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ITERATIVE METHODS FOR FINDING NEAREST

COMMON FIXED POINTS OF A COUNTABLE FAMILY

OF QUASI-LIPSCHITZIAN MAPPINGS

W. NILSRAKOO∗ AND S. SAEJUNG

Communicated by Heydar Radjavi

Abstract. We prove a strong convergence result for a sequence
generated by Halpern’s type iteration for approximating a common
fixed point of a countable family of quasi-Lipschitzian mappings in a
real Hilbert space. Consequently, we apply our results to the prob-
lem of finding a common fixed point of asymptotically nonexpan-
sive mappings, an equilibrium problem, and a variational inequality
problem for continuous monotone mappings.

1. Introduction

Let C be a nonempty closed convex subset of a real Hilbert space H.
A mapping T : C → C is said to be Lipschitzian if there exists a positive
constant L such that

‖Tx− Ty‖ ≤ L‖x− y‖ for all x, y ∈ C.

In this case, T is also said to be L-Lipschitzian. We denote by F(T ) the
set of fixed points of T . A mapping T is said to be quasi-Lipschitzian if
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F(T ) 6= ∅ and there exists a positive constant L such that

‖Tx− y‖ ≤ L‖x− y‖ for all x ∈ C and y ∈ F(T ).

In this case we also say that T is quasi-L-Lipschitzian.

Remark 1.1. It follows directly from the definitions above that:

(i) If T is L-Lipschitzian with F(T ) 6= ∅, then T is quasi-L-Lipschit-
zian.

(ii) If T is quasi-L1-Lipschitzian and L1 < L2, then T is quasi-L2-
Lipschitzian.

(iii) T is (quasi-) 1-Lipschitzian if and only if T is (quasi-) nonex-
pansive.

Throughout the paper, we deal with quasi-L-Lipschitzian mappings
where L ≥ 1. There are many methods for approximating fixed points
of mappings. In 1953, Mann [12] introduced the iteration as follows: a
sequence {xn} defined by

(1.1) xn+1 = αnxn + (1− αn)Txn for all n ∈ N,

where x1 ∈ C and {αn} is a sequence in [0, 1]. Mann iteration has
been extensively investigated for nonexpansive mappings. One of the
fundamental convergence results is proved by Reich [24]. Recently, the
present authors [16, 17, 18, 19, 20, 21] extended the iteration (1.1) to
obtain weak and strong convergence theorems for a countable family
of (quasi-) Ln-Lipschitzian mappings {Tn} with some appropriate addi-
tional conditions by the following iteration:

xn+1 = αnxn + (1− αn)Tnxn for all n ∈ N,

where x1 ∈ C and {αn} is a sequence in [0, 1]. In an infinite-dimensional
Hilbert space, strong convergence of Mann iteration is not generally
guaranteed [5]. Some attempts to construct an iteration method so that
strong convergence is guaranteed have recently been made [3, 8, 10, 13,
14, 15, 27, 28, 29, 30]. Halpern [8] introduced the following iterative
scheme for approximating a fixed point of T

(1.2) xn+1 = αnx+ (1− αn)Txn for all n ∈ N,

where x, x1 ∈ C and {αn} is a sequence in [0, 1]. This iteration process
is called Halpern’s type iteration. Strong convergence of this type iter-
ative sequence was also studied by Wittmann [28]. In 1996, Bauschke
[1] extended the iteration (1.2) to obtain strong convergence theorems
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for a finite family of nonexpansive mappings {Ti}Ni=1 by the following
iteration:

(1.3) xn+1 = αnx+ (1− αn)Tn(modN)xn for all n ∈ N,

where x, x1 ∈ C, {αn} is a sequence in [0, 1] and modN takes values
in {1, 2, . . . , N}. Recently, O’Hara et al. [22] extended the iteration
(1.3) to obtain strong convergence theorems for a countable family of
nonexpansive mappings.

