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MULTIPLE POINT SELF-TRANSVERSE IMMERSIONS
OF CERTAIN MANIFOLDS

M. A. ASADI-GOLMANKHANEH

Communicated by Jost-Hinrich Eschenburg

ABSTRACT. In this paper we determine the multiple point mani-
folds of certain self-transverse immersions in Euclidean spaces. Fol-
lowing the triple points, these immersions have a double point self-
intersection set which is the image of an immersion of a smooth
5-dimensional manifold, cobordant to Dold manifold V® or a bound-
ary. We show that there is an immersion of S7 x P? in R'® with
double point manifold cobordant to Dold manifold V°, and an im-
mersion of P2 x P2 x P? x P? x P? in R'® with double point manifold
a boundary and the triple point set with odd number. These are
obtained by introducing the product technique and reading off the
Stiefel-Whitney numbers of the self-intersection manifolds.

1. Introduction

Given a self-transverse immersion f : M™ 9 R""% the r-fold inter-
section set I,.(f) is defined as follows:

L(f)y={y e R |f (| =r}

The self-transversality of f implies that this subset of R"*¥ is the image
of an immersion made self-transverse

er(f) . Ln—k(r—l) SN Rn+k
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of a manifold L of dimension n — k(r —1) called an r-fold point manifold
of f. It is natural to ask given an immersion how we can find its r-fold
point manifold, or, given the manifold L, is there any immersion of a
manifold with an r-fold point manifold cobordant to L?

Several authors have considered the problem when the manifold L is
0-dimensional. When the manifold L is 2-dimensional, the problem was
considered by A. Sziics in [11] and P. J. Eccles in [4, with correction].
Here we are going to look at the problem when the manifold L is a
5-dimensional Dold manifold V®. The simplest case is when r = 2.
Therefore, we are going to ask, is there any immersion f : M™ 9 R?"=5
of some manifold M"™ with double point manifold cobordant to V5?7 If
n > 10 and r > 2 the r-fold point manifolds are empty, so we consider
just the double points. In [2] for even dimensional manifolds and n > 10
we have shown that the double point manifolds for such immersions
are all boundaries. Here we consider the problem when n = 8,9 and
10. The reasons we bring them in a separate document are; first they
have triple points, second we introduce a technique from which we can
study the product immersions. If n = 8, then the double and triple
point manifolds are boundaries, when n = 9 there is an immersion of
P? x S7 in R'3 with double point manifold cobordant to V'®, thanks to
the Hopf immersion S” = R® and P. J. Eccles’s paper [7]. If n = 10
the double point manifolds are boundaries and there is an immersion of
P? x P? x P? x P? x P? in R'® with odd number of triple point set. This
can be generalized to the case M?" ¢ R3". The other odd dimensional
cases are more complicated, and each dimension has its own difficulties.

We have introduced a method in [3] to determine the multiple point
manifolds of an immersion. Here we are going to use that method to
solve the above problems. The method is equivalent to detecting the
spherical elements in a certain homology group which is generally an out-
standing open problem in algebraic topology. We use algebraic topology
and, in particular, the correspondence between cobordism groups and
homotopy groups of Thom complexes. The un-oriented bordism class of
a manifold is determined by its Stiefel-Whitney numbers, and the Stiefel-
Whitney numbers of the self-intersection manifolds of an immersion can
be read off from certain homological information about the immersion.
In the next section we explain briefly what we did in [3]. The main
results of this paper are the following.
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Theorem 1.1. Let f : M° ¢ R'3 be an immersion, then there is a
9-dimensional boundary which immerses in R with the double point
manifold cobordant to Dold manifold V.

Theorem 1.2. Let f : M® = R be any immersion, then the multiple
point manifolds of these immersions are all boundaries.

Theorem 1.3. Let f: M0 a5 R be any immersion, then the double
point manifolds are all boundaries and there is an immersion where the
triple point set is an odd number.

