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Abstract. We introduce the concept of r-distance on a Menger
probabilistic metric space. Furthermore we prove some fixed point
theorems in a complete Menger probabilistic metric space general-
izing some famous fixed point theorems.

1. Introduction and preliminaries

Menger introduced the notion of a probabilistic metric space in 1942
and since then the theory of probabilistic metric spaces has developed in
many directions [12]. The idea of Menger was to use distribution func-
tions instead of nonnegative real numbers as values of the metric. The
notion of a probabilistic metric space corresponds to situations when
we do not know exactly the distance between two points, but we know
probabilities of possible values of the distance. A probabilistic general-
ization of metric spaces appears to have interest in the investigation of
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physical quantities and physiological thresholds. It is also of fundamen-
tal importance in probabilistic functional analysis. Probabilistic normed
spaces were introduced by Šerstnev [14] in 1962 by means of a definition
that was closely modelled on the theory of (classical) normed spaces,
and used to study the problem of best approximation in statistics. In
the sequel, we shall adopt the usual terminologies, notations and con-
ventions of the theory of probabilistic normed spaces, as in [1-5, 8, 9,
11, 12].

Throughout this paper, the space of all probability distribution func-
tions (briefly, d.f.s) is denoted by ∆+ = {F : R∪ {−∞,+∞} −→ [0, 1] :
F is left-continuous and non-decreasing on R, F (0) = 0 and F (+∞) =
1} and the subset D+ ⊆ ∆+ is the set D+ = {F ∈ ∆+ : l−F (+∞) = 1}.
Here, l−f(x) denotes the left limit of the function f at the point x and is
defined to be l−f(x) = limt→x− f(t). The space ∆+ is partially ordered
by the usual point-wise ordering of functions, i.e., F ≤ G if and only if
F (t) ≤ G(t) for all, t in R. The maximal element for ∆+ in this order
is the d.f. given by:

ε0(t) =

{
0, if t ≤ 0,

1, if t > 0.

Definition 1.1. [12] A mapping T : [0, 1]×[0, 1] −→ [0, 1] is a continuous
t–norm if T satisfies the following conditions:

(a) T is commutative and associative;
(b) T is continuous;
(c) T (a, 1) = a, for all a ∈ [0, 1];
(d) T (a, b) ≤ T (c, d), whenever a ≤ c and c ≤ d, and a, b, c, d ∈ [0, 1].

Two typical examples of continuous t–norms are T (a, b) = ab and
T (a, b) = min(a, b).

Now, t–norms are recursively defined by T 1 = T and

Tn(x1, · · · , xn+1) = T (Tn−1(x1, · · · , xn), xn+1),

for n ≥ 2, xi ∈ [0, 1], and i ∈ {1, 2, . . . , n + 1}. The t-norm T is Hadžić
type I if for given ε ∈]0, 1[, there is δ ∈]0, 1[ (which may depend on m)
such that

(1.1) Tm(1− δ, ..., 1− δ) > 1− ε, m ∈ N.

We assume that, here, all t–norms are Hadžić type I.
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Definition 1.2. [12] A mapping S : [0, 1]×[0, 1] −→ [0, 1] is a continuous
s–norm if S satisfies the following conditions:

(a) S is associative and commutative;
(b) S is continuous;
(c) S(a, 0) = a, for all a ∈ [0, 1];
(d) S(a, b) ≤ S(c, d), whenever a ≤ c and b ≤ d, for all a, b, c, d ∈

[0, 1].

Two typical examples of continuous s–norms are S(a, b) = min(a +
b, 1) and S(a, b) = max(a, b).

Definition 1.3. A Menger probabilistic metric space (briefly, Menger
PM-space) is a triplet (X,F , T ), where X is a nonempty set, T is a
continuous t–norm, and F is a mapping from X × X into D+ such
that if Fx,y denotes the value of F at the pair (x, y), then the following
conditions hold, for all x, y, z in X:

(PM1) Fx,y(t) = ε0(t), for all t > 0, if and only if x = y;
(PM2) Fx,y(t) = Fy,x(t);
(PM3) Fx,z(t+s) ≥ T (Fx,y(t), Fy,z(s)), for all x, y, z ∈ X and t, s ≥ 0.