In this paper, we establish strong convergence theorem for finding
common fixed points of a countable family of quasi-Ln-Lipschitzian map-
pings in a real Hilbert space. As a consequence, several convergence the-
orems for quasi-nonexpansive mappings and asymptotically nonexpan-
sive mappings are deduced. Finally, we apply our results to equilibrium
problems and variational inequality problems for continuous monotone
mappings.

2. Preliminaries

Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖.
Then

‖x+ y‖2 = ‖x‖2 + ‖y‖2 + 2〈x, y〉
and

(2.1) ‖λx+ (1− λ)y‖2 = λ‖x‖2 + (1− λ)‖y‖2 − λ(1− λ)‖x− y‖2

for all x, y ∈ H and λ ∈ [0, 1]. In particular,

(2.2) ‖x+ y‖2 ≤ ‖x‖2 + 2〈y, x+ y〉

for all x, y ∈ H. We write xn → x (xn ⇀ x, resp.) if {xn} converges
strongly (weakly, resp.) to x. It is also known that H satisfies:

• The Opial’s condition [23], that is, for any sequence {xn} with
xn ⇀ x, the inequality

lim inf
n→∞

‖xn − x‖ < lim inf
n→∞

‖xn − y‖

holds for every y ∈ H with y 6= x.
• If {xn} is a sequence in H such that xn ⇀ x, it follows that

(2.3) lim sup
n→∞

‖xn − y‖2 = lim sup
n→∞

‖xn − x‖2 + ‖x− y‖2 for all y ∈ H.



1050 Nilsrakoo and Saejung

Let C be a nonempty closed convex subset of H. Then, for any x ∈ H,
there exists a unique nearest point in C, denoted by PCx, such that

‖x− PCx‖ ≤ ‖x− y‖ for all y ∈ C.
Such a mapping PC is called the metric projection of H onto C. We
know that PC is nonexpansive. Furthermore, for x ∈ H and z ∈ C,

z = PCx if and only if 〈x− z, z − y〉 ≥ 0 for all y ∈ C.

Lemma 2.1 ([29], Lemma 2.1). Let {an} be a sequence of nonnegative
real numbers. Suppose that

an+1 ≤ (1− αn)an + αnβn for all n ∈ N,
where {αn} is a sequence in (0, 1) with

∑∞
n=1 αn = ∞ and {βn} is a

sequence of real numbers with lim supn→∞ βn ≤ 0. Then limn→∞ an = 0.

To deal with a family of mappings, the following conditions are in-
troduced: Let K be a subset of a Banach space, let {Tn} be a family of
mappings of K into itself with

⋂∞
n=1 F(Tn) 6= ∅. {Tn} is said to satisfy

(a) the ZLC-condition [31] if for each bounded sequence {zn} in
K, there exists a family of nonexpansive mapping of K into
itself T such that ‖Tnzn − T (Tnzn)‖ → 0 for all T ∈ T and⋂∞
n=1 F(Tn) = F(T) 6= ∅, where F(T) is the set of all common

fixed points of all mappings in T;
(b) the H-condition [9] if for each bounded sequence {zn} in K,

lim
n→∞

‖zn+1 − Tnzn‖ = 0 ⇒ ωw{zn} ⊂
∞⋂
n=1

F(Tn),

where ωw{zn} denotes the set of all weak subsequential limits of
{zn}.

Recall that a mapping T is demi-closed at y, if xn ⇀ x and Txn → y,
then Tx = y.

Lemma 2.2 ([7], Theorem 10.3). Let K be a nonempty closed convex
subset of a reflexive Banach space which satisfies Opial’s condition and
let T be a nonexpansive mapping of K into itself. Then I − T is demi-
closed at zero.

Lemma 2.3. Let K be a nonempty closed subset of a reflexive Banach
space which satisfies Opial’s condition and let {Tn} be a family of map-
pings of K into itself which satisfies the ZLC-condition. Then {Tn}
satisfies the H-condition.
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Proof. Let {zn} be a bounded sequence in K such that

lim
n→∞

‖zn+1 − Tnzn‖ = 0.

