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POLYNOMIAL ORE EXTENSIONS OF BAER AND
P.P.-RINGS

E. HASHEMI, A. MOUSSAVI * AND H. HAJ SEYYED JAVADI

ABSTRACT. For aring endomorphism « and an a-derivation 4,
we introduce (,d)-compatible rings which generalize a-rigid
rings. We study the relationship between the Baer and p.p.
properties of a ring and its Ore extensions. These include
formal skew power series, skew Laurent polynomials and skew
Laurent series. As a consequence we obtain a generalization
of [3] and [16].

1. Introduction

Throughout this paper R denotes an associative ring with unity,
a : R — R is an endomorphism, which is not assumed to be sur-
jective, and ¢ is an a-derivation of R, that is, d is an additive map
such that d(ab) = 6(a)b + a(a)o(b), for all a,b € R. We denote by

S = R[x;«,d] the Ore extension whose elements are polynomials
¥ o riwt € R[z;a, 6], r; € R, where the addition is defined as usual
and the multiplication is given by zb = a(b)x + d(b) for any b € R.
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Recall that R is a (quasi-)Baer ring if the right annihilator of
every (right ideal) non-empty subset of R is generated (as a right
ideal) by an idempotent of R. These definitions are left-right sym-
metric. The study of Baer rings has its roots in functional analysis.
In [28] Rickart studied C*-algebras with the property that every
right annihilator of any element is generated by a projection, i.e., p
is a projection if p = p? = p*, where * is the involution on the alge-
bra. Using Rickart's work, Kaplansky [20] defined an AW*-algebra
as a C*-algebra with the stronger property that the right annihi-
lator of the nonempty subset is generated by a projection. In [10]
Clark defined quasi-Baer rings and used them to characterize any
finite dimensional algebra with unity over an algebraically closed
field which is isomorphic to a twisted matrix units semigroup alge-
bra. Further work on Baer and quasi-Baer rings appears in [4-18],
[22] and [26]. A ring satisfying a generalization of Rickart’s con-
dition, i.e., a ring for which every right annihilator of any element
as a right ideal is generated by an idempotent, has a homological
characterization as a right p.p.-ring. A ring R is called a right (resp.
left) p.p.-ring if every principal right (resp. left) ideal is projective,
or, equivalently, if the right (resp. left) annihilator of an element of
R is generated, as a right (resp. left) ideal, by an idempotent of R.
A ring R is called a p.p.-ring, or a Rickart ring, if it is both right
and left p.p. The concept of p.p.-ring is not left-right symmetric
by a result of Chase [8]. A right p.p.-ring R is Baer (so p.p), if
R is orthogonally finite (see Small [29]), and a right p.p.-ring R is
p.p if R is abelian (see Endo [11]). Moreover Chatters and Xue
9], proved that in a duo p.p.-ring R, if I is a finitely generated
right projective ideal of R, then [ is left projective and a direct
summand of an invertible ideal. Note that in a reduced ring R, i.e.,
it has no nonzero nilpotent elements, and R is Baer if and only if
R is quasi-Baer.

A natural question for a given class of Baer rings is the behavior
of a given class with respect to polynomial extensions? In 1974, Ar-
mendariz gave the following result on the behavior of a polynomial
ring over a Baer ring: Let R be a reduced ring, then R[z] is a Baer
ring if and only if R is a Baer ring [3, Theorem B]. Armendariz
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provided an example to show that the condition to be reduced is
not superfluous. Generalizations of Armendariz’s result for several
types of polynomial extensions over Baer and quasi-Baer rings are
obtained by various authors, [3-7],[9],[12-14],[16-17], and [26-27].

Following Krempa [22], an endomorphism « of a ring R is called
to be rigid if ac(a) = 0 implies a = 0 for a € R. A ring R is said to
be a-rigid if there exists a rigid endomorphism « of R. Note that
any rigid endomorphism of a ring is a monomorphism, and a-rigid
rings are reduced (see Hong et al.[16]). Properties of a-rigid rings
has been studied by Krempa [23], Hirano [14] and Hong et al. [16].
In [16] C.Y. Hong et al. studied Ore extensions of Baer and p.p.-
rings over a-rigid rings.

Following [2], we say that R is a-compatible if for each a,b € R,
ab = 0 < aa(b) = 0. Moreover, R is said to be §-compatible if
for each a,b € R, ab = 0 = ad(b) = 0. If R is both a-compatible
and d-compatible, we say that R is («, d)-compatible. In this case,
clearly the endomorphism « is injective. In light of similarity with
the notion of a-rigid rings, we will show that an a-rigid ring is a-
compatible and reduced (see Lemma 2.4). Thus a-compatible rings
generalize a-rigid rings for the case R is not assumed to be reduced.
A ring is called abelian if every idempotent element of the ring is
central.