Definition 1.4. A Menger probabilistic normed space (briefly, Menger
PN-space) is a triple (X, µ, T ), where X is a vector space, T is a continu-
ous t–norm, and µ is a mapping from X into D+ such that the following
conditions hold, for all x, y in X:

(PN1) µx(t) = ε0(t), for all t > 0, if and only if x = 0;
(PN2) µαx(t) = µx( t

|α|), for α 6= 0;

(PN3) µx+y(t + s) ≥ T (µx(t), µy(s)), for all x, y, z ∈ X and t, s ≥ 0.

Definition 1.5. Let (X,F , T ) be a Menger PM-space.
(1) A sequence {xn}n in X is said to be convergent to x in X if

for every ε > 0 and λ > 0, there exists positive integer N such that
Fxn,x(ε) > 1− λ, whenever n ≥ N .

(2) A sequence {xn}n in X is called Cauchy sequence if for every ε > 0
and λ > 0, there exists positive integer N such that Fxn,xm(ε) > 1− λ,
whenever n, m ≥ N .

(3) A Menger PM-space (X,F , T ) is said to be complete if and only
if every Cauchy sequence in X is convergent to a point in X.
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Definition 1.6. Let (X,F , T ) be a Menger PM space. For each p in X
and λ > 0, the strong λ− neighborhood of p is the set,

Np(λ) = {q ∈ X : Fp,q(λ) > 1− λ},

and the strong neighborhood system for X is the union
⋃

p∈V Np, where
Np = {Np(λ) : λ > 0}.

The strong neighborhood system for X determines a Hausdorff topol-
ogy for X.

Theorem 1.7. [8, 13] If (X,F , T ) is a PM-space and {pn} and {qn} are
sequences such that pn → p and qn → q, then limn→∞ Fpn,qn(t) = Fp,q(t).

Remark 1.8. In certain situations we assume the following. Suppose
for every µ ∈]0, 1[ there exists a λ ∈]0, 1[ (which does not depend on n)
with

(1.2) Tn−1(1− λ, .., 1− λ) > 1− µ, for each n ∈ {1, 2, ...}.

2. R–distance

Recently, Kada, et al. [7] introduced the concept of w–distance on
a metric space and proved some fixed point theorems. Here, using the
concept of w–distance, we define the concept of r-distance on a Menger
PM-space.

Definition 2.1. Let (X,F , T ) be a Menger PM-space. Then, the func-
tion f : X2×[0,∞] −→ [0, 1] is called an r-distance on X if the followings
are satisfied:

(r1) fx,z(t + s) ≥ T (fx,y(t), fy,z(s)), for all x, y, z ∈ X and t, s ≥ 0;
(r2) for any x ∈ X and t ≥ 0, fx,. : X× [0,∞] −→ [0, 1] is continuous;
(r3) for any ε > 0, there exists δ > 0 such that fz,x(t) ≥ 1− δ and

fz,y(s) ≥ 1− δ imply Fx,y(t + s) ≥ 1− ε.

Let us give some examples of r-distances.

Example 2.2. Let (X,F , T ) be a Menger PM-space. Then, f = F is
an r-distance on X.
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Proof. Properties (r1) and (r2) are obvious. We show (r3). Let ε > 0
be given and choose δ > 0 such that

T (1− δ, 1− δ) ≥ 1− ε.

Then, for Fz,x(t) ≥ 1− δ and Fz,y(s) ≥ 1− δ, we have,

Fx,y(t + s) ≥ T (Fz,x(t), Fz,y(s))
≥ T (1− δ, 1− δ) ≥ 1− ε.

�

Example 2.3. Let (X,F , T ) be a Menger PM-space. Then, the function
f : X2 × [0,∞) −→ [0, 1] defined by fx,y(t) = 1 − c for every x, y ∈ X
and t > 0 is an r-distance on X, where c ∈]0, 1[.

Proof. Properties (r1) and (r2) are obvious. To show (r3), for any
ε > 0, put δ = 1 − c/2. Then, we have, that fz,x(t) ≥ 1 − c/2 and
fz,y(s) ≥ 1− c/2 imply Fx,y(t + s) ≥ 1− ε. �

Example 2.4. Let (X, µ, T ) be a Menger PN-space. Then, the function
f : X2×[0,∞) −→ [0, 1] defined by fx,y(t+s) = T (µx(t), µy(s)) for every
x, y ∈ X and t, s > 0 is an r-distance on X.

Proof. Let x, y, z ∈ X and t, s > 0. Then, we have,

fx,z(t + s) = T (µx(t), µz(s))
≥ T (T (µx(t/2), µy(t/2)), T (µy(s/2), µz(s/2)))
= T (fx,y(t), fy,z(s)).