Since {Tn} satisfies the ZLC-condition, there exists a family of nonex-
pansive mapping of K into itself T such that ‖Tnzn − T (Tnzn)‖ → 0 for
all T ∈ T and

⋂∞
n=1 F(Tn) = F(T) 6= ∅. Then

‖zn+1 − Tzn+1‖
≤ ‖zn+1 − Tnzn‖+ ‖Tnzn − T (Tnzn)‖+ ‖T (Tnzn)− Tzn+1‖
≤ 2‖zn+1 − Tnzn‖+ ‖Tnzn − T (Tnzn)‖ → 0,

for all T ∈ T. By Lemma 2.2, I − T is demi-closed at zero. So, we
get ωw{zn} ⊂ F(T ) for all T ∈ T. This implies that {Tn} satisfies the
H-condition. �

Lemma 2.4. Let C be a nonempty closed convex subset of a real Hilbert
space H. Let {Tn} be a family of quasi-Ln-Lipschitzian mappings of C
into itself with Ln → 1 and

⋂∞
n=1 F(Tn) 6= ∅ (that is, for every n ∈ N,

x ∈ C and u ∈ F, ‖Tnx − u‖ ≤ Ln‖x − u‖ holds). If {Tn} satisfies the
H-condition, then

⋂∞
n=1 F(Tn) is closed and convex.

Proof. It follows directly from [19, Lemma 2.8]. �

3. Strong Convergence Theorems

In this section, using the Halpern’s type iteration we obtain a strong
convergence theorem for a countable family of quasi-Lipschitzian map-
pings.

Theorem 3.1. Let C be a nonempty closed convex subset of a real
Hilbert space H. Let {Tn} be a family of quasi-Ln-Lipschitzian mappings
of C into itself with Ln ≥ 1 and F :=

⋂∞
n=1 F(Tn) 6= ∅ (that is, for every

n ∈ N, x ∈ C and u ∈ F, ‖Tnx − u‖ ≤ Ln‖x − u‖ holds). Assume that
{αn} is a sequence in (0, 1] which satisfies the following conditions:

(C1) limn→∞ αn = 0;
(C2)

∑∞
n=1 αn =∞;

(L) limn→∞
Ln−1
αn

= 0.

Let {xn} be a sequence in C defined as follows: x, x1 ∈ C and

(3.1) xn+1 = αnx+ (1− αn)Tnxn for all n ∈ N.
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If {Tn} satisfies the H-condition, then the sequence {xn} converges strongly
to PFx, where PF is the projection of H onto F.

Proof. Let u ∈ F. Since limn→∞
Ln−1
αn

= 0, there exists N ∈ N such that
Ln−1
αn

< 1
2 for all n ≥ N . Choose a constant M > 0 so that

‖xN − u‖ ≤M and ‖x− u‖ ≤ M

2
.

We proceed by induction to show that ‖xn − u‖ ≤ M for all n ≥ N .
Assume that ‖xk−u‖ ≤M for some k ≥ N . From the iteration process
(3.1), we estimate as follows:

‖xk+1 − u‖ ≤ αk‖x− u‖+ (1− αk)‖Tkxk − u‖
≤ αk‖x− u‖+ (1− αk)Lk‖xk − u‖
= αk‖x− u‖+ (1− αk)(Lk − 1)‖xk − u‖+ (1− αk)‖xk − u‖

≤ αk
M

2
+ (1− αk)αk

M

2
+ (1− αk)M

≤ αk
M

2
+ αk

M

2
+ (1− αk)M = M.

This implies that the sequence {xn} is bounded and hence so is {Tnxn}.
So, from αn → 0, we get

‖xn+1 − Tnxn‖ = αn‖x− Tnxn‖ → 0.

Since {Tn} satisfies the H-condition, ωw{xn} ⊂ F . We next show

(3.2) lim sup
n→∞

〈x− z, xn − z〉 ≤ 0,

where z := PFx. To this end, we choose a subsequence {ni} of {n} such
that

lim sup
n→∞

〈x− z, xn − z〉 = lim
i→∞
〈x− z, xni − z〉 and xni ⇀ w ∈ F .