Following [27], a ring R is called an Armendariz ring if whenever
two polynomials f(z) = ¥, a;a’, g(x) = Xj_, bja? € R[z] satisfy
f(x)g(x) = 0, we have a;b; = 0 for every i, j.

Motivated by results of Armendariz [3], Anderson and Camillo
[1], Kim and Lee [22], Hong et al. [16] and [17], we investigate
a generalization of a-rigid rings and introduce conditions (SA1),
(SA2) which are skew polynomial versions of Armendariz rings:

Let a be a monomorphism of R and ¢ an a-derivation of R. We
say R satisfies the
(i) (SA1) condition if whenever f(x)g(z) =0 for f(z) = X7, a;x’
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and g(x) = Y5, bjz’ € R[z; 0], then a;b; = 0 for all 4,5.
(i) (SA2) condition if whenever f(x)g(z) =0 for f(z) = $°, a;z
and g(x) = 32, bj27 € R[[x; o], then a;b; = 0 for all d,j.

Note that a-rigid rings satisfy both (SA1) and (SA2) conditions,
by [16, Proposition 6].

In this paper we impose the («, d)-compatibility assumption on
the ring R and prove the following results which unify and extend
some known results non-trivially.

We will show that:

(1) If R satisfies the condition (SA1), then R is a Baer (resp.
right p.p.-) ring if and only if R[z;a,d] is a Baer (resp. right p.p.-)
ring, or equivalently, if and only if R[z, 2 !; o] is a Baer (resp. right
p.p.-) ring.

Since a-rigid rings satisfy the condition (SA1), this result is a
generalization of Hong et al. [16, Theorems 11, 14 and Corollaries
12, 16).

Note that for « = I'd and § = 0, an Armendariz ring satisfies the
condition (SA1), hence we obtain [22, Theorems 9 and 10] as an
immediate corollary of Theorem 3.4.

Since a reduced ring is Armendariz, Corollary 3.16 is a general-
ization of a result of Birkenmeier et al. [7, Corollary 1.10] in the
following sense:

If R is an Armendariz ring, then R is a Baer (resp. right p.p.-)
ring if and only if R[z,z7'] is a Baer (resp. right p.p.-) ring.

(2) If R satisfies the condition (SA2), then R is a Baer ring if
and only if R[[x;«]] is a Baer ring, or equivalently, if and only if
R[[z,x';a]] is a Baer ring.

Since a-rigid rings satisfy the condition (SA2), this result is a
generalization of a result of Hong et al.[16, Theorem 21 and Corol-
lary 22].
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(3) The ring R satisfies the ascending chain condition on right
annihilators if and only if so does R[x; «, d].

(4) If R is an a-rigid ring, then R is a Baer ring if and only if
R[z, 2% a] is a Baer ring, or equivalently, if and only if R[[z, 27 !; o]
is a Baer ring.

If R is an a-rigid ring, then R is a p.p.-ring if and only if
R[z,z7';a] is a p.p.-ring.

2. (o, 0)-Compatible Rings

The (a,0)-compatiblility condition on R is an interesting con-
dition from which we will derive a number of useful properties.
Furthermore, it will be a basic tool in the proof of the main re-
sults in section 3. In this section we will present some results on
annihilators in Ore extension rings that can be deduced from the
(e, §)-compatiblility condition on R.

We now provide examples of a-compatible left p.p.-rings which
are not a-rigid. Observe that any non-reduced regular ring is
semiprime and p.p.

Example 2.1. Let R; be a non-reduced left p.p.-ring, D a domain
and R = R; @ D[y]. Let a : D[y] — Dly] be a monomorphism
which is not surjective. Then we have:

(1) R is a left p.p.-ring.

Indeed, since R; and Dly] are left p.p., Ry & D[y] is left p.p.

(2) Let @ : R — R be an endomorphism defined by a(a® f(y)) =
a®a(f(y)) for each a € Ry and f(y) € D[y]. Then @ is a monomor-
phism of R which is not surjective and R is a-compatible which is
not a-rigid:
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Let (a® f(y))(bdg(y)) = 0. Then ab =0 and f(y)g(y) = 0. Since
D[y] is a domain, f(y) =0 or a(g(y)) = 0, hence (a ® f(y))a(b @
g(y)) = 0. Now assume that (a® f(y))@(bdg(y)) = 0. Then ab =10
and f(y)a(g(y)) = 0. Since D[y] is a domain and « is a monomor-
phism, f(y) =0 or g(y) = 0. Hence (a & f(y))(b® g(y)) = 0, and
consequently R is a-compatible. But R is not reduced, and hence
R is not a-rigid.

