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TOPOLOGICALLY LEFT INVARIANT MEAN ON
DUAL SEMIGROUP ALGEBRAS

ALI GHAFFARI

Abstract. Let S be a locally compact Hausdorff semitopologi-
cal semigroup, and M(S) be the Banach algebra of all bounded
regular Borel measures on S. In this paper, we obtain a neces-
sary and sufficient condition for M(S)∗ to have a topologically
left invariant mean.

1. Introduction

Let S be a locally compact Hausdorff semitopological semigroup
with convolution measure algebra M(S) and probability measures
M◦(S). We know that M(S) is a Banach algebra with total varia-
tion norm and convolution, so we can define the first Arens product
on M(S)∗∗, i.e. for F, G ∈ M(S)∗∗ and f ∈ M(S)∗

〈FG, f〉 = 〈F, Gf〉, 〈Gf, µ〉 = 〈G, fµ〉, 〈fµ, ν〉 = 〈f, µ ∗ ν〉
where µ, ν ∈ M(S). On a Banach algebra A a functional f ∈ A∗

is called weakly almost periodic if W (f) = {fa; a ∈ A, ||a|| ≤ 1}
is relatively weakly compact in A∗ where 〈fa, b〉 = 〈f, ab〉 for all
a, b ∈ A [8]. We denote by wap(M(S)) the set of all weakly al-
most periodic functionals on M(S). Clearly 1 : M(S) −→ C given
by 〈1, µ〉 = µ(S) is weakly almost periodic. A functional M ∈ M(S)∗∗

(respectively M ∈ wap(M(S))∗) is called a mean on M(S)∗ (re-
spectively on wap(M(S))) if ||M || = 〈M, 1〉 = 1, and 〈M, f〉 ≥ 0
where f ∈ M(S)∗ (respectively f ∈ wap(M(S))) and f ≥ 0 ([10],
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[12], [13]). A mean M is said to be a topologically left invariant if
〈M, fµ〉 = 〈M, f〉 where f ∈ M(S)∗ (respectively f ∈ wap(M(S)))
and µ ∈ M◦(S).

Wong studied topologically left invariant mean on M(S)∗ and proved
that M(S)∗ has a topologically left invariant mean if and only if there
is a net (µα) in M◦(S) such that ||µ∗µα−µα|| −→ 0 (µ ∈ M◦(S))[12].
Also, Day ([2], [3]) and Junghenn [5] have studied topologically left
invariant mean on M(S)∗.

For a locally compact group G, Wong [13] has shown, there is a net
(µα) in M◦(G) such that ||µ ∗µα−µα|| −→ 0 for all µ ∈ M◦(G) if and
only if there is a net (µα) in M◦(G) such that for all compact subset
K of G, ||µ ∗ µα − µα|| −→ 0 uniformly over all µ in M◦(G) which are
supported in K. But for a semigroup S this matter is not known.

In this paper, among other things, we will show that if M◦(S) has a
measure ν such that the map s −→ δs ∗ ν from S into M(S) is contin-
uous, then the last statement is valid. In fact with this condition we
provide an answer to a problem raised by Lau ([7], p. 322) and Day [3].

2.Topologically left invariant mean

Suppose S is a locally compact Hausdorff semitopological semi-
group. By the Eberlein-Smulian theorem wap(M(S)) is a Banach
subspace of M(S)∗. It is easy to see that for every f ∈ M(S)∗,
{fµ; µ ∈ M(S), ||µ|| ≤ 1} is relatively weakly compact if and only
if {µf ; µ ∈ M(S), ||µ|| ≤ 1} is relatively weakly compact. So, if
f ∈ wap(M(S) then {µf ; µ ∈ M(S), ||µ|| ≤ 1} is relatively weakly
compact. Lashkarizadeh in [6] has proved wap(S) ⊆ wap(M(S)),
where wap(S) = {f ∈ C(S); {Lsf, s ∈ S} is relatively weakly com-
pact in C(S)}. Also he has shown that, if S is a foundation topological
semigroup with identity, then wap(L(S)) = wap(S).