So, we get

lim
i→∞
〈x− z, xni − z〉 = 〈x− z, w − z〉 ≤ 0.
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Now (3.2) is proved. Finally we prove that xn → z. From (2.2), we have

‖xn+1 − z‖2 = ‖αn(x− z) + (1− αn)(Tnxn − z)‖2

≤ (1− αn)2‖Tnxn − z‖2 + 2αn〈x− z, xn+1 − z〉
≤ (1− αn)2L2

n‖xn − z‖2 + 2αn〈x− z, xn+1 − z〉

= (1− αn)2‖xn − z‖2 + αn(1− αn)2
L2
n − 1

αn
‖xn − z‖2

+ 2αn〈x− z, xn+1 − z〉

≤ (1− αn)‖xn − z‖2 + αn
Ln − 1

αn
(Ln + 1)‖xn − z‖2

+ 2αn〈x− z, xn+1 − z〉.
Setting

βn =
Ln − 1

αn
(Ln + 1)‖xn − z‖2 + 2〈x− z, xn+1 − z〉,

we get

‖xn+1 − z‖2 ≤ (1− αn)‖xn − z‖2 + αnβn.

Since limn→∞
Ln−1
αn

= 0 by (3.2), lim supn→∞ βn ≤ 0. By Lemma 2.1,
we conclude that xn → z. This completes the proof. �

Remark 3.2. For a given family of quasi-Ln-Lipschitzian mappings,
we can always find a sequence {αn} in (0, 1] such that the conditions
(C1), (C2) and (L) are satisfied. In fact, if Ln → 1, we can set αn =

max
{

1
n ,

Ln−1+
√
Ln−1

Ln+
√
Ln−1

}
.

Setting Ln ≡ 1 in Theorem 3.1, we have the following.

Corollary 3.3. Let C be a nonempty closed convex subset of a real
Hilbert space H. Let {Tn} be a family of quasi-nonexpansive mappings
of C into itself with F :=

⋂∞
n=1 F(Tn) 6= ∅ (that is, for every n ∈ N,

x ∈ C and u ∈ F, ‖Tnx − u‖ ≤ ‖x − u‖ holds). If {Tn} satisfies the
H-condition, then the sequence {xn} defined by (3.1), where {αn} is a
sequence in (0, 1] satisfying (C1) and (C2), converges strongly to PFx.

Remark 3.4. Corollary 3.3 extends and improves Theorem 2.1 of [31]
in the following ways:

(i) Since every nonexpansive mapping with a nonempty fixed point
set is quasi-nonexpansive, Corollary 3.3 is applicable for a wider
class of mappings.
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(ii) The ZLC-condition is weakened and replaced by the H-condition
(see Lemma 2.3).

4. Applications

In this section, we show that the H-condition studied in the previous
section is satisfies by various classes of mappings.

4.1. Convergence theorems for asymptotically nonexpansive map-
pings. Let C be a subset of a real Hilbert space H. A mapping T : C →
C is said to be asymptotically nonexpansive if there exists a sequence
{kn} of real numbers such that kn ∈ [1,∞), kn → 1, and

‖Tnx− Tny‖ ≤ kn‖x− y‖ for all x, y ∈ C and n ∈ N.

The class of asymptotically nonexpansive mappings was introduced by
Goebel and Kirk [6] as a natural generalization of the class of nonex-
pansive mappings. They proved that if C is nonempty bounded closed
and convex, and T is an asymptotically nonexpansive self-mapping of
C, then T has a fixed point.

