’s method explores a situation which one may evaluate

solutions of the multiplicative WHF (1.2) directly, rather than using the
Sokhotskyi-Plemelj integrations. The Carlemann’s method states that: if g(·)
can be decomposed as a product of two sectionally analytic functions g+(·) and
g−(·), respectively in C+ and C−, then solutions of the multiplicative WHF
(1.2) are given by Φ+ ≡ g+ and Φ− ≡ g−.

2The condition g(0) = 1 does not always hold in the multiplicative WHF, but happen to
arise in our application, and can lead to complications. Lemma 2.2 is used to simplifying

this case.
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In a situation that g(·) is a rational function P (x)
Q(x) that has no poles or zeros

on R, using the Carlemann’s method, we may conclude that the multiplicative
WHF problem can be solved by factoring the polynomial P (Q), and then let
P+ (Q+) be the product of those factors of P (Q) that have zeros in C−, and
P− (Q−) be the product of those factors that have zeros in C+. Then setting

g+(x) = P+(x)
Q+(x) and g

−(x) = P−(x)
Q−(x) gives us (up to a scalar multiple) our desired

factorization.
The Hausdorff-Young theorem (see [23]) states that: if s(·) is an Lp(R)

function, then s(·) and its corresponding the Fourier transform, say ŝ(·), satisfy
||ŝ||p∗ ≤ (2π)−1/p||s||p, where 1 ≤ p ≤ 2 and 1/p + 1/p∗ = 1. From the
Hausdorff-Young Theorem, one can observe that if {sn(·)} is a sequence of
functions converging in Lp(R), 1 ≤ p ≤ 2, to s(·). Then the Fourier transforms
of the sn(·) converges in Lp

∗
(R), to the Fourier transform of s(·), where 1/p+

1/p∗ = 1. The converse is false.
A similar property for the Hilbert transform is well known as the Titmarsh-

Riesz Lemma (see [23]). The Titmarsh-Riesz Lemma says that: if s(·) is an
Lp(R) function, where 1 < p ≤ 2. Then ||Hs||p ≤ tan(π/(2p))||s||p, where Hs(·)
stands for the Hilbert transform of s(·). Using the Titmarsh-Riesz Lemma, one
may conclude that if {fn(·)}, is a sequence of functions which converge, in
Lp(R), 1 < p ≤ 2, to f(·). Then the Hilbert transforms H(fn) converge, in
Lp(R), 1 < p ≤ 2, to the Hilbert transform of f(·).

The well known Paley-Wiener theorem states that: if F (·) is a function in
L2(R). Then the real-valued function F (·) vanishes on R− if and only if the

Fourier transform F (·), say, F̂ (·) is holomorphic on C+ and the L2(R)-norm of

the functions x 7→ F̂ (x+ iy0) are uniformly bounded for all y0 ≥ 0.
The following lemma, from [12], recalls some further useful properties of

functions in Lp(R), for 1 < p ≤ 2, space.

Lemma 2.3. Suppose s(·) and r(·) are two Lp(R), 1 < p ≤ 2, functions. Then

i): ||
√
s−

√
r||p ≤ 1

2
√
a
||s− r||p, whenever both s(·) and r(·) are bounded,

above by a, functions;
ii): || ln s− ln r||p ≤ a−1||s−r||p, whenever both s(·) and r(·) are positive-

valued and bounded, above by a, functions ;
iii): ||e−is/2−e−ir/2||p ≤ 1

2 ||s−r||p, whenever s(·) and r(·) are real-valued
functions.

In many situations, WHF (1.2) cannot be solved explicitly and has to be
solved approximately (see [12]). The following develops an approximation tech-
nique to solve a multiplicative WHF (1.2).

Theorem 2.4. Suppose Φ±(·) are two sectionally analytic functions satisfying
the multiplicative WHF (1.2) where
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A1): g(·) is real, positive, bounded above by a, index zero, satisfies the
Hölder condition, and g(0) = 1;

A2): There exist a sequence of functions gn(·) where converge, in Lp(R),
1 < p ≤ 2, to g(·).

Then Φ±(·) can be approximated by Φ±
n (·), where

||Φ±
n − Φ±||p ≤ 1

2
tan(

π

2p
)||gn − g||2p + (tan(

π

2p
) +

1

2
)||gn − g||p.