We recall that a semigroup S is said to be left amenable if there
exists m ∈ B(S)∗ such that m ≥ 0, ||m|| = 1 and 〈m, Lsf〉 = 〈m, f〉
for all s ∈ S and all f ∈ B(S), where B(S) is the set of all bounded
complex valued functions on S [1]. In the following Theorem, we give
conditions on S and M◦(S) that are sufficient to guarantee topologi-
cally left amenability of wap(M(S)).
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Theorem 2.1. Let S be a locally compact Hausdorff semitopological
semigroup. wap(M(S)) has a topologically left invariant mean if any
one of the following conditions holds:

(1) S is left amenable and there exists ν ∈ M◦(S) such that the
map s −→ δs ∗ ν from S into M(S) is weakly continuous and
δs ∗ ν = ν ∗ δs (s ∈ S).

(2) S has an identity e and X (X is the set of all means on
wap(M(S)) with σ(X,wap(M(S))) topology) has a dense sub-
set Y such that δe ∈ Xy for all y ∈ Y .

Proof. We start by showing that for f ∈ wap(M(S)) the function
s −→ 〈fν, δs〉 is a continuous function on S. Indeed this is easy,
because 〈fν, δs〉 = 〈f, ν ∗δs〉 = 〈f, δs ∗ν〉. Notice too that if also t ∈ S,
then 〈f(ν ∗ δs), δt〉 = 〈fν, δs ∗ δt〉. The iterated limit condition (or lots
of other methods) now shows that s −→ 〈fν, s〉 is in wap(S). This
means in particular that if M is a left invariant mean on B(S) (and
in fact we only need on wap(S)) then 〈M, fν〉 is well-defined. Let M1

be any continuous linear extension of M from wap(S) to wap(M(S)).
we claim that νM1 is a left invariant mean on wap(M(S)). Indeed for
f ∈ wap(M(S)),

〈δs(νM1), f〉 = 〈M1, (fδs)ν〉 = 〈M, f(δs ∗ ν)〉 = 〈M, f(ν ∗ δs)〉

= 〈δsM, fν〉 = 〈M, fν〉 = 〈M1, fν〉 = 〈νM1, f〉.
To see that this is topologically left invariant, we simply integrate,
using the fact the function s −→ 〈νM1, fδs〉 = 〈M1f, δs ∗ ν〉 is contin-
uous:

〈µ(νM1), f〉 = 〈νM1, fµ〉 =
∫
〈νM1, fδs〉dµ =

∫
〈νM1, f〉dµ = 〈νM1, f〉.

2) Let (Mα) be a net in X, M ∈ X and Mα −→ M in the
σ(X, wap(M(S))) topology. If M1 ∈ X, f ∈ wap(M(S)), since
{Mf ; M ∈ X} is relatively weakly compact (of course we can define
the first Arens product on wap(M(S))∗ and so Mf is well defined), for
every subnet (Mβ) of (Mα) there is a subnet (Mγ) of (Mβ) such that
Mγf −→ Mf in the weak topology. Hence 〈M1Mγ, f〉 −→ 〈M1M, f〉.
Consequently 〈M1Mα, f〉 −→ 〈M1M, f〉, i.e. X is a semitopological
semigroup (in the σ(X, wap(M(S))) topology). Now, let E, E1 be two
idempotents lying in the same minimal left ideal. Since EE1 = E, by
assumption and an argument similar to the proof in ([1], Theorem
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1.5.9), we have E = E1. So the minimal left ideals of X are groups.
On the other hand the minimal left ideals of X are affine. By Corol-
lary 1.3.23 in [1] every minimal idempotent is right zero. Therefore
if E is a minimal idempotent, it is clear that E is a topologically left
invariant mean on wap(M(S)).