Lemma 4.1 ([11], Lemma 2.2). Let C be a nonempty closed convex
subset of a real Hilbert space H. Let S and T be two commutative
asymptotically nonexpansive mappings of C into itself with asymptot-
ical coefficients {sn} and {tn}, respectively. For any x ∈ C and n ∈ N,
put Rnx = 2

(n+1)(n+2)

∑n
k=0

∑
i+j=k S

iT jx. Then for each r > 0, there

holds

lim
i→∞

lim sup
n→∞

sup
x∈C∩Br

‖Rnx− Si(Rnx)‖ = 0

and

lim
j→∞

lim sup
n→∞

sup
x∈C∩Br

‖Rnx− T j(Rnx)‖ = 0,

where Br = {x ∈ H : ‖x‖ ≤ r}.

From Lemma 4.1, we have the following result.

Lemma 4.2. Let C, S, T,Rn be the same as Lemma 4.1. Assume that
F(S) ∩ F(T ) 6= ∅. Then {Rn} is a family of Ln-Lipschitzian mappings
of C into itself and satisfies the H-condition, where

Ln =
2

(n+ 1)(n+ 2)

n∑
k=0

∑
i+j=k

sitj .
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Proof. It is easy to see that {Rn} is a family of Ln-Lipschitzian mappings
of C into itself. Moreover, by Lemma 4.1, we have

⋂∞
n=1 F(Rn) = F(S)∩

F(T ) 6= ∅. Next, we prove that {Rn} satisfies the H-condition. Let {zn}
be a bounded sequence in C such that limn→∞ ‖zn+1 − Rnzn‖ = 0 and
z ∈ ωw{zn}. Then, there exists a subsequence {nk} of {n} such that
znk+1 ⇀ z and Rnk

znk
⇀ z. Since {zn} is bounded, let r > 0 be such

that {zn} ⊂ C ∩Br. Then

‖znk+1 − Siz‖ ≤ ‖znk+1 −Rnk
znk
‖+ ‖Rnk

znk
− Si(Rnk

znk
)‖

+ ‖Si(Rnk
znk

)− Siznk+1‖+ ‖Siznk+1 − Siz‖
≤ (1 + si)‖znk+1 −Rnk

znk
‖+ sup

x∈C∩Br

‖Rnk
x− Si(Rnk

x)‖

+ si‖znk+1 − z‖.

It follows from limi→∞ si = 1 and Lemma 4.1 that

(4.1) lim sup
i→∞

lim sup
k→∞

‖znk+1 − Siz‖ ≤ lim sup
k→∞

‖znk+1 − z‖.

From (2.3) and (2.1), we have

lim sup
k→∞

‖znk+1 − z‖2 +

∥∥∥∥Siz − z2

∥∥∥∥2
= lim sup

k→∞

∥∥∥∥znk+1 −
Siz + z

2

∥∥∥∥2
= lim sup

k→∞

(
1

2
‖znk+1 − Siz‖2 +

1

2
‖znk+1 − z‖2 −

1

4
‖Siz − z‖2

)
≤ 1

2
lim sup
k→∞

‖znk+1 − Siz‖2 +
1

2
lim sup
k→∞

‖znk+1 − z‖2 −
1

4
‖Siz − z‖2

and hence

‖Siz − z‖2 ≤ lim sup
k→∞

‖znk+1 − Siz‖2 − lim sup
k→∞

‖znk+1 − z‖2.

This together with (4.1) gives

lim
i→∞
‖Siz − z‖ = 0.

Since S is uniformly continuous, Sz = z and then z ∈ F(S). Similarly,
we can get z ∈ F(T ). Hence z ∈ F(S)∩F(T ) =

⋂∞
n=1 F(Rn). This implies

that {Rn} satisfies the H-condition. This completes the proof. �

Applying Theorem 3.1 and Lemma 4.2, we have the following result.
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Theorem 4.3. Let C be a nonempty closed convex subset of a real
Hilbert space H. Let S and T be two commutative asymptotically non-
expansive mappings of C into itself with asymptotical coefficients {sn}
and {tn}, respectively. Assume that F := F(S) ∩ F(T ) 6= ∅. Let
Ln = 2

(n+1)(n+2)

∑n
k=0

∑
i+j=k sitj and let {xn} be a sequence in C de-

fined as follows: x, x1 ∈ C and

(4.2) xn+1 = αnx+ (1− αn)
2

(n+ 1)(n+ 2)

n∑
k=0

∑
i+j=k

SiT jxn

for all n ∈ N, where {αn} is a sequence in (0, 1] satisfying (C1), (C2)
and (L). Then the sequence {xn} converges strongly to PFx.