Proof. Set k(ω) := −Hln g(ω) +Hln g(0) and kn(ω) := −Hln gn(ω) +Hln gn(0).
Now, from Equation (2.2) and Lemma 2.3 observe that ||Φ±

n − Φ±||p

= ||√gne
±ikn/2 −√

ge±ik/2||p
≤ [||√gn −√

g||p + ||√g||p] ||e±ikn/2 − eik/2||p + |e±ik/2|||√gn −√
g||p

≤ 1

2
[||√gn −√

g||p + ||√g||p] || −Hln gn(ω) +Hln gn(0) +Hln g(ω)−Hln g(0)||p

+|e±ik/2|||√gn −√
g||p

≤ [||√gn −√
g||p + ||√g||p] ||Hln gn −Hln g||p + ||√gn −√

g||p
since k and kn are real-valued functions

≤ [||√gn −√
g||p + ||√g||p] tan(

π

2p
)|| ln(gn)− ln(g)||p + ||√gn −√

g||p

≤ tan(
π

2p
)

[
1

2
||gn − g||p + 1

]
||gn − g||p +

1

2
||gn − g||p

=
1

2
tan(

π

2p
)||gn − g||2p + (tan(

π

2p
) +

1

2
)||gn − g||p.

□

Now, we recall definition of the positive-definite function which plays a vital
role in the rest of this article.

Definition 2.5. A positive-definite function is a complex-valued function f :
R → C such that for any real numbers x1, . . . , xn, the n × n square matrix
A = (f(xi − xj))

n
i,j=1 is a positive semi-definite matrix.

In the theory of Fourier transforms, it is well known that “f(·) is a continuous
positive-definite function on R if and only if its corresponding Fourier transform
is a (positive) measure”, see [5] for more details.

Lemma 2.6. Suppose ϕ : R → C is a positive-definite function for which two
equations q1 − ϕ(ω) = 0 and 1 − q2 exp{−ϕ(ω)} = 0 have not any solution on
R, where q1 > 0 and q2 ∈ (0, 1). Then h1(ω) = q1/(q1 − ϕ(ω)) and h2(ω) =
(1− q2)/(1− q2 exp{−ϕ(ω)}) are positive-definite functions.
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Proof. Using Taylor expansion of q1/(q1 − x) and (1 − q2)/(1 − q2 exp{−x}),
at zero, one can, respectively, obtain h1(·) and h2(·) as

h1(ω) =
∞∑
k=1

ϕk(ω)

qk1

h2(ω) = 1 +
q2

q2 − 1
ϕ(ω) +

q2(q2 + 1)

2(q2 − 1)2
ϕ2(ω) +

q2(q
2
2 + 4q2 + 1)

6(q2 − 1)3
ϕ3(ω) + · · ·

Now, the desired proof arrives from the fact that the product of two positive-
definite functions is again a positive-definite function (see [31]). □

Now, we provide two classes of positive-definite rational functions which play
a vital role in numerical section of this article.

Lemma 2.7. Consider the following two class of rational functions D and D∗.

D : = {r(ω); r(ω) = A0 +
n∑
k=1

mk∑
j=1

4∑
l=1

Ckjr
j
lk(ω); A0 & Ckj ≥ 0};

D⋆ : = {r(ω); r(ω) = A0 +
n∑
k=1

2∑
l=1

Ckjrlk(ω); A0 & Ckj ≥ 0},

where

r1k(ω) =
1

iω + βk
(where βk > 0);

r2k(ω) =
1

−iω + βk
(where βk > 0);

r3k(ω) =
1

(iω + βk)(iω + βk + αki)(iω + βk − αki)
(where αk, βk > 0);

r4k(ω) =
1

(−iω + βk)(−iω + βk + αki)(−iω + βk − αki)
(where αk, βk > 0).

Then

(i): the Fourier transform of functions in D are nonnegative and real-
valued.

(ii): The Fourier transform of functions in D∗ are nonnegative, real-
valued, and completely monotone functions.

Proof. Nonnegativity of the Fourier transform of functions in D (or D∗) arrives
from the fact that rlk (for l = 1, . . . , 4) and their powers are positive-definite
rational functions. Now, from Bernstein’s theorem, we observe that a real-
valued function defined on R+ is a completely monotone function, whenever it
is a mixture of exponential functions, see [30] for more details. □

The following can be concluded from the properties of the WHF given in [2].
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Lemma 2.8. Suppose g(·) in the multiplicative WHF (1.2) is a positive-definite
function. Then the solutions, of the multiplicative WHF (1.2), Φ±(·) are two
positive-definite functions.

Proof. First, using the multiplicative WHF (1.2), the characteristic function of
Lévy process Xt at its stopping time τ(q), say Xτ(q), can be decomposed as
a product of the characteristic functions of two random variables Iq and Mq,
see [2]. Moreover, [4]’s theorem states that “ϕ : Rn → C is the characteristic
function of some random variable if and only if ϕ(·) is positive-definite, con-
tinuous at the origin, with ϕ(0) = 1”. The desired proof follows from these
observations. □

One may readily observe that the characteristic function of the mixed gamma
family of distributions (given below) are belong to D.
Definition 2.9 (Mixed gamma family of distributions). A nonnegative random
variable X is said to be distributed according to a mixed gamma distribution
if its density function is given by

p(x) =

ν∑
k=1

nν∑
j=1

ckj
αj
kx

j−1

(j − 1)!
e−αkxI[0,∞)(x) +

ν∗∑
k=1

nν∗∑
j=1

c∗kj
βj
k(−x)j−1

(j − 1)!
eβkxI(−∞,0](x)

where ckj and αk are positive value satisfying
∑ν
k=1

∑nν
j=1 ckj = 1.

