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ENTROPY OPERATOR FOR CONTINUOUS

DYNAMICAL SYSTEMS OF FINITE

TOPOLOGICAL ENTROPY

MEHDI RAHIMI∗ AND ABDOLHAMID RIAZI

Communicated by Mohammad Bagher Kashani

Abstract. In this paper we introduce the concept of entropy op-
erator for a continuous system of finite topological entropy. It is
shown that it generates the Kolmogorov entropy as a special case.
If φ is invertible then the entropy operator is bounded by the topo-
logical entropy of φ as its norm.

1. Introduction

Entropy is a numerical invariant measuring the complexity of a dy-
namical system. It was first introduced into the ergodic theory by Kol-
mogorov [10] and Sinai [17] via a measure theoretic approach. Adler,
Konheim and McAndrew [1] introduced topological entropy as another
version of entropy of dynamical systems. It was given in an equiva-
lent way, as a metric approach, by Dinaburg [7] and Bowen [4], which
was used to connect the topological entropy and the measure theoretic
entropy via a variational principle. Shannon [16], McMillan [12], and
Breiman [5] gave local approaches to entropy based on the Theorem of
Shannon-McMillan-Briman. A topological version of the Theorem of
Shannon-McMillan-Briman was given by Brin and Katok [6]. In case
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of smooth dynamics, Ruelle [15] and Pesin [13] gave local approaches
to entropy. One may find other approaches to entropy in [2, 8, 9, 11].
In all of these approaches, entropy is given as a non-negative extended
real number assigned to a dynamical system. This paper is an attempt
to present a different approach to the entropy of a dynamical system
as a linear operator rather than a non-negative number. This entropy
operator should generate the entropy as a special case and contain the
variational principle in its nature. Also, one can use it to define the
measure theoretic entropy for complex invariant measures rather than
the probability invariant measures. It also results in a local entropy as
well.

In section 2, the prerequisities are given briefly. In section 3, we
introduce the concept of entropy operator and we state its relationship
with the entropy of a dynamical system. Finally, we summarize our
results in section 4.

2. Preliminary facts

Suppose that φ : X → X is a dynamical system on the compact
metric space X. Let M(X) be the set of all Borel probability measures
on X. The set of all probability invariant measures of φ is denoted by
M(X,φ). We also write E(X,φ) for the set of all ergodic measures of
φ. M(X,φ), equipped by the weak∗-topology on M(X), is a compact
convex metrisable space with extreme points E(X,φ) [18]. In the fol-
lowing, we recall some preliminary facts which is needed in the rest of
the paper. First, we recall Choquet’s Theorem and its corollary which
results in the ergodic decomposition.

Theorem 2.1. (Choquet)(Phelps [14]) Suppose that Y is a compact con-
vex metrisable subset of a locally convex space E, and that x0 ∈ Y . Then
there exists a probability measure τ on Y which represents x0 and is
supported by the extreme points of Y , i.e., Ψ(x0) =

∫
Y Ψdτ for every

continuous linear functional Ψ on E, and τ(ext(Y )) = 1.

Let µ ∈M(X,φ) and f : X → R be a bounded measurable function.
Since we know that E(X,φ) agrees with the set of extreme points of
M(X,φ), applying Choquet’s Theorem for Y = M(X,φ) and Ψ(µ) =∫
X fdµ, we have the following corollary:

Corollary 2.2. Suppose that φ : X → X is a continuous map on the
compact metric space X. Then for each µ ∈ M(X,φ) there is a unique
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measure τ on the Borel subsets of the compact metrisable space M(X,φ)
such that τ(E(X,φ)) = 1 and∫

X
f(x)dµ(x) =

∫
E(X,φ)

(∫
X
f(x)dm(x)

)
dτ(m)

for every bounded measurable function f : X → R.

Under the assumptions of Corollary 2.2 we write µ =
∫
E(X,φ)mdτ(m).

It is called the ergodic decomposition of µ.

Theorem 2.3. (Jacobs)(Walters [18]) Let φ : X → X be a contin-
uous map on a compact metrisable space. If µ ∈ M(X,φ) and µ =∫
E(X,φ)mdτ(m) is the ergodic decomposition of µ then we have:

(i) If ξ is a finite Borel partition of X then

hµ(φ, ξ) =

∫
E(X,φ)

hm(φ, ξ)dτ(m).