2. The Stiefel-Whitney Numbers of Multiple Points

Let Imm(n, k) denote the group of bordism classes of immersions
M" & R™* of compact closed smooth manifolds in Euclidean (n + k)-
space. By general position every immersion is regularly homotopic, bor-
dant to a self-transverse immersion, and so each element of Imm(n, k)
can be represented by a self-transverse immersion. In the same way,
a bordism between self-transverse immersions can be taken to be self-
transverse. It is clear that such a bordism will induce a bordism of the
immersions of the r-fold point self-intersection map

0y : Imm(n, k) — Imm(n — k(r — 1), rk).
Let MO(k) denote the Thom complex of the universal O(k)-bundle

7¥ . EO(k) — BO(k). Using the Pontrjagin-Thom construction, Wells
describes an isomorphism

¢ : Imm(n, k) = 775+kMO(k:).

(For details of cobordism in this setting, see R. Wells [12].) But the
stable homotopy group 71'5 M O(k) is known to be isomorphic to ho-
motopy group m,+xQ@MO(k), where the QX stands for the direct limit
Q°¥>*X = limOQ"¥"X, ¥ denotes the reduced suspension functor,
and {2 denotes the loop space functor. We consider the Zs-homology
Hurewicz homomorphism

hems  MO(k) 2 7,1, QMO(K) — Hyx(QMO(K); Zo).
The main result of [3] describes how, for a self-transverse immersion
f: M™% R** corresponding to a € 71'5 +xMO(k), the Hurewicz image
h(a) € Hp+k,QMO(k) determines the normal Stiefel-Whitney numbers
of the self-intersection manifold A, (f).

Notation: X[ = X A X A--- A X denotes the n times smash product
of X.
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The r-adic construction on X denoted by D, X is defined as follows:
DX = W%, xy, X' = (W3, xg, XU/ (WD, x5, {+}).

Here %, denotes the permutation group on r elements and W3, is a
contractible space with a free ¥,-action. The group ., acts on the
smash product X"l by permuting the factors. There is a natural map
h" : QX — QD, X known as the stable James-Hopf map which induces
the stable Hopf invariant A : WS X = WS xDr X (see [6]). If the
self-transverse immersion f : M™ 9 R™* corresponds to the element
aend +xMO(k), then the immersion of the r-fold point self-intersection
manifold 6,(f) : A.(f) & R"* corresponds to the element h%(a) €
sl 1 DrMO(k) given by the stable Hopf invariant (see [8]). The map

e DeMO(K) — 7 MO(rk),

induced by the map of Thom complexes £ : D, MO(k) — MO(rk),
makes the following commutative diagram.

hl, X
775+kMO(k) ﬂ';?JrkDTMO(k:) ¢ ﬂ'SJrkMO(rk)
h hS h¥
hi &
H, 1 QMO(k) H, . D, MO(k) H, . MO(rk)
Diagram 1

In this diagram the second and third vertical maps are stable Hurewicz
homomorphisms defined using the fact that Hurewicz homomorphisms
commute with suspension. Notice that the normal Stiefel-Whitney num-
bers (and so bordism class) of the multiple point self-intersection man-
ifold A,(f) of an immersion f : M™% a» R" corresponding to a €
72 MO(k) are determined by (and determine) the Hurewicz image h°(53)
of the element 3 = &.h%(a) € 75 MO(rk) corresponding to the immer-
sion 6, (f). The map &, on the bottom row is determined in ([3], Theorem
3.1 and generally Theorem 3.2). For reference we need its spacial case.

Theorem 2.1. The homomorphism
& HoDoMO(k) — H.MO(2k)
is given by

(a) &xleieiy---eqy “€51€jo ¢ "ejk) = (€ ey © € €51€50 "ejk);
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k ij—l

(b) f*(Qpezj €ipt Gik) = Z H Z <mj +uu ; 1> Cij+mj+uCij—u,

m;>0j=1 u=0
where my +mao + -+ +my =p — |I].

This theorem enable us to determine the characteristic numbers of
the multiple point manifolds. To read off these numbers, we recall the
structure of H,MO(k).

Homology of MO(k) and QMO(k): Let e; € H;BO(1) = Zy be the
non-zero element (for i > 0). By a counting argument we can show that
{ei€in-ei, |0 < iy <ig <o <y}
is a basis for H,BO(k). Since the Thom complex MO(k) is homotopy
equivalent to the quotient space BO(k)/BO(k — 1). It follows that

{ei€in e | 1<y <idg < -+ <y}

is a basis for H,MO(k).