From [3] we recall some useful properties of a characteristic function, which
plays an important role in the folowwing sections.

Lemma 2.10. Suppose p̂(·) stands for the characteristic function of a distri-
bution. Then

(i): p̂(·) is a positive-definite function;
(ii): p̂(·) is a positive-definite rational function whenever its characteristic

function belongs to D;
(iii): p̂(0) = 1 and the norm of p̂(·) is bounded by 1.

The next section provides an application of Theorem 2.4 to the problem of
finding distributions of the extrema of Lévy process Xt, approximately.

3. Main results

The following lemma restates the characteristic function of Lévy process Xt

at its stopping time τ(q), say Xτ(q).

Lemma 3.1. Suppose Xτ(q) represents Lévy process Xt at its stopping time
τ(q). Then the characteristic function of Xτ(q) can be restated as:

(i) q/(q − ψ(ω)), for an exponential stopping time τ(q) with parameter
q > 0;

(ii) (1 − q)/(1 − q exp{−ψ(ω)}), for a geometric stopping time τ(q) with
parameter q ∈ (0, 1).
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Proof. Conditioning on stopping time τ(q), one may restates the characteristic
function of Xτ(q) as:

For part (i):

E(eiωXτ(q)) =

∫ ∞

0

E(eiωXτ(q) |τ(q) = t)fτ(q)(t)dt =

∫ ∞

0

E(eiωXt)qe−qtdt

=

∫ ∞

0

eψ(ω)tqe−qtdt =
q

q − ψ(ω)
;

For part (ii):

E(eiωXτ(q)) =
∞∑
n=0

E(eiωXτ(q) |τ(q) = n)P (τ(q) = n) =
∞∑
n=0

E(eiωXn)(1− q)qn

=
∞∑
n=0

eψ(ω)n(1− q)qn =
1− q

1− q exp{−ψ(ω)}
,

where for both cases, the second equality arrives from the fact that Xt and
τ(q) are independent and the third equality obtains from the definition of the
characteristic exponent ψ and infinitely divisibility of Lévy process Xt. □

The following theorem represents an error bound for approximating density
functions of extrema of a Lévy process.

Theorem 3.2. Suppose Xt is a Lévy process defined by a triple (µ, σ, ν). More-
over, suppose that:

(I): The stopping time τ(q) is either a geometric or an exponential dis-
tribution with parameter q independent of Xt and τ(0) = ∞;

(II): The rn(dx) are a sequence of positive-definite rational functions
which converge, in Lp

∗
(R) (where 1/p∗ + 1/p = 1 and 1 < p ≤ 2), to

characteristic exponent q/(q−ψ(dx)) (or (1− q)/(1− q exp{−ψ(dx)})
for geometric stoping time).

Then the density function of the suprema and infima of the Lévy process Xt,
denoted f+q and f−q , respectively, can be approximated, in Lp

∗
(R), by a sequence

of the density functions f+q,n and f−q,n where:

(i): For exponentially distributed stopping time τ(q), with q > 0,

||f±q − f±q,n||p∗ ≤ 1

2
tan(

π

2p∗
)||rn − q

q − ψ
||2p∗ + (tan(

π

2p∗
) +

1

2
)||rn − q

q − ψ
||p∗ ;

(ii): For geometric stopping time τ(q), with q ∈ (0, 1),

||f±q −f±q,n||p∗ ≤ 1

2
tan(

π

2p∗
)||rn−

1− q

1− qe−ψ
||2p∗+(tan(

π

2p∗
)+

1

2
)||rn−

1− q

1− qe−ψ
||p∗ .

Proof. From [2] and Lemma 3.1, one can observe that the Fourier transform
of the density functions of random variables Mq and Iq, say Φ+ and Φ− re-
spectively, satisfy either the multiplicative WHF Φ+(ω)Φ−(ω) = q/(q−ψ(ω)),
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where ω ∈ R (for exponentially distributed stopping time) or the multiplicative
WHF Φ+(ω)Φ−(ω) = (1 − q)/(1 − q exp{−ψ(ω)}), where ω ∈ R (for geomet-
ric stopping time). Now, from the fact that the expressions q/(q − ψ(·)) and
(1 − q)/(1 − q exp{−ψ(·)}) are the characteristic function of the Lévy process
Xt, at exponential and geometric stopping time, respectively, we observe that
both expressions are bounded above by 1 because of the property of the char-
acteristic function given by Lemma (2.10, part ii). For part (i), from Theorem
2.4 observe that

||Φ±
n − Φ±||p ≤ 1

2
tan(

π

2p
)||rn − q

q − ψ
||2p + (tan(

π

2p
) +

1

2
)||rn − q

q − ψ
||p.