Hence, (r1) holds. Also, (r2) is obvious. Let ε > 0 be given and choose
δ > 0 such that

T (1− δ, 1− δ) ≥ 1− ε.

Then, for fz,x(t) ≥ 1− δ and fz,y(s) ≥ 1− δ, we have,

Fx,y(t + s) = µx−y(t + s) ≥ T (µx(t), µy(s))
≥ T (T (µx(t/2), µz(t/2)), T (µy(s/2), µz(s/2)))
= T (fz,x(t), fz,y(s))
≥ T (1− δ, 1− δ) ≥ 1− ε.

Hence, (r3) holds. �
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Example 2.5. Let (X, µ, T ) be a Menger PN-space. Then, the function
f : X2 × [0,∞] −→ [0, 1] defined by fx,y(t) = µx(t) for every x, y ∈ X
and t > 0 is an r-distance on X.

Proof. Let x, y, z ∈ X and t, s > 0. Then, we have,

fx,z(t + s) = µz(t + s)
≥ T (µy(t), µz(s))
= T (fx,y(t), fy,z(s)).

Hence, (r1) holds. Also, (r2) is obvious. Let ε > 0 be given and choose
δ > 0 such that

T (1− δ, 1− δ) ≥ 1− ε.

Then, for fz,x(t) ≥ 1− δ and fz,y(s) ≥ 1− δ, we have,

Fx,y(t + s) = µx−y(t + s)
≥ T (µx(t), µy(s))
= T (fz,x(t), fz,y(s))
≥ T (1− δ, 1− δ) ≥ 1− ε.

Hence, (r3) holds. �

Example 2.6. Let (X,F , T ) be a Menger PM-space and let A be a
continuous mapping from X into X. Then, the function f : X2 ×
[0,∞] −→ [0, 1] defined by

fx,y(t) = min(FAx,y(t), FAx,Ay(s))

for every x, y ∈ X and t, s > 0 is an r-distance on X.

Proof. Let x, y, z ∈ X and t, s > 0. If FAx,z(t) ≤ FAx,Ay(t), then we
have,

fx,z(t + s) = FAx,z(t + s) ≥ T (FAx,Ay(t), FAy,z(s))
≥ T (min(FAx,y(t), FAx,Ay(t)),min(FAy,z(s), FAx,Ay(s))
= T (fx,y(t), fy,z(s)).

With this inequality, we have,
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fx,z(t + s) = FAx,Az(t + s) ≥ T (FAx,Ay(t), FAy,Az(s))
≥ T (min(FAx,y(t), FAx,Ay(t)),min(FAy,z(s), FAx,Ay(s))
= T (fx,y(t), fy,z(s)).

Hence, (r1) holds. Since A is continuous, then (r2) is obvious . Let ε > 0
be given and choose δ > 0 such that

T (1− δ, 1− δ) ≥ 1− ε.

Then, from fz,x(t) ≥ 1− δ and fz,y(s) ≥ 1− δ, we have FAz,x(t) ≥ 1− δ
and FAz,y(s) ≥ 1− δ. Therefore,

Fx,y(t + s) ≥ T (FAz,x(t), FAz,y(s))
≥ T (1− δ, 1− δ) ≥ 1− ε.

Hence, (r3) holds. �

Next, we discuss some properties of r-distance.

Lemma 2.7. Let (X,F , T ) be a Menger PM-space and f be a r-distance
on it. Let {xn} and {yn} be sequences in X, {αn} and {βn} be sequences
in [0,∞) converging to zero, and x, y, z ∈ X and t, s > 0. Then, the
followings hold:

(1) if fxn,y(t) ≥ 1 − αn and fxn,z(s) ≥ 1 − βn for any n ∈ N, then
y = z. In particular, if fx,y(t) = 1 and fx,z(s) = 1, then y = z;

(2) if fxn,yn(t) ≥ 1 − αn and fxn,z(s) ≥ 1 − βn for any n ∈ N, then
Fyn,z(t + s) → 1;

(3) if fxn,xm(t) ≥ 1 − αn for any n, m ∈ N with m > n, then {xn}
is a Cauchy sequence;

(4) if fy,xn(t) ≥ 1 − αn for any n ∈ N, then {xn} is a Cauchy
sequence.