Note that by [16, Proposition 6], a-rigid rings satisfy the condi-
tion (SA1). The following is an example of a non-a-rigid ring which
is (a, §)-compatible and satisfies the condition (SA1).

Example 2.2. Let 6 be an a-derivation of R where R is an a-rigid

ring. Let
b c
Ry = a d ||abecdeR
0 a

be a subring of the upper triangular matrix ring 73(R). The endo-
morphism « of R is extended to the endomorphism @ : R3 — Rj3
defined by @((a;;)) = (a(a;;)) and the a-derivation 0 of R is also
extended to & : Ry — Rj defined by §((ai;)) = (6(a;;)). It follows
that d is an a-derivation of R3. We show that: (i) Rz is an (@, 9)-
compatible ring, (ii) R is not a-rigid, (iii) Rs satisfies the condition

(SA1).

a; b ¢ as by ¢
(i) Assume that | 0 a; dy |@ 0 ay do = (0. Then
0 0 a1 0 0 a2

we have the following equations:
ara(az) =0 (1)
ala(b2)+b1a(a2) =0 (2)
ala(02)+b1a(d2)+cla(a2) =0 (3)

o O
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ara(dy)+dya(az) = 0. (4)
Since R is reduced, from (1) we have a(az)a; = 0. Multiplying the
equation (2) by a(as) from the left-hand side, since R is reduced, it
follows that bya(as) = aag)by = 0. Hence aja(by) = a(bg)a; = 0.
Similarly, multiplying equation (3) by a(ay) from the left-hand side,
we get cia(ag) = alaz)cy = 0. Hence (3) turns to

ala(@) + bla(dg) =0 (5)
Multiplying equation (4) by «(ay) from the left-hand side, we get
dia(as) = alag)d; = 0 and aja(de) = alds)a; = 0. Multiply-
ing equation (5) by a; from the right-hand side, we get a;a(cz) =
a(cy)a; = 0 and bya(dy) = a(dy)by = 0. Now since R is a-rigid,
109 = CL1b2 = a1Cy = a1d2 = blGQ = bldg = C1Q9 = d1a2 = 0.

aq b1 C1 a9 b2 Co
Hence 0 a1 d; 0 ay dy | =0. Now assume that

0 0 ay 0 0 a2

a1 bl C1 as b2 Co
0 a4 d 0 ay do | =0. Then by a similar argument,

0 0 ay 0 0 a2
we have

aja(az) = aja(by) = bialas) = craaz) = dia(az) = aa(dy) =

aloz( ) = bla(dg) 0.

aq b1 (03] Co
Hence 0 o O a2 ds = 0. Therefore Rj3 is
0 O 0 as

a-compatible.

a1 b1 C1 a bZ Co
Assume that 0 a d; 0 ay do = 0. Then ajay =

0 0 aq 0 0 a2
a1by = ajcy =
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ajdy = biag = bydy = ciay = dyay = 0. Since R is a-rigid,
Cljl(S(CLg) = alé(bg) = Cll(S(CQ) = a15(d2) = b15(a2) = b15(d2) =
616(02) = d15(a2) = (0. Thus

ap by ¢\ as by ¢
0 aq d1 ) 0 a9 d2 =0.
0 0 aq 0 0 a2

Therefore R is 6-compatible.

(ii) Since Rj is not reduced, so R is not @-rigid.
(iii) Assume that

a; b ¢ a;- b;- C’j
p =" 0 a d |2 and ¢ = Tl 0 q d,?' =
0 0 a 0 ,

_ j
Rs3[z;@, ¢] such that pg = 0. By a result of Hong et al. [16, Propo-
sition 6], R[z; v, d] is reduced. So that by another result of Hong et
al. [17, Proposition 17],

a; b, ¢ alj b; C;-
0 a d; |@ 0 a d]- = 0, for all ¢,j. Since Rj is
0 0 a 0 0 a;

a-compatible,

a; b ¢ a;- ; c
0 a; d; 0 a; d; | =0foralls, j. Therefore, R; sat-
0 0 a; 0 0 a
isfies the condition (SA1).
By the following example there exists an automorphism « of a

ring R such that: (1) R is a-compatible, (2) R is not a-rigid, and
(3) R satisfies the conditions (SA1) and (SA2):

Example 2.3. Let D be an integral domain and consider the triv-
ial extension of D given by:
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R:{<8d>|adeD}

We see that R is a commutative ring. Some properties of rings of
this type have been studied in [17]. Let a : R — R be an automor-
phism defined by

« a d e ud , where u is a fixed unit element of
0 a 0 a

(1) R is a-compatible:

Assume that ( 8 z 8 Cél ) = 0, so that ab = 0 = ad; + db.

