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1. Introduction and Preliminaries

Let F,, be a free group freely generated by a countable set {z, z,...}.
Let v be a variety of groups defined by the set of laws V, which is a
subset of F.,. It will be assumed that the reader is familiar with the
notions of verbal subgroup, V(G), and of marginal subgroup, V*(G),
associated with a variety of groups 1/, and a given group G. See also
[23] for more information on the varieties of groups.

Let G be a group with a normal subgroup N. Then we define [NV*(]
to be the subgroup of G generated by the elements of the following set:

{v(gl,...,gm,...,gr)(v(gl,...,gr))_1|1§i§r;v€V;gl,...,grEG;nEN}.

It is easily checked that [NV*G] is the smallest normal subgroup T of
G contained in N, such that N/T C V*(G/T).

The following lemma gives basic properties of verbal and marginal
subgroups of a group G with respect to the variety ¥/, which are useful

in our investigations, see [4] for the proofs.

Lemma 1.1 Let UV be a variety of groups defined by the set of laws
V, and let N be a normal subgroup of a group G. Then the following

statements hold:

() V(@) = Land V*(3(5) = 7l

() V(G)=1iff V(G) =G iff G € v;

(id7) [NV* Gl =1if N CV*(G);

(i) V(§) = VLN g v Gy 5 VLN
(

(

(

N ;
v) V(N) C [NV*G] C NnV(G). In particular ,V(G) = [GV*G];
vi)) I f NNV (G)=1, then N CV*(G)and V*(G/N)=V*(G)/N;
vii) V*(G)N V(G), is contained in the Frattini subgroup of G.

The following useful lemma can be proved easily. See also [4].
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Lemma 1.2 Let V be a variety of groups, and G be a group. If G =
HN, where H a subgroup and N is a normal subgroup of G, then V(G') =
V(H)[NV*G].

Let v be a variety of groups defined by the set of laws V, and let G
be an arbitrary group with a free presentation
l1—R—F —G—1,
where F'is a free group. Then the Baer-invariant of G with respect to

the variety v, denoted by VM (G), is defined to be

ROV(F)
VM(G)=—.
[RV*F]

One may check that the Baer-invariant of a group G is always abelian
and independent of the choice of the free presentation of G (see [7] or

[8]). In particular, if / is the variety of abelian or nilpotent groups

of class at most ¢ (¢ > 1), then the Baer-invariant of the group G

will be ][%ng]/ ( the so called Schur-multiplicator of G') or it will be

RN 70+1(F)
[R.. F]
of the lower central series of ¥ and [R,. F| = [R, F,..., F], where F is

repeated ¢ times (see also [8], [9], [10] or [12]).

, respectively( here 7., (F) stands for the (¢ 4 1)st term

An exact sequence 1 — A — G* — G — 1 is said to be a
V-stem cover of G, if (i) A CV(G*)NV*(G*), and (it) A ZVM(G). In
this case G™ is called a VV-covering group of G. Note that if v is taken
to be the variety of abelian groups, then we have the usual definition of
COVETING group.

Let v be a variety of groups defined by the set of laws V, and let G
and H be groups. Then (a, ) is said to be a V-isologism between G and

H, if there exist isomorphisms o : V*C(;G) — V*JL(IH) and [:V(G)—

V(H), such that for all v(zy,...,2,) € V and all ¢1,...,9, € G, we
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have

whenever h; € a(g;V*(G)), i =1,...,7. In this case we write G ~H,
and say that G is V-isologic to H. In particular, if 1/ is the variety of
abelian groups we obtain the notion of isoclinism due to P. Hall [3], (see
also [17] and [18]).

The following lemma of H.N. Hekster [4] is needed, in our investiga-

tion.

Lemma 1.3 Let UV be a variety of groups defined by the set of laws
V, and let G be a group with a subgroup H and a normal subgroup N.
Then the following statements hold.

(i) H oo HV*(G). In particular, if G = HV*(G) then G wH. Con-
G

versely, if (e satisfies the descending chain condition on subgroups
and G ~H, then G = HV*(G).

(i7) %V(G) ,r,v%. In particular, if NN V(G) = (1) then G ,r,v%.
Conversely, if V(G) satisfies the descending chain condition on normal

subgroups and G ,r,v%, then NN V(G) = (1).

In section 2, we deal with the connection between the Schur pair
property and the Baer-invariant of groups. In fact, it will be shown that
if (1, X)is a Schur-pair, and G* is a V/-covering group of a group G then
G e X if and only if G* € X' (see Corollary 2.3).