Dyer and Lashof (see [10]) make use of the Kudo-Araki operations
Q' : Hn,QX — H,, ;QX to describe the homology of QX. These
operations are trivial for ¢ < m and equal to the Pontrjagin square for

i = m. If I denotes the sequence (i1,iz,...,%,), then we write Qlz =
Q1Q" - - Q' x. The sequence [ is admissible if ¢; > 2i;41 for 1 < j <,
and its excess is given by e(I) = iy —i2 — - - - — i,... With this notation we

can give the description of H,QX as a polynomial algebra: if {zx| N €
A} is a homogeneous basis for H, X C H,QX where X is path-connected
space, then

H.QX = Zs[Q"zy | A € A, T admissible of excess e(I) > dimz,].

We may define a height function it on the monomial generators of H,QX
by ht(zy) = 1, ht(Q'u) = 2ht(u), and ht(u - v) = ht(u) + ht(v) (where

u - v represents the Pontrjagin product).

3. Immersions of M*° - R13

According to the above notes, the multiple point manifolds of an
immersion are determined by the spherical elements of the homology
group H,QMO(k). Determining the spherical elements, (i.e. the ele-
ments in the image of the Hurewicz map in Diagram 1) is a difficult
problem, but we can show that every spherical element is primitive and
As-annihilated. Therefore, first we find the primitive As-annihilated
submodule of H,QMO(k). Since in our case the triple points form a
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1-dimensional manifold, they are boundaries. On the other hand, the
double point manifold is 5-dimensional, so it is cobordant to a boundary
or Dold manifold V°. As a result we need to find those spherical ele-
ments in H,QMO(k) which involve height two elements. Because the
group H,DoMO(k) C H.QMO(k) consists of height two elements, in
dimension 13 for k£ = 4 these are the following;:
9 4 8.3 7.3 7,22 4 3 4 2
Q €1, Q €1€2, Q €1€3, Q €1€2, €1 €166, €1-€1€26€5,
4 2 4 2 4 2 4 3 3 4
€1 - €1€3€4, €1 - €1€65€4, €1 - €1€2€3, €1 - €9€3, €1€2 * €9,
3 2 3 2 2 3 2 3 3 3 3
€1€2 + €1€5€3, €162 €1€3, €1€2 + €1€2€4, €1€2 - €1€x5, €1€3  €1€9,
3 2 3 3 2 2 3 2.2 2 2.2 3
6163 : 616263, 6163 : 6164, 6162 . 6162, 6162 . 616263, 6162 . 6164.

We can show that every height one element is primitive if and only if
it involves e1, and if @ is primitive, then Q¥a is also primitive (see [1]
Lemmas [3.1, 3.2, 3.3]). Note that

H13(MO(4)) = <{67;1€1'26i3€i4 01 § il § i2 § i3 S i3 S Z4}>
in which the following height one elements are not primitive:
3 2 2 2 2 3
eyer, ejeq€s, €336, €2€3€y, €2€3€5, €364.

To see which linear combination of non-primitive elements are primitive,
let 1 denote the cup-co-product. Then ¥ (e,) = >, 4j=n € ® €j and
the Cartan formula holds. Note that a € H,X is primitive if ¢)(a) =
a®14+1®a. The calculations show that the following combinations are
primitive:
A= e% : e‘ll : ei’ez + e‘ll : 6%63 + 6?62 : e% + e:{’eg : ele% + 6?62 . 616%63
+ 616% . e%e% + e%e% . 6%6263 + e§e4,
B = e‘ll . 616%64 + e‘i’eg . 616%63 + 616% . e‘rfeg + e%e% . 6?64 + 626%65,
C = e} -e1exel +eres - eled + efey - e2e3 + egesel,
D = e‘lL . 6%6265 + 6?62 . 6%6264 + 6?63 : 6%6263 + 6?64 : e%e% + 6?62 . 6?65
+ eeses,
E= e‘ll . 6%6364 + ei’ez : e%eg + 6?63 : 8%6263 + 6:1)’64 : 6?63 + 6:1)’62 : 6%6264
+ e%e% . 6%6263 + 6%6465,
F= e‘ll . 6?66 + e:{’ez . 6?65 + 6:{)63 : 6:{’64 + 6367.

So we have the following.
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Corollary 3.1. The primitive submodule of H13QMO(4) is generated
by the following elements:

A B, C, D, E F b Q% Q% Qleles, Qlefe.
Where § runs over all the primitive height one elements.