Thus @ = 0 or b = 0. In either case, aud; + db = 0, hence

a d b dy _ a d b dy _
(B ) (05 8)) =0 (5 0)((6 %)) -
a d b dy ) = 0. Therefore, R

then by a similar argument 0 a 0 b

is a-compatible.

(2) R is not a-rigid:

(8 61)&((8 g))—() but<8 g)%Oford;éO.

(3) R satisfies the conditions (SA1) and (SA2):

Let f(z) = X2y A’ and g(x) = ¥32, Bz’ € R[[z;0]], where
A = (Cg ZZ) and B; = (%J Z >for0<z 0 < j. Assume
that f(x)g(z) = 0. Then we have:

S Y Al(B)ait =0, (1)

k=01i+j=k

We claim that 4;a(B;) = 0, and hence by « compatibility of R we
see that A;B; = 0 for all 1,].
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Uk Ck > with ap # 0 and Ay =
0 ag

++ = Ap_1 = 0 where 0 < k. From the equation (1), AgBy +
A10é(Bk_1)+' . '+Ak_1ak71(31)+Akak(Bo) = 0, SO, Akak(Bo) = 0
That is,

ar Cg b() de() i akbo akukd0+0kbg —0
0 ag 0 bo - 0 ak,bo -

Thus aiby = 0, and hence, by = 0 and azu*dy = 0. There-
fore, dy = 0, And thus By = 0. Since A¢Byy1 + Aja(Bg) +--- +
Apa®(By) + Ap1a*t(By) = 0, we have Azaf(B;) = 0 and so
B; = 0 by the same method as above. Continuing this process, it
follows that B; = 0 for all j.

(i) Suppose that there is A, = <

bg Z’;) with b, # 0 and
By = -+ = Br.1 = 0, where 0 < k. From the equation (1),
AgBy + Aja(By 1) + - - + Apa®(Bg) = 0, so AgBj, = 0 and hence
Ap = 0. By the same method as in (i), AgBjy1 + Aja(Bg) + -+ - +
Ak (By) + Apy10*(By) = 0 which implies A;a(B;) = 0 and
hence A; = 0. Continuing this process, we have A; = 0 for all 4.

(iii) Assume that A; = ( 0 ¢ ), B; = ( 0 d; ) for all 4, j. Then

(ii) Assume that there is B, = (

0 0 0 0

: 0 ¢ 0 u'd;

Therefore R satisfies the condition (SA2) by (i), (ii) and (iii).
Similarly one can show that R satisfies the condition (SA1).

The following results exhibit some properties of («, §)-compatible
Rings.

Lemma 2.4. Let R be an (a, §)-compatible ring. Then we have:
(i) If ab = 0, then aa”(b) = a"(a)b = 0 for every positive integer n.
(ii) If o*(a)b = 0 for some positive integer k, then ab = 0.
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(iii) If ab = 0, then a™(a)d™(b) = 0 = 6™ (a)a™(b) for every positive
integers m, n.

Proof. (i) If ab = 0, then o”(a)a™(b) = 0 and hence by a-
compatibility of R o™(a)b = 0 for every positive integer n.

(ii) If & (a)b = 0 for some positive integer &, then by a-compatibility
of R, a*(a)a®(b) = 0 and hence by injectivity of a, ab = 0.

(iii) It is enough to show that d(a)a(b) = 0. If ab = 0, then
by (i) and é-compatibility of R, a(a)d(b) = 0. Hence d(a)b =
d(ab) — a(a)d(b) = 0, thus 0(a)a(b) = 0.0

In the trivial case where « is the identity and ¢ is the zero map,
it is clear that every ring R is (o, d)-compatible. However, Kerr[21]
constructed an example of a commutative Goldie ring R whose
polynomial ring R[x] has an infinite ascending chain of annihilator
ideals. We now impose the skew Armendariz condition (SA1) on R
which leads to the following result:

Theorem 2.5. Let R be an («, §)-compatible ring which satisfies
the condition (SA1). Then R satisfies the ascending chain condi-
tion on right annihilators if and only if so does R[z; «, d].