In section 3, we study the varietal covering groups and among the
other results, a theorem of E.W. Read [24] is being generalized, ex-
tensively. Section 4 is devoted to study the I/-covering groups and
V-marginal extensions of a V-perfect group, when I/ is taken to be a

subvariety of abelian groups.
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2. Schur-pair and the Baer-invariant of groups

Let v be a variety of groups defined by the set of laws V and let X" be a
class of groups. Then (V/,X’) is said to be a Schur-pair, when G is any
group with % € X it implies that V(G) € X.

In particular, if A" is the class of all finite groups then the above
property is known as a Hall’s first conjecture (see [3]).

In this section we give some equivalent conditions that (7, X") has
Schur-pair property if and only if, when G isin X" then its Baer-invariant
VM(G)is also in X'. For the class of finite groups, we have the remark-
able theorem of C.R. Leedham-Green and S. McKay [7], which reads as

follows:

Theorem 2.1([7; Theorem 1.17]) Let V be a variety of groups defined
by the set of laws V, and let X' be the class of finite groups. Then the
following conditions are equivalent:

(a) (V,X) is a Schur-pair;

(b) For any finite group G, the order of the Baer-invariant of G,
|V M(G)|, divides a power of |G].

Let X be an arbitrary class of groups, which is extension, quotient,
and normal subgroup closed, i.e. X' = PQS5,X. Then we are able to
prove a result similar to Theorem 2.1 for the class X', which is much

larger than the class of finite groups.

Theorem 2.2 Let UV be a variety of groups defined by the set of laws
V and letX be a class of groups with X = PQS,X. Then the following
conditions are equivalent:

(a) (V,X) is a Schur-pair;

(b) If G is any group in X, then so is VM (G).

Proof. Let 1 — R — F — G — 1 be a free presentation of the
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group (. Then

R F

"= mvm v

— G — 1,

is a V-marginal extension of G. Now if (I, ') is a Schur-pair and G € X,
then using the property X' = QA and - - V*(L) we have

[RVF] [RVF]
]
—c &\
V)

Hence % € X,and so YM(G) e X.

Conversely, with the same notation, let E be a group with marginal

factor group % 2 (4. By the assumption G € X and hence
V(F

| —VM(G) — [#vﬂ%

is a V-marginal extension of V(G) € X', then wﬂv%

easily checked that V(F)is a homomorphic image of [];/VZSF]
V(E)e X, ie (V,X)is a Schur-pair. m

— V(G) — 1,
is alsoin X. It is

. Therefore

The following interesting corollary states that a group G in the above
mentioned class of groups A" has the same structure as its covering group,

and its proof follows from the above theorem.

Corollary 2.3 Let IV be a variety of groups defined by the set of laws
Voand let X be a class of groups with X = PQS,X. Let (V,X) be a
Schur-pair and G* be a UV -covering group of G. Then G € X if and only
ifGre X.

Remark. J.A. Hulse and J.C. Lennox in [5] did introduce a gener-
alized version of the Schur-pair property as follows: (17, X)) is said to be

an ultra Schur-pair, if for any group G with a normal subgroup N such

N : *
that NV € X, it holds that [NV*G] € X, see also [13] and [20].
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Now, considering this notion we have been able to prove a result similar

to Theorem 1.3.

3. Varietal Covering groups

This section is devoted to study the covering groups of a group G, with
respect to a given variety of groups /. One should note that, in general,
groups might not possess V/-covering groups. In [19], we presented a
class of groups lacking ¥/-covering groups, with respect to a certain given
variety V, (see also [7]).

However, [.Schur in [25] showed the existence of covering groups for
finite groups and then M.R. Jones (see [26]) generalized it to every group
in the variety of abelian groups. In [14] we have also shown that every
group has a V-covering group with respect to the variety of abelian
groups of exponent m, when m is a square-free positive integer. Now,
agssuming the existence of a covering group of a given group G with
respect to a variety I/, we are able to give the structure of such covering

groups.

Theorem 3.1 Let UV be a variety of groups defined by the set of laws
V and let G be a group with a free presentation 1 — R — F —
G — 1.Then

(i) If S is a normal subgroup of F such that

R RAV(F) s
(RV-F] ~ [RV-F] ~ [RV*I]

then G* = F/S is a V-covering group of G.
(i) Fvery V-covering group of G is a homomorphic image of [RV-E]"

(1ii) For any V-covering group G* of the group G with a V-stem cover

1l—A—G —G—1,
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there exists a normal subgroup S of F as in part (i), satisfying also

F/S2G" and R/S = A.