The rest of proof arrives from an application of the Hausdorff-Young Theorem.
The proof of part (ii) is quite similar. □

Remark 3.3. In the case that the distribution of Iq or Mq has an atom at
x = 0, then it corresponding probability mass function at zero can be found,
approximately, by

P (Iq = 0) = lim
ω→∞

Φ−(−iω) and P (Mq = 0) = lim
ω→∞

Φ+(iω).

Using the fact that the Compound Poisson has bounded characteristic ex-
ponent ψ(·). The following formulates result of the above theorem in terms of
the jumps measure ν(dx).

Theorem 3.4 (Compound Poisson). Suppose Xt is a Compound Poisson pro-
cess defined by a triple (µ, σ, ν). Moreover, suppose that

(I): the stopping time τ(q) is either a geometric or an exponential distri-
bution with parameter q independent of Xt and τ(0) = ∞;

(II): the νn(dx) are a sequence of the density functions which converge

in L2(R), to jumps measure ν and
∫ 1

−1
xνn(dx) =

∫ 1

−1
xν(dx).

Then the density functions of the suprema and infima of the Compound Poisson
process Xt, denoted by f+q (·) and f−q (·), respectively, can be approximated by a

sequence of the density functions f+q,n(·) and f−q,n(·) where:
(i): For exponentially distributed stopping time τ(q),

||f±q − f±q,n||2 ≤ 1

q2
√
8π

||νn − ν||22 +
3

2q
||νn − ν||2;

(ii): For geometric stopping time τ(q),

||f±q − f±q,n||2 ≤ (1− q)2

q2
√
8π

||νn − ν||22 +
3(1− q)

2q
||νn − ν||2.
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Proof. Suppose that ψn(·) sequence of the characteristic exponent correspond-
ing to νn(dx). For part (i) using Theorem 3.2, one may conclude that

||Φ±
n − Φ±||2 ≤ 1

2
|| q

q − ψn
− q

q − ψ
||22 +

3

2
|| q

q − ψn
− q

q − ψ
||2

≤ 1

2q2
||ψn − ψ||22 +

3

2q
||ψn − ψ||2

≤ 1

4πq2
||νn − ν||22 +

3

q
√
8π

||νn − ν||2.

The second inequality arrives from the fact that the characteristic function
q/(q − ψ(·)) is bounded above by 1, while the third inequality comes from
the Levy-Khintchine representation (1.1) along with conditions A2 and the
Hausdorff-Young Theorem. The rest of proof arrives from an application of
the Hausdorff-Young Theorem. The proof of part (ii) is quite similar. □

4. Application to the finite (infinite)-time ruin probability

Suppose surplus process of an insurance company can be restated as

Ut = u+Xt,(4.1)

where Lévy process Xt and u > 0 stands for initial wealth/reserve of the
process.

The finite-time ruin probability for the such surplus process is denoted by

R(q)(u) and defined by

R(q)(u) = P (T ≤ τq|U0 = u),

where T is the hitting time, i.e., T := inf{t : Ut ≤ 0|U0 = u} and τu is a
random stoping time. Such the stoping time has been distributed corroding to
either an exponential distribution (with mean 1/q) or a geometric distribution
(with mean (1− q)/q).

The infinite-time ruin probability for the surplus process (4.1) is denoted by
R(u) and defined by

R(u) = P (T <∞|U0 = u).

The infinite-time ruin probability R(u), can also be evaluated by R(u) =
limq→ 0 R

(q)(u).
Using [1, Lemma 1] with setting β = 0 and replacingX by−X: in a situation

that the infima density function f−q of the Lévy process Xt is available, the
finite-time ruin probability under the above surplus process can be restated as

R(q)(u) = P (Iq < −u) =
∫ −u

−∞
f−q (y)dy.

Now using the Lp(R)−norm for an integral operator (see [7, Theorem 3.36]),
one may restate results of Theorem 3.2 and Theorem 3.4 for approximating
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finite-time ruin probability under the surplus process (4.1) as the following two
corollaries.

Corollary 4.1. Suppose Xt in the surplus process (4.1) is a Lévy process
defined by a triple (µ, σ, ν). Moreover, suppose that:

(I): The stopping time τ(q) is either a geometric or an exponential dis-
tribution with parameter q independent of Xt and τ(0) = ∞;

(II): The rn(dx) is a sequence of positive-definite rational functions which
converges, in Lp

∗
(R) (where 1/p∗ + 1/p = 1 and 1 < p ≤ 2), to char-

acteristic exponent q/(q − ψ(dx)) (or (1− q)/(1− q exp{−ψ(dx)}) for
geometric stoping time).