Proof. Let I; C I, C I3--- be a chain of right annihilators
of R[x;a,d]. Then there exists ) # D; C R[z;«,d], such that
TRizas)(Di) = I for i > 1 and --- C Dy C D;. Assume that
C; is the set of coefficients of elements of D; for ¢ > 1. Since R
satisfies the ascending chain condition on right annihilators, there
exists n € N, such that rg(C),) = rr(C;) for i > n. We show that
T Rizsa0] (Dn) = TRizsa0)(D;), for i > n. Let i > n and g(x) = ro +
P&+ 70" € TRz, (Di). Then, since R satisfies the condition
(SA1) and it is (o, 0)-compatible, Cjr; = 0 for 0 < j < m. Hence
r; € Tr(Cn) = rr(C;) for 0 < j < m. Thus g(x) € ran(Dn)
Therefore, rgpzia,0(Dn) = TRl (Di). Conversely, assume that
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Jy C Jy C J3--- is a chain of right annihilator of R. Then there ex-
ists ) # B; C R, such that rg(B;) = J;fori > land --- C By C By.
Then 7gg;a,6(Bi) = TRw;a,0)(Bn), for some n and all 4 > n. Hence
rr(B;) = RNrg(B;) = RNrr(B,) = rr(By,), for i > n. Therefore,
Ji=J, fori>n. O

3. Polynomial Extensions of Baer and Right p.p.-Rings

In this section we study the relationship between the Baer and
p-p properties of a ring R and its Ore extension rings. As a conse-
quence we obtain a generalization of [7, Corollary 1.10].

Recall that for a ring R with an injective ring endomorphism
«: R — R, R[x;q] is the Ore extension of R. The set {27};5¢ is
easily seen to be a left Ore subset of R[z; a], so that one can localize
R[z; o] and form the skew Laurent polynomial ring R[z,z~'; o]. El-
ements of B[z, z~'; a] are finite sums of elements of the form z/rz’
where » € R and 4,j are non-negative integers. Multiplication is
subject to zr = a(r)z and rz~" = x7'a(r) for all r € R. The skew
Laurent series ring R[[z,z™"; o] is defined similarly.

Now we consider D.A. Jordan’s construction of the ring A(R, «)
(See [19], for more details). Let A(R,a) or A be the subset {z‘ra’ |
r € R, i > 0} of the skew Laurent polynomial ring R[x, x~*; a]. For
each j > 0, z7'rz’ = =49 ad (r)2(+7) . Tt follows that the set of all
such elements forms a subring of R[z, z™'; | with 7 'ra+x 7 s/ =
=+ (ol (r) 4 o(s))2*) and
(z7ra?) (z 7 s27) = 2= ad (r)ai (s)20+9) for r, s € R and 4,5 > 0.
Note that « is actually an automorphism of A(R,«). We have
Rlz,z ;0] ~ Alx, 21 a] via an isomorphism which maps z~‘ra’
to o t(r)a? L,

Note that, since A is a subring of the ring R[[z,z™';a]], each
element f(r) € R[[z,z™"; a]] can be written in the form
f(z) = (z trrpale)aP+- - (z tnmtpy _qale-1)gn L4 50 (g tnpypin )2t
for some non-negative integer ¢,.
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Theorem 3.1. Let o be an automorphism of a ring R and let R
be a-compatible. If R satisfies the condition (SA1), then R is a
Baer ring if and only if R[z,27";a] is a Baer ring.

Proof. Let U be a nonempty subset of R[z,z ';a] and let U, be
the set of coefficient of elements of U. Since R is a Baer ring, there
is an idempotent e € R such that rg(U;) = eR. Since R is («, 0)-
compatible, Ue = 0. Hence eR[z,z7";a] C rgp,—1,0(U). Now
assume that

f(x) = apa® + ap12® + -+ ay2™ € rRp 41,0 (U). Then, since
R satisfies the condition (SA1), Upa; = 0 for i = k,--- ,n. Thus,
a; = ea; for i = k,--- ,n. Therefore,

Rizg-1;0)(U) = eR[z, 27" o). Conversely, assume that Rlz,z';q]
is a Baer ring and L is a non-empty subset of R. There exists
an idempotent e(x) = epz® + ep 2t + - e + e+ -+
ent” € Rlz,27';al, such that rgy,-1,4(L) = e(z)R[z, 2750
Hence Leg = 0. Thus eg = e(z)ep and hence €3 = ey. Then,
since R satisfies condition (SA1), egR C rg(L). Next let t € rg(L).
Then ¢ = e(x)t. Hence, since R satisfies condition (SA1), eyt = t.
Therefore, rr(L) = epR. O

1

Theorem 3.2. Let o be an automorphism of a ring R and let R
be a-compatible. If R satisfies the condition (SA1), then R is a
right p.p.-ring if and only if R[z,z7'; ] is a right p.p.-ring.