Proof. (i) Put A= R/S. Then G*/A = F/R = G and A ZUM(G).
From the assumption we have R C V(F')S. Clearly
R F R _V(F)S

A S_V(S) V*(G") and A S g V(

Hence G* = F/S is a V-covering group of G.

(ii) Let F' be the free group freely generated by the set X and let
7w : F' — G be an epimorphism with R = kerw. Let G* be a V-covering
group of GG, with the /-stem cover | — A — G* G — 1. Clearly
for any € X, there exists g, € G* such that ¢(g,) = 7(x). Now, we
put H =< g, € G* | 2 € X >, hence G* = HA. But using Lemma
1.2, ACV*(G*)=V(H),s0o G* = H. We consider the homomorphism
P F — G* given by ¥(z) = ¢g,,2 € X. Then # is onto and 7 = ¢ o 1.
It is easily seen that ¢(R) C A, so

Y([RV'F)) C [Y(R)V'G"] = 1.

F

Thus v induces a homomorphism ¢ from r5+s—=r onto G*, which is the

[RV™F|

required assertion.
(iii) Let @ € A and @ = ¢(x), for some z € F. Then 1 = ¢(a) = n(z).
So z € R and hence A C 9(R). One can easily see that A = 1(R). Now

observe that
Y(ROAV(F) CYH(R)NY(V(F))=AnV(G") = A.

To prove the converse, suppose that z = ¥(z) = ¥(y), for some
v € V(F) and y € R, whence 7'y € kert). Thus n(z7'y) = 1 and
z~ly € R. Tt follows that z € R and z € y(RNV(F)), which shows that
ACY(RNV(F)). Hence A = (RN V(F)). Therefore ¢ restricts to
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an isomorphism from R[vaiv*(]?? onto A. Let 5 = kertyp. Then %
. . - R . .
is the kernel of the restriction of ¢ to [BV-F] and the image of this
restriction is A. Thus one may conclude that

R _ ROV(F) s

[RVE] ~ [RV-F] *[RV'I]
Now, part (i) implies that F'/S is a V-covering group of . Let

6 : F/S — G* be the homomorphism induced by . Using the fact that
¥ is onto and ¥(R) = A, it follows that 8(R/S) = A, which completes
the proof. m

In general, it is not true that any two covering groups of a given
group G are isomorphic (see [6]). However using the above theorem we
deduce that any tow covering groups are V-isologic, which generalizes a

theorem of Bioch and van der Waall [2].

Corollary 3.2 (see also [15]) Let V be a variety of groups defined by
the set of laws V and G be a group. Then all V-covering groups of G

are V-isologic.

In [16], by imposing some condition on homomorphisms we give a
sufficient condition for tow V-covering groups of a given group to be
isomorphic. Also we deduce that all ¥/-covering groups of a group in ¥
are Hopfian.

Covering groups have been studied for the abelian case, by several
authors. See for instance [6], [10] or [26].

In the following we deal with the property of covering groups in an
arbitrary variety of groups 1/, which generalizes the work of E.W. Read
[24], extensively.

Theorem 3.3 Let UV be a variety of groups, and let G and G5 be

two V-covering groups of a given group G. Let

1l— A — G —G—1 ,1=1,2
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be a V-stem cover of G. Then

ViGh) o Vi(Go)

Ay As

Proof. Let | — R — F — G — 1 be a free presentation for
the group G, and G* be a fixed covering group of G with respect to
a given variety V. By the definition, there is an exact sequence 1 —
A — " — G — 1l such that A C V*(G*)NV(G*) and A ZVM(G).
To prove the result it suffices to show that isomorphism class of groups
VG are determined uniquely by the presentation F'//R = G. Using

Theorem 3.1, we may assume that G* = F'/S, A = R/S for some normal

subgroup S of F' such that

R~ 5

RV SV M) X g
Put V*([R‘f*F]) = [R‘%*F]’ then clearly [LV*F] C [RV*F] C S and
hence L/S C V*(F/S). Now, if 5 € V*(F/5) then for every v € V
and fi,..., f. € I, we have

o(fiyeoos fizy oo s )o(f1yen, f)7HESNV(EF) = [RV*F).
So z[RV*F] € v*(%). This implies that V*(F/§) C L/S. Thus
V*(F/S)= L/S. Hence V—(AG—) =~ L/R. But the factor group L/R is
only determined by the free presentation F//R = G, and hence the result

follows. m

Remark. In [7], Leedham-Green and McKay introduced the gen-
eralized version of the Baer-invariant of a group G with respect to two
varieties of groups. We have proved, a result similsr to Theorem 3.3 in

this generalized version (see [21] and [22] for more details).
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4. Subvarieties of abelian groups

In this final section we consider V/-covering groups and I/-marginal ex-
tensions of a V-perfect group with respect to a subvariety of abelian

groups UV, say.