Then the finite-time ruin probability under the surplus process (4.1), say
R(q)(u), can be approximated, in Lp

∗
(R), by a sequence of the ruin probability,

say R
(q)
n (u), where:

(i): For exponentially distributed stopping time τ(q), for q > 0,

||R(q)−R(q)
n ||p∗ ≤ 1

2
tan(

π

2p∗
)||rn−

q

q − ψ
||2p∗ +(tan(

π

2p∗
)+

1

2
)||rn−

q

q − ψ
||p∗ ;

(ii): For geometric stopping time τ(q), for q ∈ (0, 1),

||R(q)−R(q)
n ||p∗ ≤ 1

2
tan(

π

2p∗
)||rn−

1− q

1− qe−ψ
||2p∗+(tan(

π

2p∗
)+

1

2
)||rn−

1− q

1− qe−ψ
||p∗ .

Corollary 4.2. (Compound Poisson) Suppose Xt in the surplus process (4.1)
is a Compound Poisson process defined by a triple (µ, σ, ν). Moreover, suppose
that

(I): the stopping time τ(q) is either a geometric or an exponential distri-
bution with parameter q independent of Xt and τ(0) = ∞;

(II): the νn(dx) are a sequence of the density functions which converge

in L2(R), to jumps measure ν and
∫ 1

−1
xνn(dx) =

∫ 1

−1
xν(dx).

Then the finite-time ruin probability under the surplus process (4.1), say
R(q)(u), can be approximated, in Lp

∗
(R) sense, by a sequence of the finite-time

ruin probability, say R
(q)
n (u), where:

(i): For the exponentially distributed stopping time τ(q),

||R(q) −R(q)
n ||2 ≤ 1

q2
√
8π

||νn − ν||22 +
3

2q
||νn − ν||2;

(ii): For the geometric stopping time τ(q),

||R(q) −R(q)
n ||2 ≤ (1− q)2

q2
√
8π

||νn − ν||22 +
3(1− q)

2q
||νn − ν||2.

It is worth mentioning that the above results may be obtained for the infinite-
time ruin probability by letting q → 0.

The next section provides some practical applications of the above results.
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5. Examples

In the first step, this section provides two particle procedures for the problem
of finding the density functions of the suprema and infima of a Lévy process.

Using the fact that the characteristic exponent ψ(iω), ω ∈ R, is a real-
valued function, (see [2]) along with Lemma 2.8, we suggest the following two
procedures to generate approximation density functions forMq and Iq. Suppose
Xt is a Meromorophic Lévy process3 with the characteristic exponents ψ(·).
Moreover, suppose that the stopping time τ(q) is either a geometric or an
exponential distribution with parameter q independent of Xt and τ(0) = ∞.
Then by the following steps, one can approximate, in Lp

∗
(R) (where 1/p∗ +

1/p = 1 and 1 < p ≤ 2), the density functions of the extrema random variables
Mq and Iq.

Step (1-1): Find out all zeros and poles of q/(q−ψ(ω)) (or (1− q)/(1−
q exp{−ψ(ω)}));

Step (1-2): Define f+(ω) as product over all zeros/poles lying in C−

and f−(ω) as product over all zeros/poles lying in C+;
Step (2): Determine error of approximating q/(q−ψ(ω)) (or (1−q)/(1−
q exp{−ψ(ω)})) by f+(ω)f−(ω);

Step (3): Obtain the density functions of Mq and Iq by the inverse
Fourier transform of f+(·) and f−(·), respectively.

Proof. For an exponential stopping time, [15] showed that zeros and poles of
q/(q−ψ(ω)), respectively, appear as {−iαn, iαn} and {−iβn, iβn}, where · · · <
−β1 < −α1 < 0 < β1 < α1 < · · · . [14] proved that f+(ω)f−(ω) where

f+(ω) =
∏
n≥1

1 + iω/αn
1 + iω/βn

and f−(ω) =
∏
n≥1

1− iω/αn
1− iω/βn

uniformly approximates q/(q−ψ(ω)). Now observe that, all terms of f+(·) and
f−(·) (e.g. 1+iω/αn

1+iω/βn
or 1−iω/αn

1−iω/βn ) are positive-definite rational functions. There-

fore, f+(·) and f−(·) are two positive-definite rational functions and analytical
in C+ and C−, respectively. An application of the Paly-Winer theorem war-
ranties that the inverse Fourier transform of f+(·) and f−(·) are two positive
density functions vanishing on R+ and R−, respectively.

For the geometric stopping time, using the fact that q < 1, one may show
that all poles of (1 − q)/(1 − q exp{−ψ(·)}) evaluated by the equation 1 −
q exp{−ψ(ω)} = 0, or equivalently by ln(q) + ψ(ω) = 0. Now, [15]’s findings
shows that all poles will appear as {−iβn, iβn}. On the other hand, zeros of
(1 − q)/(1 − q exp{−ψ(·)}) are points where ψ(ω) = ∞. Therefore, the zeros
appeared as {−iαn, iαn}. The rest of proof is similar to [14] and [15]. □

3Lévy processXt belongs to the meromorophic class of Lévy process if and only if ν̄+(x) =
ν(x,∞) and ν̄−(x) = ν(−∞,−x) are two completely monotone functions and characteristic

exponents ψ(·) is a meromorophic function, see [15] for more details.
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The following examples shows application of the above procedure.