Proof. Assume that R[z,z7';a] is a right p.p.-ring and a € R.
There exists an idempotent e(z) = e,z* +ep 1 2¥ 4+ - +eg+ejz+
-+ e,x™ € Rz, 27" o such that 7y -1,0(a) = e(z)R[z,z7"; al.
We show that rz(a) = epR. Since ae(z) = 0, aey = 0, it follows
that egR C rg(a). Let t € rg(a). Then t = e(z)t. Since R satisfies
the condition (SA1), t = egt. Therefore, rg(a) = egR. Conversely,
suppose R is a right p.p.-ring and f(z) = X7, r;z' € R[z, 2 % al.
Note that R is an abelian ring. Let ¢ = e and r € R. Then
(er(1—e))? = 0. Hence by a-compatibility of R, ea(e) = a(e)e = e
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and (er(1—e))a(er(l —e)) =0. Let f(z) =e(1 —er(l —e)z) and
g(x) = (1+er(l —e)z)(1 —e). Then

f(x)g(z) =e(l —e) —er(l —e)aler(l — e))a?*(1 — e)z* = 0. Since
R satisfies the condition (SA1), er(l—e) =e(er(l—e))(1—e) = 0.
Thus er = ere. Similarly re = ere and hence er = re. Hence R
is an abelian ring. Thus there is €2 = e € R such that rg(ry) N
- N rg(ry) = eR. We show that rgp ,—1,0](f(2)) = eR[z, x5 al.
Since R is a-compatible and r;e = 0 for k < i < m, f(z)e = 0.
Hence eR[z,27";a] C Tgpo10)(f(2)). Let g(z) = Xj_ b2l €
TRiz-1:0] (f (). Then f(x)g(x) = 0. Multiply this equation by z~*
and 7% from the right-hand and the left-hand side, respectively.
Since R is a-compatible and satisfies the condition (SA1), we have
rib; = 0 for all 4, j. Thus b; = eb; for all j. Hence g(z) = eg(x).
Therefore, gy o-1,0](f(2)) = eRz, 21 a]. O

Lemma 3.3. Let a be an endomorphism of a ring R and let § be
an a-derivation of R. If R is a-rigid, then R is («, d)-compatible.

Proof. Let R be a-rigid. Since a-rigid rings are reduced, ab = 0
if and only if ba = 0. Hence aca(b)a(aa(b)) = aa(ba)a?(b) = 0.
Since R is «-rigid, we have aa(b) = 0. Similarly, ba = 0 im-
plies that a(a)b = 0. Thus 0 = §(ba) = §(b)a + «a(b)d(a), so
(a(b)d(a))? = —6(b)ac(b)d(a) = 0. Since R is reduced, a(b)d(a) =
0, so 6(b)a = 0 and hence ad(b) = 0. Now suppose that aa(b) =0,
then baa(ba) = 0. Since R is a-rigid, ab = ba = 0. Therefore, R is
(e, 0)-compatible. O

Note that there are numerous examples (see Examples 2.1, 2.2
and 2.3 ), which show that the converse of Lemma 3.3 does not hold.

Lemma 3.4. Let R be a ring. Then R is a-compatible (resp. a-
rigid) if and only if A(R, @) is a-compatible (resp. a-rigid).
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Proof. It is clear that any subring of an

a-compatible ring is also a-compatible. Suppose R is a-compatible
and (z7'rz')(x7az’) = 0, where 5,7 > 0 and r,a € R. Hence
a’(r)a’(a) = 0 and thus o/ (r)a*(a) = 0. So
(z7rz")(x Y a(a)r?) = (x'ra")a(zJaz?) = 0. Therefore, A is a-
compatible. O

Lemma 3.5. Let R be an a-compatible ring. Then R is a Baer
(resp. right p.p. -) ring if and only if A(R, «) is a Baer (resp. right
p.p.--) ring.