Theorem 2.2. Let M◦(S) contains a measure ν such that the map
s −→ δs ∗ν from S into M(S) is continuous when M(S) has the norm
topology. Then the following statements are equivalent:

(1) M(S)∗ has a topologically left invariant mean.
(2) There is a net (µα) in M◦(S) such that for every compact subset

K of S, ||µ ∗ µα − µα|| −→ 0 uniformly over all µ in M◦(S)
which are supported in K.

(3) For every finite subset Ω of M◦(S), ε > 0, there exists a mea-
sure µ ∈ M◦(S) such that ||ν ∗ µ− µ|| < ε for all ν ∈ Ω.

Proof. Reader could point out that the hypothesis about the conti-
nuity of s −→ δs ∗ ν is needed only for (1) −→ (2). Let M(S)∗ has a
topologically left invariant mean. Then by ([12], Theorem 3.1), there
is a net (να) in M◦(S) such that ||µ∗να−να|| −→ 0 for all µ ∈ M◦(S).
Now, let ν ∈ M◦(S) and the map s −→ δs ∗ ν be continuous. For all
α, we take µα = ν ∗ να. It is easy to see that ||µ ∗ µα − µα|| −→ 0
(µ ∈ M◦(S)) and s −→ δs ∗ µα is continuous. So, if K is a compact
subset of S and ε > 0, then for s ∈ K there is a neighbourhood Us of
s such that for every α and t ∈ Us

||δs ∗ µα − δt ∗ µα|| < ε/2.

But K is a compact subset of S, hence we can choose a finite subset
{s1, s2, ..., sn} of K which K ⊆ ⋃n

i=1 Usi
. Also, we can find an α◦ such

that for every α ≥ α◦ and 1 ≤ i ≤ n,

||δsi
∗ µα − µα|| < ε/2.

Let A1 = Us1 , Ai = Usi
\ ⋃i−1

j=1 Usj
, 2 ≤ i ≤ n, and µ ∈ M◦(S). Since

for every α the map s −→ δs ∗ µα is continuous, therefore by ([11],
Chapter 3),

∫
K δs ∗ µαdµ(s) ∈ M(S) and

∫
K δs ∗ µαdµ(s) = µχK ∗ µα.

Consequently for µ ∈ M◦(S) with supp µ ⊆ K and f ∈ M(S)∗, we
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can write

|〈f, µ ∗ µα〉 − 〈f, µα〉| = |
n∑

i=1

∫
Ai

〈f, δs ∗ µα〉 − 〈f, µα〉dµ(s)|

≤
n∑

i=1

∫
Ai

|〈f, δs ∗ µα〉 − 〈f, δsi
∗ µα〉|dµ(s)

+
n∑

i=1

|〈f, δsi
∗ µα〉 − 〈f, µα〉|µ(Ai) ≤

n∑
i=1

∫
Ai

||f ||||δs ∗ µα − δsi
∗ µα||dµ(s)

+
n∑

i=1

||f ||||δsi
∗ µα − µα||µ(Ai) < ||f ||ε

where α ≥ α◦. So (1) implies (2).
(2) implies (3) is easy. Now, assume that (3) holds. For every finite

subset Ω of M◦(S) and ε > 0, we associate the nonvoid subset AΩ,ε =
{η ∈ M◦(S); ||µ ∗ η − η|| < ε for all µ ∈ Ω}. Since the family {AΩ,ε; Ω
is a finite subset of M◦(S) and ε > 0} has the finite intersection
property, so there exists M ∈ M(S)∗∗ such that M ∈ ⋂

Ω,εweak∗-
closure AΩ,ε. Now let f ∈ M(S)∗ with ||f || = 1 and µ ∈ M◦(S). For
ε > 0, there exists η ∈ A{µ},ε/3 such that |〈η, f〉 − 〈M, f〉| < ε/3 and
|〈η, fµ〉 − 〈M, fµ〉| < ε/3. So

|〈M, f〉 − 〈M, fµ〉| ≤ |〈M, f〉 − 〈η, f〉|+ |〈η, f〉 − 〈µ ∗ η, f〉|

+|〈µ ∗ η, f〉 − 〈M, fµ〉| < ε.