Example 5.1. Stable processes have been successfully fitted to stock re-
turns, excess bond returns, foreign exchange rates, commodity price returns,
real estate return data (see, e.g., [19] and [28], financial data (see, e.g., [6]),
Market- and Credit-Value-at-Risk, Value-at-Risk, credit risk management (see,
e.g., [27]). With the exception of the normal distribution (α = 2), stable dis-
tribution are the heavy tailed distributions which paly an important role in
heavy-tail modeling of economic data (see, e.g., [20] and [21]) and finance data
(see, e.g., [28]).

Now consider a symmetric stable process Xt with the homomorphic charac-
teristic exponent function ψ(ω) = 1/(iµω − λα|ω|α), where α ∈ (0, 2].

Using the fact that the real value α, in the above characteristic exponent,
can be constructed from the rational numbersm/n, wherem and n respectively
are even and odd numbers. Now, an expression q/(q − ψ(ωn)) can be restated
as

qiµωn − qλm/nωm

1− qiµωn + qλm/nωm
= (qiµωn − qλm/nωm)

n+∏
i=1

1

ω − z+i

n−∏
i=1

1

ω − z−i
,

where n+ + n− is number of solutions for equation 1− qiµωn + qλm/nωm = 0
in ω. Moreover, z+i and z−i are solutions of the recent equation where belong
to C+ and C−, respectively. Therefore, approximate solutions for the den-
sity function of extrema, f±q , are the inverse Fourier transform of ϕ±n (ω) :=√
qiµω − qλm/nωm/n/

∏n∓

i=1(ω
1/n − z∓i ).

To implement Procedure (5) for the Meromorophic Lévy process, one has to
determine all zeros and poles of q/(q − ψ(·)) (or (1 − q)/(1 − q exp{−ψ(·)}))
which is a difficult task in may cases. Moreover, in the case where zeros or poles
of q/(q−ψ(·)) (or (1− q)/(1− q exp{−ψ(·)})) appear as {αn ± βni} (where at
least one of αn > 0). Some terms of decomposition f+(·) (or f−(·)) are not
positive-definite rational function. Therefore, the inverse Fourier transform of
f+(·) and f−(·) can be negative in some interval. The following procedure
extents result of Procedure (5) for such cases and the non-homomorphic Lévy
processes.

Before stating the second procedure, we need the following lemma.

Lemma 5.2. Suppose ψ(·) stands for the characteristic exponent of a Lévy
process. Moreover, suppose that α0+β0i is a root of q−ψ(λ) = 0, λ ∈ C. Then
−α0 + β0i also is root of q − ψ(λ) = 0.
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Proof. Using the Lévy Khintchine formula (Equation, (1.1)), equation of q −
ψ(λ) = 0 at point α0 + β0i can be restated as

−σ2α0β0i+ α0µi+ i

∫
R

(
e−β0 sin(α0x)− α0xI[−1,1](x)

)
ν(dx) = 0;

−1

2
σ2(α2

0 − β2
0)− µβ0 +

∫
R

(
e−β0 cos(α0x)− 1 + β0xI[−1,1](x)

)
ν(dx) = q.

Since sin(·) and cos(·), respectively, are odd and even functions. Therefore, one
may conclude that point −α0 + β0i satisfies the above system of equations, as
well. □

Suppose Xt is a Lévy process with characteristic exponents ψ(·). Moreover,
suppose that the stopping time τ(q) is either a geometric or an exponential
distribution with parameter q independent of Xt and τ(0) = ∞. Then by the
following steps, one can approximate, in Lp

∗
(R) (where 1/p∗ + 1/p = 1 and

1 < p ≤ 2) sense, the density functions of the extrema random variables Mq

and Iq.

Step 1: Approximating h(ω) := q/(q − ψ(ω)), for the exponential stop-
ping time, (or h(ω) := (1 − q)/(1 − q exp{−ψ(ω)}), for the geometric
stopping time) by a positive-definite rational function by the following
steps:
1): Find out all poles of h(ω);
2): Based upon such poles pick up some positive-definite rational

functions given in Lemma 2.7;
3): Approximate h(ω) by positive-definite rational function r(ω),

given by Lemma 2.7;

4): Set A0 := limω→∞ h(ω) and mk equal to order of kth pole;
5): Determine positive coefficients Clk by a visual investigation or

Clk = max

{
0, argmin

∫
R
(h(ω)− r(ω))pdω

}
Step 2): Determine error of approximating h(ω) by r(ω);
Step 3-: Decompose the positive-definite rational function r(ω) as a

product of two functions, say f±(ω), which are sectionally analytic
and bounded in C±;

Step 4): Obtain the density functions ofMq and Iq by the inverse Fourier
transform of f+(·) and f−(·), respectively.