Proof. Assume that R is a right p.p.-ring. Let a = 2 ta’ € A
and 277bx7 € rs(a). By Lemma 2.4, b € rg(t). Since R is right
p.p., rr(t) = eR for an idempotent e € R. Thus eb = b, so by a-
compatibility of R, a"(e)b = b for every positive integer n. Hence
e(z79bx?) = x77bx?, thus ra(a) C eA. Since R is a-compatible,
eA C ry(a). Hence ra(a) = eA, thus A is a right p.p.-ring. Con-
versely, suppose A is right p.p, 7 € R and b € rr(r). Since R is
a-compatible and A is right p.p., b € 74(r) = (v 7eg2’) A, where
ey is an idempotent of R and j > 0. Since R is a-compatible,
eoR C rgr(r). Let b € rg(r). By Lemma 2.4, b € r4(r), hence
b = (z77epx’)b. Thus b = egb and hence rr(r) C egR. Therefore,
R is right p.p.
The other case is similar. O

Since R[x,z % a] ~ Alz, 27 ; a], where « is an automorphism of
A, using Theorems 3.1, 3.2 and Corollaries 3.4, 3.5 we can extend
the above results further to the case where « is not assumed to be
surjective:

Theorem 3.6. Let R be an a-compatible ring. If R satisfies the
condition (SA1), then R is a Baer (resp. right p.p.-) ring if and
only if R[z,z71;a] is a Baer (resp. right p.p.-) ring.
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Proof. First we show that A satisfies the condition (SA1). Let
f(x) = (z7rpa®) + (x78riz")z + -+ + (a7 trrat )2, g(z) =
(x7%0koz®0) + (27 k2% ) + -+ - + (275 k2’ )™ € Alx;al and
f(x)g(x) = 0, where t;,s; > 0, rj,k; € R. Let w = to 4+t +
o4ty + S0+ o+ + ty. Then 2V f(z)g(x) = 0. Since R is a-
compatible and satisfies the condition (SA1), r;k; = 0 for all 4, j.
Hence (z "irz')(x % k;a%) = 0 for all 4,j. Therefore, A satisfies
the condition (SA1). Since R[z,z7";a] ~ Alz,z7';a], where « is
an automorphism of A, the proof follows from Lemmas 3.4, 3.5 and
Theorems 3.1, 3.2. O

Since a reduced ring is Armendariz, Corollary 3.7 is a generaliza-
tion of Birkenmeier et al. [7, Corollary 1.10] to the following rather
general setting :

Corollary 3.7 [7, Corollary 1.10]. Let R be a reduced ring. Then
R is a Baer (resp. right p.p.-) ring if and only if R[z,z7'] is a Baer
(resp. right p.p.-) ring.

The next results concern skew Laurent and skew Laurent power
series ring extensions of a-rigid rings. Since an a-rigid ring is a-
compatible and satisfies the condition (SA1), we have the following:

Corollary 3.8. Let R be an a-rigid ring. Then R is a Baer (resp.
right p.p.-) ring if and only if R[z,z7";a] is a Baer (resp. right
p.p.--) ring.

Theorem 3.9. Let R be an a-compatible ring. If R satisfies
the condition (SA2), then R is a Baer ring if and only if T =
R[[z,x";a]] is a Baer ring.

Proof. By Lemma 3.5, R is a Baer ring if and only if A = A(R, «) is
a Baer ring. Assume that A is a Baer ring and let L be a non-empty
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subset of 7. We denote the set of all coefficients of elements of L
by Lo. Thus ra(Ly) = (z7*ex*) A, for some idempotent e € R and
a non-negative integer k. Now we show that r7(L) = (z7%ex®)T.
By Lemma 2.4, rp(L) C (z *ea®)T. Let

fz) = (z7trrpzte)aP +. 4 (x 7t tp, ggln-1)gn =14 70 (ztnppin) gt
€ L and let g(x) = (z7%rzlt)al + - + (x5 2y, ¥zt +
S22 (@7 ma ™)z’ be an element of rp(L). Let w =t; +---t, +
S;+ -+ Spy,. Then we have

z¥ f(x)g(x) = 0. Since R satisfies the condition (SA2), by Lemma
2.4 we have z firzliz %ia;x% = 0 for each ¢ > [, j > p. Thus
for each @ > I, (v %a;x%) € (v *ex*)A. Therefore, rr(L) =
(z=*ex®)T.

Conversely, assume that 7" is a Baer ring and Y is a non-empty
subset of the ring A. Then ry(Y) = e(x)T, for some idempotent
element e(x) € T. Let ey € A be the constant term of e(x). Since
e(x)(e(r) —1) = 0 and ey € r4(Y), then it is easy to show that
ra(Y) =eA. O

Corollary 3.10. Let R be an a-rigid ring. Then R is a Baer ring
if and only if R[[z,z';a]] is a Baer ring.