The primitive As-annihilated submodule of H13QMO(4) can be de-
termined with a long calculation which we omit. Note that a € H, X is
As-annihilated if Sqia = 0 for all i > 1, where Sq! is dual to the Steen-
rod operation Sq¢' : H®X — H""X. The action of Steenrod squares on
the elements of Corollary 3.1 gives us the following lemma.

Lemma 3.2. The primitive As-annihilated submodule of H13QMO(4)
s generated by

Q" etes.

Claim: The element Q7eles is spherical in H13QMO(4).

In fact we will show that there is an immersion P? x S7 ¢ R!3, and
if v denotes this immersion in m3QMO(4), then h(y) = Q7eles. We
know that there is an immersion P? 3 R3, given by Boy’s surface. Let
a represents this immersion in 73QMO(1), then since H3QMO(1) =
(e1-e1-e1, e1-e2, Q%1, e3). Calculations show that the primitive As-
annihilated submodule is generated by the single element e - e1 - 1 +
e1 - ex + Q%e; + e3, s0 necessarily

h(a):el-el-el+el-eg+Q2el+eg.

On the other hand, there is an immersion of S” ¢ R® known as Hopf
immersion. In [7] P.J. Eccles has shown that the Hurewicz image of
this immersion in HgQMO(1) is Q7e; + Q31 - Q3e;. Now since the
suspension Kkills the products, with a double suspension, if 5 denotes the
Hopf immersion in 710QMO(3), then its Hurewicz image is

h(B) = QTe}.
Now we describe how to determine the cobordism class of the double

point manifold of the product immersion P? x S7 ¢» R3 x R1Y = R13
(made self-transverse) from the Hurewicz images h(«) and h(f).

Let m : MO(1) AN MO(3) — MO(4) be the map of Thom complexes
arising from the Whitney sum map BO(1) x BO(3) — BO(4). Then
the product immersion corresponds to the element

a-f=m(aNpB)emsMO4).
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If o is represented by a map f : S3 A S™ — MO(1) A S™ and 3 is
represented by a map g : 1A S™ — MO(3) A S™, then since dim P? <
dim S” + 1+ 3, a A 3 is represented by the map

§3+n A g10+m I o1y A §100m N a0 1) A QMO(3)
L QMO@1) A MO3)) 28 QMO(4),

where the map [ : MO(1) AQMO(3) — Q(MO(1) A MO(3)) is defined
by [z, z](t) = [z, 2(t)] for z € MO(1), z € QMO(3).

Now recall that the cobordism class of the double point manifold of
the product immersion is determined by &,h2h(a - 3), where

h2h(a - B) € HizDaMO(4).

To evaluate this, observe that from [5] the map [ : X AQY — Q(X AY)
corresponds to a combinatorial map [ : X ATTY — I'(X AY) repre-
senting the filtration of 't and thus inducing a map [ : X A DY —
Dy(X ANY). This is given by I(z, [w,y1,y2]) = [w, (x,11), (x,y2)]. Fur-
thermore, from [6] the James-Hopf maps h? commute with I:

l

XANQY QX NY)
l 1 A R? l h?
X AQDsY L - QDo(X AY)
so the following diagram commutes.

_ _ L - Qm. -
H.MO(1) ® H.QMO(3) —> H.QIMO(1)AMO(3)) — H.QMO(4)

ll ® h? l h? l h?

Q

) ) Lo .
H.MO(1) ® H.D2MO3)  —  H.Do(MO(1) AMO3)) > H.D2MO(4)

Thus h2h(a-B) = Qm.l.(h°(a) @ h(B)), where h¥(a) denotes the stable
Hurewicz image of . But in calculations it is necessary to describe the
homomorphisms

L : Ho(MO(1) A DoeMO(3)) — H.Dy(MO(1) A MO(3))

and
Qmi : H.Do(MO(1) A MO(3)) — H.DyMO(4).
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The calculation of the map Qm. is easy. In fact we have
Qmsi(a®b-c®d) =ab-cd, Qm.(QP(a® b)) = QPab.

To evaluate I,, recall that H,(X AY) is generated by homology classes
of the form a ® b where a € H,(X), b € H.(Y), and H,Dy(X A Y)
is generated by height two elements in ﬁ*Q(X AY). Note that the
generators of the homology group H,(X A DyY) have the forms a ®b - ¢
and a ® Q"b, where a € I:[*(X) and b,c € ﬁ*(Y) Although we do not
need this lemma, but for reference in the future works we bring it here.