(ii) hµ(φ) =
∫
E(X,φ) hm(φ)dτ(m) (both sides could be ∞).

The following Theorem shifts the supremum in the definition of Kol-
mogorov entropy on a countable family of partitions.

Theorem 2.4. (Walters [18]) Let φ : X → X be a continuous map
on the compact metric space X. Let {ξn}n∈N be a sequence of finite
Borel partitions of X such that diam(ξn) → 0 as n → ∞. For every
µ ∈M(X,φ) we have hµ(φ) = limn→∞ hµ(φ, ξn).

3. Entropy operator

As in the previous section, let φ : X → X be a continuous dynamical
system on the compact metric space X. Let B(X) be the family of
all Borel measurable subsets of X. The set of all complex invariant
measures of φ is defined as follows:

M(X,φ) := {µ : B(X)→ C : µ(φ−1(B)) = µ(B) ∀B ∈ B(X)}.

M(X,φ) is a complex linear space and is equipped with the norm ||µ|| :=
|µ|(X). It is easily seen thatM(X,φ) is closed with respect to this norm.
Note that M(X,φ), E(X,φ) ⊂M(X,φ).

To proceed further, choose any sequence {ξn}n≥1 of Borel partitions
of X such that diam(ξn)→ 0. We fix it for the remaining of this paper.
One may assume that ξn < ξn+1, since otherwise one can replace ξn by



886 Rahimi and Riazi

ηn =
∨n
i=1 ξi wherein, the joint of two partitions ξ = {A1, ..., An} and

η = {B1, ..., Bm} is given by

ξ ∨ η = {Ai ∩Bj : i = 1, ..., n, j = 1, ...,m}.

Definition 3.1. Let x ∈ X, A ∈ B(X) and let ξ, η be two Borel parti-
tions of X. The non-negative extended real numbers τφ(x,A), Sφ(x; ξ),
Sφ(x; ξ|η) and S̄φ(x; ξ) are defined as follows:

τφ(x,A) := lim sup
n→∞

1

n
card({k ∈ {0, 1, ..., n− 1} : φk(x) ∈ A}),

Sφ(x; ξ) := −
n∑
j=1

τφ(x,Aj) log τφ(x,Aj),

Sφ(x; ξ|η) := −
n∑
i,j

τφ(x,Ai ∩Bj) log
τφ(x,Ai ∩Bj)
τφ(x,Bj)

and

(3.1) S̄φ(x; ξ) := lim sup
n→∞

1

n
Sφ(x;

n−1∨
i=0

φ−iξ)

wherein, φ−iξ is the partition given by

φ−iξ = {φ−i(A1), ..., φ
−i(An)}.

Lemma 3.2. For any x ∈ X, the limit limn→∞ S̄φ(x; ξn) exists, as a
non-negative extended real number.

Proof. Let ξ = {Ai} and η = {Bj} be two Borel partitions of X and
assume, without loss of generality, that all sets have the property that
τφ(x,A) 6= 0. (Since if ξ = {A1, ..., Ak} with τφ(x,Ai) > 0 for 1 ≤ i ≤ r
and τφ(x,Ai) = 0 for r < i ≤ k we can replace ξ by {A1, ..., Ar−1, Ar ∪
Ar+1 ∪ ... ∪Ak})
By definition

Sφ(x; ξ ∨ η) = −
∑
i,j

τφ(x,Ai ∩Bj) log τφ(x,Ai ∩Bj).

But we may write

τφ(x,Ai ∩Bj) =
τφ(x,Ai ∩Bj)
τφ(x,Ai)

.τφ(x,Ai).
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Therefore

Sφ(x; ξ ∨ η) =−
∑
i,j

τφ(x,Ai ∩Bj) log
τφ(x,Ai ∩Bj)
τφ(x,Ai)

−
∑
i,j

τφ(x,Ai ∩Bj) log τφ(x,Ai)

=Sφ(x; η|ξ)−
∑
i,j

τφ(x,Ai ∩Bj) log τφ(x,Ai).

(3.2)

On the other hand, one may easily see that∑
j

τφ(x,Ai ∩Bj) ≥ τφ(x,Ai)

for all i ∈ N. Multiplying both sides by − log τφ(x,Ai) and summing
over i one obtain

(3.3) −
∑
i,j

τφ(x,Ai ∩Bj) log τφ(x,Ai) ≥ −
∑
i

τφ(x,Ai) log τφ(x,Ai).