Proof. Since an a-rigid ring is a-compatible and satisfies the con-
dition (SA2), hence the result follows from Theorem 3.9. O

Theorem 3.11. Let R be an a-compatible ring and satisfy the
condition (SA2). Then R is Baer if and only if R[[z;«]] is Baer.

Proof. The proof follows by a similar method used in the proof of
Theorem 3.6. O

Corollary 3.12(Hong et al. [16, Theorem 21]). Let R be an a-
rigid ring. Then R is a Baer ring if and only if R[[z;«]] is a Baer
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ring.

Proof. Since an a-rigid ring is a-compatible and satisfies the con-
dition (SA2), the proof follows from Theorem 3.11. O

There is a right p.p.-ring R which satisfies the condition (SA2)
such that R[[x; a]] is not a right p.p.-ring:

Example 3.13(Birkenmeier et al. [5, Example 3.6]). For a given
field F', let

R ={(a,)s>, € I | F, | a, is eventually constant }.
This is a subring of II°°, F},, where F,, = F' forn =1,2,... . Then
the ring R is a commutative von Neumann regular ring, and hence
it is a reduced p.p. ring. Let a be the identity map on R. Then R
is a-compatible and satisfies the condition (SA2). But R|[[z;a]] is
not a right p.p. ring.

Theorem 3.14. Let R be an («, d)-compatible ring and satisfy the
condition (SA1). Then R is a Baer (resp. right p.p.-) ring if and
only if R[x;«a,d] is a Baer (resp. right p.p.-) ring.

Proof. Let X be a nonempty subset of R[z;a, 6] and let X' be the
set of coefficient of elements of X. Since R is a Baer ring, there
is an idempotent e € R such that rg(X') = eR. Since R is (o, 6)-
compatible, Xe = 0. Hence eR[x; &, 0] C 7g[z;0,6)(X). Now suppose
f(x) =ao+ a1z + -+ ap2™ € TR (X). Then, since R satisfies
the condition (SA1), X'a; = 0 for i = 0,---,n. Thus a; = eaq;
for i = 0,---,n. Therefore, rga,(X) = eR[z;a,6]. Conversely,
suppose R[z;«,d] is a Baer ring and A is a non-empty subset of
R. There is an idempotent e(x)? = e(x) = eg + €120 + -+ + €,2" €
R[z; a, 6], such that rgi..(A) = e(z)R[z;a,6]. Hence Aey = 0.
Thus ey = e(z)eg and since R satisfies condition (SA1), €3 = e.
Then egR C rr(A). Let t € rg(A). Then ¢t = e(x)t. Hence ept = t.
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Thus rr(A) = epR. The rest of the proof is similar to the proof of
Theorem 3.2. O

Since an a-rigid ring is («, ¢)-compatible and satisfies the condi-
tion (SA1), so we have the following:

Corollary 3.15 (Hong et al. [16, Theorems 11 and 14]) Let R be
an «-rigid ring. Then R is a Baer (resp. right p.p.-) ring if and
only if R[z;a, 0] is a Baer (resp. right p.p.-) ring.

Note that for a = Id, an Armendariz ring satisfies the condition
(SA1), hence we obtain [22, Theorems 9 and 10] as an immediate
corollary of Theorem 3.4:

Corollary 3.16. Let R be an Armendariz ring. Then R is a Baer
(resp. right p.p.-) ring if and only if R[z] is a Baer (resp. right
p.p.-) ring, and equivalently, if and only if R[x,x '] is a Baer (resp.
right p.p.-) ring.

By the following example we show that there exists a non-o-
compatible ring R which is not Baer, but R[x;d] is a Baer ring:

Example 3.17. Let R = Z5[y]/(y?), where (y?) is a principal ideal
generated by y? of the polynomial ring Z[y]. Note that the only
idempotents of R are 0+ (y2) and 1 + (y?). Since rr(y + (y?)) =
(y + (y*)) R cannot be generated by an idempotent, R is not quasi-
Baer and so it is not Baer. Now, let o be the identity map on R
and define an a-derivation § on R by d(y + (y?)) =1 + (y*). Then
R is not d-compatible. However, by [4, Example 11

]
R[z; o, 8] = R[x; 8] & Maty(Zo[y?]) = Maty(Zs[t]).
Note that Maty(Zs[t]) is a Baer ring, hence R[z; «, ] = R[z; 4] is a
Baer ring.
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