Lemma 3.3. . (a®b-¢) =Y (' ®b)-(a"®@c) € H.Da3(MO(1)NMO(3))
where

P(a) =Y ' ®d € H(MO(1) A MO(1)) = H.MO(1) ® H.MO(1)
which is the vector space dual of the cup product
H*MO(1) @ H*MO(1) - H*MO(1).

Proof. It is easy to see that the following diagram is commutative.

ANIAL
XAYAY) =220 (XAX)A(YAY) ATAL (x AvIA (X AY)

| l

X A DY - Da(X AY)

Now the Lemma is immediate from the related homology diagram,
where X = MO(1) and Y = MO(3). O

Lemma 3.4. Ifa € H,(X) is Ay-annihilated, then l,(a®Q"d) = Q" (a®
d).

Proof. We use the argument on page 56 of Madsen and Milgram [9].
As explained there, a class x € H™(X) induces a cohomology class
@rer € H*™(WXs xx, X?). Now using the definition of the Steenrod
squares given by Steenrod and Epstain it follows that

m
(IxA)(®ror)= Zei ® Sq"'x € H*™(WXs xx, X)
i=0
= H™(BY; x X).
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Hence

(1 « A)*(ek—m Qr® 1,‘) — Zek—m—ﬂ' ® Sqm_ix

i=0
m—1
= or+ Z eFmmti g Sgm i,
i=0

Therefore, by vector space duality, if a € H,,(X) is Ag-annihilated
IxA:BYx X =Wy xx, X — W%y xy, X?
induces (1 x A)y(ex ® a) = e ® a®a (= 0 for & < m). It follows
that the map
9 ) 1xAx12 9 9
l:XX(WZQ XE2Y):W22X22XXY — WEQ XEQX xY
=Wy x (X xY)?
induces l,(a ® e ®b® D) = €1 ® (a®b) @ (a®D), (= 0 for k <m).

In other words l.(a ® Q"*b) = Q"**(a ® b), where b € H,(Y), proving
the lemma. OJ

Proof of the Claim: Recall that since
h(B) =Q%e3, h(a)=-e1-e1-e1+e-ex+ Q% + e3,
so h¥(a) = e3. Therefore, from Lemma 3.4 we have
h(a - B) = Qm.l.(es ® Q7€:13) = Qm*(Q7(63 ® e?)) = Q7e:{)€3-

This proves our Claim. O
Now by Theorem 2.1,

7.3 6 6 7 5 2
&«Q'efes = ejeseq + ejexes + ejes + ejeaes.

On the other hand, from Diagram (1), the double point self-intersection
manifold of an immersion M° & R!3 may be identified, up to a bordism,
by using the stable Hurewicz homomorphism

hS s (MO(8)) — Hyz(MO(8)).

To determine these, note that the homology group Hi3(MO(8)) has a
basis

3.5 4.3 5.2 5 2 6 6 7
6162, 6162637 616264, 616263, 6162657 616364, 6166.

The calculations show that the primitive As-annihilated submodule is
generated by the single element:

7 6 6 5, .2
ei1eg + e1ezes + e1eseyq + ejeges.
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But there is an immersion of V° 9» R!3. If v denotes this immersion in
m13MO(8), then necessarily
hs(y) = eleg + eSeges + elegeq + 6?626%.

Note that V? is the only nontrivial manifold in 5-dimensional cobordism
group and its Hurewicz image is stable because it embeds in R!3. Now we
observe that £&,Q7eles = h¥(y), showing that the double point manifold
of the immersion P? x S7 9» R!? is cobordant to V®. This proves
Theorem 1.1.