In [15], we have shown the following theorem, yielding the existence
of V-covering groups for V-perfect groups with respect to an arbitrary

variety of groups V.

Theorem 4.1 Let V be a variety of groups and let G be a V-perfect

group with a free presentation G =2 F/R. Then [V L s a V-covering

RV*F)|
group of G.

Theorem 4.1 is also generalized Theorem 2.1 of [11], in which the

variety VV was defined by the set of outer commutator words.

Now in the following main result (Theorem 4.3), it is shown that if
V is a variety of groups contained in the abelian variety A, say, then the
V-marginal extensions of a I/-perfect group G are homomorphic images
of a V-stem cover. Of course, we have also proved such a result in [14]
for any group with respect to the variety of abelian groups of exponent

m, where m is a square free positive integer.

The following lemma shortens the proof of the main theorem consid-

erably, and its proof is straightforward.

Lemma 4.2 Let V be a variety of groups and G be any group with
a free presentation | — R — F —= G — 1, and let 1 — A —
H — G — 1 be a V-marginal extension of another group G. If

a: G — G is an isomorphism, then there exists an epimorphism 3 :
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F

i — H such that the following diagram commutes

[RV-F]

TG —1

1 — R — E
[RV™F| [RV™F]
| B LB la
1 — A — H —G—1

where © is the natural homomorphism induced by © and (3, is the re-

striction of (.

Theorem 4.3 Let UV be a variety contained in the variety of abelian
groups and let
l—A—H—G—1
be a V-marginal extension of a V-perfect group G. Then there exists a
V-covering group G* of G such that H is a homomorphic image of G*.

Proof. Let 1| — R — F "~ (¢ — 1 be a free presentation of the
F

group G. By Lemma 4.2, there exists an epimorphism 3 : 5357 — H

[RV°F]

such that the following diagram commutes:

TG —1

1 — R — E
[RVF] — [RVF]
| B LB I
1 — A — H — G —1

where (3, is the restriction of 5. Put

T
k‘GTﬁl = k‘GTﬁ = W,

where T is a normal subgroup of R and T(RNV(F')) = R. Hence, since
G is V-perfect we have
T L T(RNV(F)) R ~ RV (F) F

o o

TAV(F) RnV(F)  RaV(F) V(FE)  V(E)

Thus the following exact sequence splits

TAV(F) T T
l1l—— —> — — 1,
[RV*F] [RV-F]  Tav(F)
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T

where <57 is an abelian group, and hence

[RV-F]

T _TnV(F) S
RV ~ [RV-F]  [RV-F]

where [R‘*/SV*F] =T ﬂj;/(F) Now we have
SN(RNV(F)=Sn(T'NnV(F))=[RV"F],
and

S(RNV(F)=S(T(RNV(F))nV(F)) = (RnV(F)(S(TNnV(F)))

which implies that

R RAV(F) s
[RV-F]  [RV*F]  [RV-F]

Hence by Theorem 2.1, F//S is a V-covering group of G. Moreover

Ia

F/S  [RVF] o

/S T "
[RV™F]

which completes the proof. m

Now, we obtain the following corollary which is of interest in its own

account.

Corollary 4.4 Let U be a variety contained in the variety of abelian
groups and let
(¢):1 — A — H — G — 1 be a V-marginal extension of a V-
perfect group G such that every other V-marginal extension of G is a

homomorphic image of the extension (e). Then (e) is a V-stem cover of

G.
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Proof. By Theorem 4.3, there exists a V-stem cover (¢/) : 1 —
A — G* — G — 1 and an epimorphism ¢ : G* — H such that

the following diagram is commutative

l— A4 — G —G—1

L Lo
1l—A—H—G—1

where 1, is the restriction of ¢ to A;. Now by using [15, Theorem 3.4],

we obtain that ¢ is an isomorphism which gives the result. m

In the context of V-perfect groups, we have proved several other
results, for instance we have shown that any automorphism of a finite
V-perfect group can be lifted to an automorphism of its I/-covering group

(see [15]). This result is a vast generalization of Alperin and Gorenstein
[1].

Acknowledgement: We would like to thank the referees for their

valuable suggestions.
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