Therefore 〈M, f〉 = 〈M, fµ〉. It is trivial that M is a mean, and so
(1) holds. This completes our proof.

Let S be a topological semigroup with identity. We define L(S) =
{µ ∈ M(S); s −→ δs ∗ |µ| and s −→ |µ| ∗ δs are weakly continuous}.
In the following Theorem, we may assume that S is a locally compact
Hausdorff foundation topological semigroup, i.e.

⋃{supp µ; µ ∈ L(S)}
is dense in S. It is well known that L(S) is an ideal in M(S) and
has an approximate identity [6]. We also note that for µ ∈ L(S) both
mapping x −→ |µ| ∗ δx and x −→ δx ∗ |µ| from S into M(S) are norm
continuous [4].
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Theorem 2.3. Let S be a foundation topological semigroup with iden-
tity. Then the following are equivalent:

(1) M(S)∗ has a topologically left invariant mean.
(2) There is a net (νβ) in M◦(S) with finite support such that for

all µ ∈ M◦(S) and ν ∈ L(S), ||µ ∗ νβ ∗ ν − νβ ∗ ν|| −→ 0.
(3) There is a net (νβ) in M◦(S) with finite support such that for all

compact subset K of S and ν ∈ L(S), ||µ∗νβ ∗ν−νβ ∗ν|| −→ 0
uniformly over all µ in M◦(S) which are supported in K.

Proof. Let M(S)∗ has a topologically left invariant mean. Then there
is a net (γα) in M◦(S) such that ||µ ∗ γα − γα|| −→ 0 ([12], Theorem
3.1). Now, if η ∈ M◦(S)

⋂
L(S), we take µα = γα ∗ η (for all α).

Since L(S) is an ideal in M(S), so µα ∈ L(S). Let ε > 0 be given.
For all α, we choose ηα ∈ M◦(S)

⋂
L(S) with compact support and

||ηα−µα|| < ε/4. On the other hand, L(S) has a positive approximate
identity of norm one ([6], Lemma 3.4). So there is a ξα ∈ M◦(S)

⋂
L(S)

such that

||(ηα − µα) ∗ ξα|| < ε/2.

For s ∈ S, there exists a neighbourhood Us of s such that ||δs ∗ ξα −
δt ∗ ξα|| < ε/2 (t ∈ Us). But supp ηα is compact, hence we can find a
finite subset {s1, s2, ..., sn} of S with supp ηα ⊆ ⋃n

i=1 Usi
. If A1 = Us1

and Ai = Usi
\ ⋃i−1

j=1 Usj
, 2 ≤ i ≤ n, we define να =

∑n
i=1 ηα(Ai)δsi

. So
for f ∈ L(S)∗, ||f || ≤ 1, we have

|〈f, ηα ∗ ξα〉 − 〈f, να ∗ ξα〉| = |
∫
〈f, δs ∗ ξα〉 − 〈f, να ∗ ξα〉dηα(s)|

≤
n∑

i=1

∫
Ai

|〈f, δs ∗ ξα〉 − 〈f, δsi
∗ ξα〉|dηα(s) < ε/2.

Therefore ||ηα ∗ ξα−να ∗ ξα|| < ε/2 and ||µα ∗ ξα−να ∗ ξα|| < ε. Conse-
quently, since for all µ ∈ M◦(S), ||µ∗µα−µα|| −→ 0, we may therefore
determine a net (νβ) in M◦(S) with finite support and a net (ξβ) as an
approximate identity in L(S) such that ||µ∗νβ ∗ξβ−νβ ∗ξβ|| −→ 0 for
all µ ∈ M◦(S). Hence it is easy to see that ||µ ∗ νβ ∗ ν − νβ ∗ ν|| −→ 0
for all ν ∈ L(S) and µ ∈ M◦(S). So (1) implies (2).
If (2) holds, an argument similar to the proof of Theorem 2.2 implies
(3).
By ([12], Theorem 3.1), (3) implies (1).
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