4. Immersions of M?® ¢ R11

By a similar calculations as above we will have the following. The
homology group of H11QMO(3) is generated by the following elements:

2 2 2 2
€1€9, €1€2€3, €1€3€7, €1€4€6, €1€5, €3€7, €2€3€6, €2€4€5, €3€5,
2 3 2 3 3 3 2 3 2
€3€4, €1 - €166, €1 - €1€2€5, €1 - €1€3€4, €1 €964, €1 - €2€3,

2 2 2 2 2 2 2 2 2
€1€2 - €1€x5, €1€2 - €1€2€4, €1€2 - €1€3, €1€2 + €5€3, €1€3 -+ €1€4,

6%63 + €1€2€3, 6%63 . 6%, 6163 . 6%64, 6165 + €1€2€3, 616% . 6%,
Q%], QTefes, QOeles, QCeres,

e:{‘ . ez{’ . 6%63, e:f . e“i’ . ele%, 6%62 . Q4e§’, e:% . Q‘r’e?, e‘% . 6%62 . 6%62.

Corollary 4.1. The primitive submodule of H11QMO(3) is generated

by the following elements:

eleg, ereses, ereser, eeses, erer, Q%%, QTefes, Qeies,

Qbered, A=¢e} eleg+ eley - eles + e2es - e2eq + eder,

B = e:{’ - e1eges5 + e%ez -eregeyq + 6%63 -e1eg2e3 + ele% . 6%64 + 6%62 . 6%65
+ ezeses,

C = 6? -ejeseq + 6%62 -ejegey + 6%63 . 6%64 + 6?62 . 616:25 + 616% - ejeses
+ 6%63 - e1e2e3 + egeqes,

D= e? . 6%62 : 6%62 + eif : e:{’ . 6%63 + 6%63 . eg + 8%63 . 6%64 + 6%62 . 6%63
+ ei{’ . 6%64 + 6%65,

3.3 2 2. .3 2 2 3 2 2
E =ej €] -ere5+erey-e;+ejes-eres +e7 - egez + eseq.
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Corollary 4.2. The primitive As-annihilated submodule of H11QMO(3)
is generated by the single element:

€1€3€7.

The above element is spherical. In fact there is an immersion of
P? x PS5 95 R, If o represents this immersion in 71;QMO(3), then
necessarily h(a) = ejeger. Therefore, the multiple point manifolds are
boundaries. The other manifolds and immersions fullfil the same result.
This proves Theorem 1.2.

5. Immersions of M10 ¢» R15

By a similar calculations we have the following lemma.

Lemma 5.1. The primitive submodule of Hi5(QMO(5)) is generated
by the following elements:

Q"e}, Q%les, Q%les, Qcles, o
A= e} eleg + eley - efes + efes - eleq + ejer,
B = e? : 6?6265 + 6%62 : 6?6264 + 61163 : 6%6263 + 61164 : e:fe% + 61165 : e%eg
+ 6%6366,
C= ei’ . 6?6364 + e%eg : e:{’eg + 6%63 : 6:1"6263 + 6%64 : e‘lleg + eileg . 6?6264
+ ei’e% . e:fegeg + 8%6465,
D = ei’ . 6%6%64 + e‘lleg . 6%6%63 + 611163 : e%eg’ + 641164 : e?e% + 636365,
E= e? . e%egeg + e?eg . e%eg + e‘%e% : eileg + e%egei,
= ei’ . elegeg + e‘lleg . eleg + e‘lleg . e%eg + 626%64 + e‘lleg . 6%6%63

3 2 2.3 3.2 3
+ 6162 . 6162 + 6162 . 6162637

G=¢e}-el-e]+e)-e5+efes-eres+ el
Here § runs over a basis of primitive height one elements.

Now the action of the Steenrod squares to elements of 5.1 gives the
following Corollary.

Corollary 5.2. The primitive As-annihilated submodule of Hi5QMO(5)
is generated by the following elements:

Q%cles+ A+06, G, 6.

Here § denotes a primitive combination of the height one elements.
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If the element Q8efes + A+ § is spherical, by a simple calculation we
can show that the double point manifolds are boundaries. The element
G is spherical. Because there is an immersion

P?2x P?2x P?2x P?x P?2qs R

with Hurewicz image G. Let 1 denotes its representation in m15QMO(5).
Thus,

h(n) = e“;’ . ei’ . e? —1—6‘;’ . eg +€11€2 . ele% —I—eg.

Now as we see from above h2(h(n)) = €} - €3+ efea - e1ed and h2(h(n)) =

e? - e} - ef. Therefore by Theorem 2.1 we see

EhZ(h(n) =0,  &hi(h(n)) = €.

These show that the double point manifold of this immersion is a bound-
ary and the triple point set is an odd number. This proves Theorem 1.3.
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