Setting Ln ≡ 1 in Theorem 4.3, we have the following.

Corollary 4.4 ([25], Theorem 1). Let C be a nonempty closed convex
subset of a real Hilbert space H. Let S and T be two commutative non-
expansive mappings of C into itself with F := F(S) ∩ F(T ) 6= ∅. Then
the sequence {xn} defined by (4.2), where {αn} is a sequence in (0, 1]
satisfying (C1) and (C2), converges strongly to PFx.

4.2. Some applications for the equilibrium problem. Let C be a
nonempty closed convex subset of a real Hilbert space H. Let f be a
bifunction of C × C into R, where R is the set of real numbers. The
equilibrium problem for f : C × C → R is to find x ∈ C such that

(4.3) f(x, y) ≥ 0 for all y ∈ C.
Numerous problems in physics, optimization, and economics reduce to
find a solution of (4.3). The set of solutions of (4.3) is denoted by EP(f).
In 2005, Combettes and Hirstoaga [4] introduced an iterative scheme for
finding the best approximation to the initial data when EP(f) is not
empty.

For solving the equilibrium problem, let us assume that the bifunction
f satisfies the following conditions which are generally assumed (see [2]):

(A1) f(x, x) = 0 for all x ∈ C;
(A2) f is monotone, i.e., f(x, y) + f(y, x) ≤ 0 for any x, y ∈ C;
(A3) f is upper-hemicontinuous, i.e., for each x, y, z ∈ C,

lim sup
t→0+

f(tz + (1− t)x, y) ≤ f(x, y);

(A4) f(x, ·) is convex and lower semicontinuous for each x ∈ C.

By [2, Corollary 1] and [4, Lemma 2.12], we have the following lemma.
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Lemma 4.5. Let C be a nonempty closed convex subset of a real Hilbert
space H, let f be a bifunction from C × C into R satisfying (A1)-(A4)
and let r > 0 and x ∈ H. Then there exists a unique x∗ ∈ C such that

f(x∗, y) +
1

r
〈y − x∗, x∗ − x〉 ≥ 0 for all y ∈ C.

Let Tr be a mapping of H into C defined by Tr(x) = x∗ for all x ∈ H.
Then, the following hold:

(i) Tr is firmly nonexpansive, i.e., for any x, y ∈ H,

‖Trx− Try‖2 ≤ ‖x− y‖2 − ‖(Trx− x)− (Try − y)‖2;
(ii) F(Tr) = EP(f);
(iii) EP(f) is closed and convex.

We present a convergence theorem for an equilibrium problem with
a new control parameter which is complementary to Song and Zheng’s
result [26, Corollary 5.3].

Lemma 4.6. Let C be a nonempty closed convex subset of a real Hilbert
space H. Let f be a bifunction from C ×C into R satisfying (A1)-(A4)
and EP(f) 6= ∅. If {rn} is a sequence in (0,∞) satisfying limn→∞ rn =
∞, then {Trn} is a family of firmly nonexpansive mappings of H into C
with

⋂∞
n=1 F(Trn) = EP(f) and satisfies the H-condition.

Proof. We note that
⋂∞
n=1 F(Trn) = EP(f) 6= ∅. Let {zn} be a bounded

sequence in H such that limn→∞ ‖zn+1 − Trnzn‖ = 0 and z ∈ ωw{zn}.
For each n ∈ N, let yn = Trnzn. Then zni+1 ⇀ z and yni ⇀ z for some
subsequence {ni} of {n}. We note that {zn − yn} is bounded. Since
limn→∞ rn =∞, we have

(4.4)
zn − yn
rn

→ 0.