Proof. Since h(ω) is a characteristic function. Lemma 2.10 warranties that,
it is a positive-definite function and consequently its limit at infinity, say A0,
is a positive real number. Moreover Lemma 5.2 warranties that, one may use
positive rational functions r3k(·) and r4k(·) whenever pole with form α±βi has
been observed. The rest of proof is similar to Procedure (5). □
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Example 5.3. Suppose Xt is a Lévy process with independent and continuous
τ(q) and a jumps measure ν(dx) = exp{αx}cosech2(x/2)dx. The characteristic
exponent for such Lévy process is given by

ψ(ω) = −σ
2ω2

2
− iρω − 4π(ω − iα) coth(π(ω − iα)) + 4γ,

where γ = πα cot(πα), ρ = 4π2α + 4γ(γ−1)
α − µ, ω ∈ R, and α, µ, and σ

are given. Note that it is impossible to solve equation q − ψ(ω) = 0 in the
general case. Now consider special cases, whenever σ = µ = 2 and α = 0.
Now, we compute the Wiener-Hopf factorization for q = 5. Finding all poles
of 5/(5 − ψ(ω)) is difficult task. Using Maple 15, one may readily compute
the three first poles as {−0.4781i, 0.5658i, 1.4921i}. On the other hands A0 =
limω→∞ 5/(5− ψ(iω)) = 0. Now, we approximate 5/(5− ψ(ω)) by

r(ω) =
C1

−iω + 0.4781
+

C2

iω + 0.5658
+

C3

iω + 1.4921
.

A graphical illustration shows that, one may readily chose C1 = C2 = C3 =
1/4.5 see Figure 1-a. Error of this approximation is about 0.08719956902. r(ω)
can be restarted as

r(ω) =
(iω + 0.9560)(−iω + 1.9123)

4.5(−iω + 0.4781)(iω + 0.5658)(iω + 1.4921)

=
iω + 0.9560√

4.5(iω + 0.5658)(iω + 1.4921)

−iω + 1.9123√
4.5(−iω + 0.4781)

= f−(ω)f+(ω).

Therefore, the density function of Iτ(5) and Mτ(5) can be approximated by

fIτ(5)(x) = 0.5110841035e1.4921x + 0.3719983876e0.5658x, for x ≤ 0;

fMτ(5)
(x) = 0.2857404120Dirac(x) + 0.4097937547e−0.4781x for x ≥ 0,

where Dirac(x) stands for the dirac delta at point x = 0. Figures 1-b and 1-c
illustrate behavior of fIτ(5)(·) and fMτ(5)

(·), respectively.

Example 5.4. Suppose Xt in the surplus process (4.1) is the Lévy process in
Example 5.3. Moreover, suppose that the random stoping time τ(q) has an
exponential distribution with mean 0.2. Using result of Example 5.3, Figure 2
illustrates behavior of the finite-time ruin probability for different initial value
u.

The following example explores situation that roots of q−ψ(ω) = 0 appears
in form of α+ iβ.
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Figure 1. Graphical illustration of: (a) 5
5−ψ(ω)

and its approximation

r(ω); (b) fIτ(5) ; and (c) fMτ(5) .

Figure 2. Behavior of the finite-time ruin probability for different initial
value u.

Example 5.5. Consider a generalized hyperbolic process with the character-
istic function

ϕ(ω) = eψ(ω) = eiµω
(

α2 − β2

α2 − (β + iω)2

)λ/2 Kλ(δ
√
α2 − (β + iω)2)

Kλ(δ
√
α2 − β2)

,
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where λ, µ ∈ R, α, δ > 0, β ∈ (−α, α), and Kλ(·) is the Modified Bessel func-
tions of the third kind with index λ. Many well known processes are member
of the class of generalized hyperbolic Lévy processes. For λ > 0 and δ → 0 one
gets a Variance-Gamma process. The case λ = −1/2 corresponds to the normal
inverse Gaussian process, see [10] for some analytic facts and applications about
the generalized hyperbolic processes. The generalized hyperbolic process Xt is
a pure jump process which can be considered as a Brownian motion with drift
that evolves according to an increasing Levy process (i.e., subordinator). Such
properties make the generalized hyperbolic process is an appealing process to
model the financial returns, see [22] for more details.

Note that it is impossible to solve Equation q−ψ(ω) = 0 in the general case.
Now consider special cases, whenever α = µ = 2, β = −λ = 1, and δ = 3. Now,
we compute the Wiener-Hopf factorization for q = 5. Finding all poles of 5/(5−
ψ(ω)) is difficult task. Using Maple 15, one may readily compute the sixth first
poles as {±0.4809389066 + 4.280110446i;±0.9037063690 + 2.340695867i;±2.516794346 +

0.4442175550i;±3.756731426−0.9399774855i;±4.853043564−2.318278971i;±5.894258220−
3.713000684i;±6.909960755 − 5.121014155i;±7.912034845 − 6.538310520i;±8.905992610 −
7.962083725i;±9.894699100−9.390493630i}. On the other handsA0 = limω→∞ 5/(5−
ψ(iω)) = 0.