Combining (3.2) and (3.3) we have

(3.4) Sφ(x; ξ ∨ η) ≥ Sφ(x; η|ξ) + Sφ(x; ξ).

Now, let ξ < η; then ξ ∨ η = η and since Sφ(x; η|ξ) ≥ 0, by (3.4) one
obtains

(3.5) Sφ(x; η) ≥ Sφ(x; η|ξ) + Sφ(x; ξ) ≥ Sφ(x; ξ).

Since ξ < η then ∨n−1i=0 φ
−iξ < ∨n−1i=0 φ

−iη for all n ∈ N. It follows
from (3.1) and (3.5) that S̄φ(x; ξ) ≤ S̄φ(x; η). Thus, for any x ∈ X,
{S̄φ(x; ξn)}n≥1 is an increasing sequence of non-negative extended real
numbers. Therefore limn→∞ S̄φ(x; ξn) exists as a non-negative extended
real number. �

Definition 3.3. Under the previous conditions, the entropy kernel of φ
is defined as follows:

Jφ(x) := lim
n→∞

S̄φ(x; ξn).

Now we are in a position to introduce the entropy operator of a dy-
namical system φ.

Definition 3.4. The entropy operator of φ, Lφ :M(X,φ)→ L(C(X);C),
given by µ 7→ Lφ(µ) is defined as follows:

(Lφ(µ)) (f) :=

∫
X
fJφdµ
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for all f ∈ C(X), where L(C(X);C) is the space of linear functionals
on C(X).

Clearly, Lφ is a linear operator between the vector spaces M(X,φ)
and L(C(X);C). The norm of Lφ is given by

||Lφ|| := sup
||µ||=1

||Lφ(µ)||

wherein

||Lφ(µ)|| = sup
||f ||∞=1

∣∣∣∣∫
X
fJφdµ

∣∣∣∣ .
The operator Lφ is an entropy generator operator, in the sense that, one
can obtain the entropies of φ from Lφ. (See Theorem 3.6)

Definition 3.5. For f ∈ C(X), the evaluation map f̂ : L(C(X);C)→ C
is defined by f̂(L) := L(f) for all L ∈ L(C(X);C).

The following theorem is our main result which shows that how one
can extract entropies of φ from Lφ.

Theorem 3.6. Suppose that φ : X → X is a continuous dynamical
system of finite topological entropy on the compact metric space X. Then

(i)
(
1̂oLφ

)
(µ) = hµ(φ) for all µ ∈M(X,φ).

(ii) ||Lφ|| ≥ htop(φ).
(iii) Moreover, if φ is invertible then ||Lφ|| = htop(φ).

Proof. (i) First, let m ∈ E(X,φ). For any Borel set A ⊆ X and x ∈ X,
applying Birkhoff’s ergodic Theorem one may obtain τφ(x,A) = m(A)
for almost all x ∈ X. Hence if ξ is a Borel partition of X then Sφ(x; ξ) =
Hm(ξ) for almost all x ∈ X where Hm(ξ) is the entropy of the partition
ξ. Thus, for each n ∈ N one can find a Borel set Yn with m(Yn) = 1
such that

lim sup
l→∞

1

l
Sφ(x;

l−1∨
i=0

φ−iξn) = hm(φ, ξn)

for all x ∈ Yn. Put X1 := ∩∞n=1Yn, then m(X1) = 1 and for x ∈ X1

lim sup
l→∞

1

l
Sφ(x;

l−1∨
i=0

φ−iξn) = hm(φ, ξn)

for all n ≥ 1 or equivalently,

S̄φ(x; ξn) = hm(φ, ξn)



Entropy operator for continuous systems 889

for all n ≥ 1. If n → ∞ one can obtain Jφ(x) = hm(φ) for almost all
x ∈ X1. This easily results in∫

X
Jφdm = hm(φ).

Now let µ ∈ M(X,φ) and let µ =
∫
E(X,φ)mdτ(m) be the ergodic de-

composition of µ. For n ∈ N put Jn := min{Jφ, n}. Then {Jn}n≥1
is an increasing sequence of bounded measurable maps on X such that
Jn ↗ Jφ. Applying Corollary 2.2, Theorem 2.3 and Monotone Conver-
gence Theorem one obtains(

1̂oLφ
)

(µ) = (Lφ(µ)) (1)

=

∫
X
Jφdµ

= lim
n→∞

∫
X
Jndµ

= lim
n→∞

∫
E(X,φ)

(∫
X
Jndm

)
dτ(m)

=

∫
E(X,φ)

(∫
X
Jφdm

)
dτ(m)

=

∫
E(X,φ)

hm(φ)dτ(m)

= hµ(φ).