Proof. We first prove (2). Let ε > 0 be given. From the definition of
r-distance, there exists δ > 0 such that fu,v(t) ≥ 1−δ and fu,z(s) ≥ 1−δ
imply Fv,z(t+s) ≥ 1−ε. Choose n0 ∈ N such that αn ≤ δ and βn ≤ δ for
every n ≥ n0. Then, we have, for any n ≥ n0, fxn,yn(t) ≥ 1−αn ≥ 1− δ
and fxn,z(t) ≥ 1 − βn ≥ 1 − δ, and hence Fyn,z(t + s) ≥ 1 − ε. This
implies that {yn} converges to z. It follows from (2) that (1) holds. We
prove (3). Let ε > 0 be given. As in the proof of (1), choose δ > 0 and
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n0 ∈ N. Then, for any n, m ≥ n0 + 1,

fxn0 ,xn(t) ≥ 1− αn0 ≥ 1− δ and fxn0 ,xm(s) ≥ 1− αn0 ≥ 1− δ,

and hence Fxn,xm(t + s) ≥ 1 − ε. This implies that {xn} is a Cauchy
sequence. �

Lemma 2.8. Let f : X2 × [0,∞] −→ [0, 1] be an r-distance on X. If
we define Eλ,f : X2 −→ R+ ∪ {0} by

Eλ,f (x, y) = inf{t > 0 : fx,y(t) > 1− λ},

for each λ ∈]0, 1[ and x, y ∈ X, then we have the followings:
(1) For any µ ∈]0, 1[, there exists λ ∈]0, 1[ such that

Eµ,f (x1, xk) ≤ Eλ,f (x1, x2) + Eλ,f (x2, x3) + · · ·+ Eλ,f (xk−1, xk),

for any x1, ..., xk ∈ X;

(2) For any sequence {xn} in X, we have, fxn,x(t) −→ 1 if and only
if Eλ,f (xn, x) → 0. Also, the sequence {xn} is Cauchy w.r.t. f
if and only if it is Cauchy with Eλ,f .

Proof. The proof is the same as in Lemma 1.6 of [10]. �

Remark 2.9. If (1.2) holds, then the λ in Lemma 2.8(1) does not de-
pend on k (see [10]).

3. Common fixed point theorems with r–distance

Now, we are in a position to prove some fixed point theorems in
complete Menger PM-spaces.

Theorem 3.1. Let (X,F , T ) be a complete Menger PM-space, f be an
r-distance on it and A be a mapping from X into itself. Suppose that
there exists k ∈]0, 1[ such that

fAx,A2x(t) ≥ fx,Ax(t/k),

for every x ∈ X, t > 0 and that

sup{T (fx,y(t), fx,Ax(t)) : x ∈ X} < 1,
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for every y ∈ X with y 6= Ay.
Then, we have:

(a) If (1.1) holds and there exists a u ∈ X with

Ef (u,Au) = sup{Eγ,f (u, Au) : γ ∈]0, 1[} < ∞,

then there exists z ∈ X such that z = Az.
(b) If (1.2) holds, then there exists z ∈ X such that z = Az. More-

over, if v = Av and f ∈ D+, then fv,v = ε0.

Proof. (a). Let u ∈ X be such that Ef (u, Au) < ∞. Define:

un = Anu for any n ∈ N.

Then, we have, for any n ∈ N,

fun,un+1(t) ≥ fun−1,un(
t

k
) ≥ · · · ≥ fu,u1(

t

kn
).

Therefore,

Eλ,f (un, un+1) = inf{t > 0 : fun,un+1(t) > 1− λ}

≤ inf{t > 0 : fu,u1(
t

kn
) > 1− λ}

= knEλ,f (u, u1).

Thus, for m > n and λ ∈]0, 1[ there exists γ ∈]0, 1[ such that

Eλ,f (un, um) ≤ Eγ,f (un, un+1) + · · ·+ Ef (um−1, um)

≤ kn

1− k
Eγ,f (u, u1).

There exists n0 ∈ N such that for every n > n0 we have Eλ,f (un, um) −→
0. By lemmas 2.7 and 2.8, {un} is a Cauchy sequence. Therefore, by
Lemma 2.8(2), there exist n1 ∈ N and a sequence {δn} convergent to 0
such that for n ≥ max{n0, n1} we have,

fun,um(t) ≥ 1− δn.