Notice that

f(yn, y) +
1

rn
〈y − yn, yn − zn〉 ≥ 0 for all y ∈ C.

So, from (A2), we have〈
y − yn,

yn − zn
rn

〉
≥ f(y, yn) for all y ∈ C.

In particular,〈
y − yni ,

yni − zni

rni

〉
≥ f(y, yni) for all y ∈ C.
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This together with (4.4), (A4) and yni ⇀ z gives

0 ≥ f(y, z) for all y ∈ C.
Then, for t ∈ (0, 1] and y ∈ C,

0 = f(ty + (1− t)z, ty + (1− t)z)
≤ tf(ty + (1− t)z, y) + (1− t)f(ty + (1− t)z, z)
≤ tf(ty + (1− t)z, y)

hence
f(ty + (1− t)z, y) ≥ 0.

Letting t→ 0+ and using (A3), we get

f(z, y) ≥ 0 for all y ∈ C
and hence z ∈ EP(f) =

⋂∞
n=1 F(Trn). This implies that {Trn} satisfies

the H-condition. This completes the proof. �

Using Corollary 3.3, we have the following theorem.

Theorem 4.7. Let C be a nonempty closed convex subset of a real
Hilbert space H. Let f be a bifunction from C × C into R satisfying
(A1)-(A4) and EP(f) 6= ∅. Let {xn} be a sequence in C defined as
follows: x, x1 ∈ H and

xn+1 = αnx+ (1− αn)Trnxn for all n ∈ N,
where {αn} is a sequence in (0, 1] satisfying (C1) and (C2), and {rn} is a
sequence in (0,∞) with limn→∞ rn =∞. Then {xn} converges strongly
to PEP(f)x.

4.3. Some applications for the variational inequality problem.
Let H be a real Hilbert space and let C be a nonempty closed convex
subset of H. Let A : C → H be a mapping. The classical variational
inequality problem is to find x ∈ C such that

〈Ax, y − x〉 ≥ 0 for all y ∈ C.
The set of solutions of classical variational inequality problem is denoted
by VIP(C,A).

The following lemma were also given in Nilsrakoo and Saejung [16].

Lemma 4.8 ([16], Lemmas 19, 20). Let C be a nonempty closed con-
vex subset of a real Hilbert space H. Let A be a continuous monotone
mapping of C into H, that is,

〈Ax−Ay, x− y〉 ≥ 0 for all x, y ∈ C.
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Define f : C × C → R as follows

f(x, y) = 〈Ax, y − x〉 for all x, y ∈ C.

Then, the following hold:

(i) f satisfies (A1)-(A4) and VIP(C,A) = EP(f);
(ii) for x ∈ H, u ∈ C and r > 0,

f(u, y) +
1

r
〈y − u, u− x〉 ≥ 0 for all y ∈ C ⇔ u = PC(x− rAu).

Using Theorem 4.7 and Lemma 4.8, we have the following theorem.

Theorem 4.9. Let C be a nonempty closed convex subset of a real
Hilbert space H. Let A be a continuous monotone mapping of C into H
such that VIP(C,A) 6= ∅. Let {xn} and {un} be sequences generated by
x, x1 ∈ C and{

un = PC(xn − rnAun)

xn+1 = αnx+ (1− αn)un for all n ∈ N,

where {αn} is a sequence in (0, 1] satisfying (C1) and (C2), and {rn} is a
sequence in (0,∞) with limn→∞ rn =∞. Then {xn} converges strongly
to PVIP(C,A)x.

5. Conclusion

We propose the Halpern’s type iteration to obtain a strong conver-
gence theorem for a common fixed point of a countable family of certain
quasi-Lipschitzian mappings in a real Hilbert space. We assume that the
family of mappings satisfies the H-condition introduced by Hirstoaga in
[9]. This is not restrictive because there are many examples satisfying
the H-condition. Applications for equilibrium problems and variational
inequality problems are also discussed.
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