[29] established that the generalized hyperbolic process has completely
monotone jump density. Therefore, one has to approximate q/(q − ψ(ω)) by
function class D∗, given by Lemma 2.7. Therefore, 5/(5 − ψ(ω)) can be ap-
proximated by

r(ω) =
C1

iω + 4.280110446
+

C2

iω + 2.340695867
+

C3

iω + 0.4442175550

+
C4

−iω + 0.9399774855
+

C5

−iω + 2.318278971
+

C6

−iω + 3.713000684

+
C7

−iω + 5.121014155
+

C8

−iω + 6.538310520
+

C9

−iω + 7.962083725

+
C10

−iω + 9.390493630
.

A graphical illustration shows that, one may readily chose C1 = · · · =
C10 = 0.4, see Figure 2-a. An L2(R) error of this approximation is about
0.000002527687170, which can be improved by choosing more appropriate coeffi-
cients. r(ω) can be restated as

r(ω) =
0.4

iω + 4.280110446
+

0.4

iω + 2.340695867
+

0.4

iω + 0.4442175550

+
0.4

−iω + 0.9399774855
+

0.4

−iω + 2.318278971
+

0.4

−iω + 3.713000684

+
0.4

−iω + 5.121014155
+

0.4

−iω + 6.538310520
+

0.4

−iω + 7.962083725

+
0.4

−iω + 9.390493630

= f−(ω)f+(ω),
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Therefore, the density function of Iτ(5)(·) and Mτ(5)(·) can be approximated
by

fIτ(5)(x) = 0.3268288347e0.9399774846x + 0.6308685531e9.390493235x

+0.6059253078e7.962085726x + 0.4905298019e3.713000220x

+0.5383620597e5.121016047x + 0.5757366525e6.538307461x

+0.4259214977e2.318279006x, for x ≤ 0;

fMτ(5)
(x) = 0.2367700968Dirac(x) + 0.4078345184e−2.340695867x

+0.5390740986e−4.280110443x + 0.2582813546e−0.4442175554x,

for x ≥ 0.

Figure 3. Graphical illustration of: (a) 5
5−ψ(ω)

and its approximation

r(ω); (b) fIτ(5) ; and (c) fMτ(5) .
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Figures 3-b and 3-c illustrate behavior of fIτ(5)(·) and fMτ(5)
(·), respectively.

Since the generalized hyperbolic process has completely monotone jump den-
sity. Using [29]’s findings, one may conclude that the extrema’s density func-
tions should be completely monotone functions which cannot observe from
Figures 3-b and 3-c. Such inconsistency may be interpreted by the fact that
approximations of a completely monotone function is not completely mono-
tone. On the other hand, since, we have L2(R) norm approximation. Then our
approximation should be closed, in L2(R) sense, to some completely monotone
functions in R. In general, small oscillations are not a big problem, but we hope
not to see functions that look like xsin(x), for example, with increasingly large
oscillations.

Example 5.6. Suppose Xt in the surplus process (4.1) is a generalized hy-
perbolic process, given by Example 5.5. Moreover, suppose that the random
stoping time τ(q) has an exponential distribution with mean 0.2. Using result
of Example 5.5, Figure 4 illustrates behavior of the finite-time ruin probability
for different initial value u.

Figure 4. Behavior of the finite-time ruin probability for different initial
value u.

6. Conclusion and suggestion

This article considers approximately the extrema’s density functions of a
class of Lévy processes. It provides two approximation techniques for approxi-
mating such the density functions. Namely, it suggests to replace q/(q − ψ(·))
(or (1− q)/(1− q exp{−ψ(·))}) by a sequence of positive-definite rational func-
tions. Two practical approximation procedures along several examples are
given. The methods presented in this article can be generalized to other sit-
uations where the multiplicative WHF is applicable, such as finding first/last
passage time and the overshoot, the last time the extrema was archived, several
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kind of option pricing, etc. Using [26]’s findings, result of this article may be
generalized to a class of multivariate Lévy processes.
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[6] S. Borak, W. Härdle and R. Weron, Stable Distributions, in: Statistical Tools for

Finance and Insurance, pp. 21–44, Springer, Berlin, 2005. (SFB 649 Discussion Paper

2005–2008.)
[7] D. Cruz-Uribe and A. Fiorenza, Variable Lebesgue Spaces: Foundations and Harmonic
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(2013), no. 3B, 2047–2065.

[17] A. Lewis and E. Mordecki, Wiener-Hopf factorization for Lévy processes having neg-
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