(ii) If µ ∈M(X,φ) then

||Lφ(µ)|| = sup
||f ||∞=1

∣∣∣∣∫
X
fJφdµ

∣∣∣∣ ≥ ∫
X
Jφdµ = hµ(φ).

Therefore

||Lφ|| ≥ sup
µ∈M(X,φ)

||Lφ(µ)|| ≥ sup
µ∈M(X,φ)

hµ(φ) = htop(φ).

(iii) Let φ be invertible. First, we show that if µ ∈ M(X,φ) then |µ| is
an invariant measure of φ. Let µ ∈ M(X,φ) and let B be a Borel set.
Then µ(φ−1(E)) = µ(E) for every Borel set E. We know that

|µ|(B) = sup
∞∑
i=1

|µ(Ei)|



890 Rahimi and Riazi

where the supremum is taken over all partitions {Ei} of B. Therefore,

|µ|(B) = sup
∞∑
i=1

|µ(Ei)|

= sup
∞∑
i=1

|µ(φ−1(Ei))|

≤ sup
∞∑
i=1

|µ(Ci)|

= |µ|(φ−1(B))

where in the first and second summations the supremum is taken over
all partitions {Ei} of B while in the last summation the supremum
is taken over all partitions {Ci} of φ−1(B). So, we have shown that
|µ|(B) ≤ |µ|(φ−1(B)) for every Borel set B. Since φ is invertible then
by symmetry, |µ|(φ−1((B)) ≤ |µ|(B) which means that |µ| is an invariant
measure of φ.

For µ ∈M(X,φ) with ||µ|| = 1 we have

||Lφ(µ)|| = sup
||f ||∞=1

| (Lφ(µ)) (f)|

= sup
||f ||∞=1

∣∣∣∣∫
X
fJφdµ

∣∣∣∣
≤ sup

||f ||∞=1

∫
X
||f ||∞Jφd|µ|

=

∫
X
Jφd|µ|

= h|µ|(φ).

Since |µ| is an invariant probability measure, by the variational principle

||Lφ|| = sup
||µ||=1

||Lφ(µ)|| ≤ sup
||µ||=1

h|µ|(φ) ≤ htop(φ).

This completes the proof. �

4. Summary and discussion

In this paper, the concept of entropy operator for a continuous dy-
namical system φ : X → X of finite topological entropy is introduced.
In this case, the entropy operator of φ, Lφ, is a linear operator between
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M(X,φ) and L(C(X);R). We summarize the properties of Lφ as fol-
lows:

(i) Theorem 3.6 shows that Lφ is indeed an entropy generator opera-
tor, in the sense that, the restriction of Lφ to M(X,φ) composed

with 1̂ equals the entropy map µ 7→ hµ(φ). On the other hand,
when φ is invertible, the norm of Lφ, as a bounded linear oper-
ator, equals the topological entropy of φ, i.e., ||Lφ|| = htop(φ).

(ii) Theorem 3.6 (i) motivates us to define the entropy of φ for com-
plex invariant measures. One can do this by considering the
combination 1̂oLφ :M(X,φ)→ C. In other words, for any com-
plex invariant measure µ, the entropy of φ may be defined as(
1̂oLφ

)
(µ), because the restriction of 1̂oLφ to M(X,φ) is the

usual entropy map.
(iii) The map Jφ : X → [0,∞] is indeed a local entropy, because by

Theorem 3.6 (i)∫
X
Jφdµ = (Lφ(µ)) (1) =

(
1̂oLφ

)
(µ) = hµ(φ).

for all µ ∈M(X,φ). On the other hand, unlike the classical local
approaches to the measure theoretic entropy, [3, 5, 10, 13], the
local entropy Jφ is universal, in the sense that, it does not depend
on any measure and its integral with respect to any invariant
measure equals the entropy of the dynamical system with respect
to that measure.

(iv) If f is a distribution function then the value (Lφ(µ)) (f) =∫
X fJφdµ is indeed a weightened entropy of φ. This value equals

the classical Kolmogorov entropy when there is no weight in the
middle, i.e., f ≡ 1.
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