Since X is complete, then {un} converges to some point z ∈ X. Hence,
by (r2), we have,

fun,z = lim
m→∞

fun,um ≥ 1− δn,

and
fun,un+1 ≥ 1− δn.
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Assume z 6= Az. Then, by the hypothesis, we have,

1 > sup{T (fx,z(t), fx,Ax(t)) : x ∈ X}
≥ sup{T (fun,z(t), fun,un+1(t)) : n ∈ N}
≥ sup{T (1− δn, 1− δn) : n ∈ N} = 1.

This is a contradiction. Therefore, we have z = Az.
(b). The argument is as in case (a) except in this case we make use

of Remark 2.9.
Now, if v = Av and f ∈ D+, then we have,

fv,v(t) = fAv,A2v(t) ≥ fv,Av(
t

k
) = fv,v(

t

k
).

Continuing this process, we have,

fv,v(t) = fv,v(
t

kn
).

Also, we have fv,v = ε0. �

Corollary 3.2. Let (X,F , T ) be a complete Menger PM-space, f be
an r-distance on it and A be a continuous mapping from X into itself.
Suppose there exists k ∈]0, 1[ such that

fAx,A2x(t) ≥ fx,Ax(t/k),

for every x ∈ X, t > 0. Then, we have:

(a) If (1.1) holds and u ∈ X with EF (u, Au) < ∞, then there exists
z ∈ X such that z = Az.

(b) If (1.2) holds, then there exists z ∈ X such that z = Az.

Moreover, if v = Av and f ∈ D+, then fv,v = ε0.

Proof. (a). Assume that there exists y ∈ X with y 6= Ay and

sup{T (fx,y(t), fx,Ax(t)) : x ∈ X} = 1.

Then, there exists {xn} such that

lim
n→∞

T (fxn,y(t), fxn,Axn(t)) = 1.
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Since fxn,y(t) −→ 1 and fxn,Axn(t) −→ 1, then by Lemma 2.7, we have
{Axn} converging to y. We also have,

fxn,A2xn
(t) ≥ T (fxn,Axn(

t

2
), fAxn,A2xn

(
t

2
))

≥ T (fxn,Axn(
t

2
), fxn,Axn(

t

2k
))

−→ 1,

and hence {A2xn} converges to y. Since A is continuous, then we have,

Ay = A( lim
n→∞

Axn) = lim
n→∞

A2xn = y.

This is a contradiction. Hence, if y 6= Ay, then

sup{T (fx,y(t), fx,Ax(t)) : x ∈ X} < 1.

Thus, we have the desired result from Theorem 3.1.
(b). The argument is as in case (a) except in this case we make use

of Remark 2.9. �

Theorem 3.3. Let (X,F , T ) be a complete Menger PM-space and A be
a mapping from X into itself. Suppose that there exists β ∈]0, 1[ such
that

(3.1) FAx,Ay(t) ≥ S(Fx,Ax(
t

β
), Fy,Ay(

t

β
)),

for every x, y ∈ X and t > 0.
(a) If (1.1) holds and there exists a u ∈ X with EF (u, Au) < ∞,

then A has a unique fixed point.
(b) If (1.2) holds then A has a unique fixed point.

Proof. (a). Let x ∈ X. From the inequality (3.1), we have,

FAx,A2x(t) ≥ S(Fx,Ax(
t

β
), FAx,A2x(

t

β
)),

and hence,

FAx,A2x(t) ≥ Fx,Ax(
t

β
).

Since the probabilistic metric F is an r-distance, assume that there exists
y ∈ X with y 6= Ay and

sup{T (Fx,y(t), Fx,Ax(t)) : x ∈ X} = 1.
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Then, there exists {xn} such that

lim
n→∞

T (Fxn,y(t), Fxn,Axn(t)) = 1.

Since Fxn,y(t) −→ 1 and Fxn,Axn(t) −→ 1, then by Lemma 2.7, we
have {Axn} converging to y. On the other hand, since A satisfies the
condition (3.1), then we have,

FAxn,Ay(t) ≥ S(Fxn,Axn(
t

β
), Fy,Ay(

t

β
)) −→ 1,

as n −→ ∞, i.e., y = Ay. This is a contradiction. Hence, if y 6= Ay,
then

sup{T (Fx,y(t), Fx,Ax(t)) : x ∈ X} < 1.

By Theorem 3.1, there exists z ∈ X such that z = Az. Since F ∈ D+,
then the uniqueness is trivial. This completes the proof for (a).

(b). The argument is as in case (a) except in this case we make use
of Remark 2.9. �

Definition 3.4. [6] We say that the r-distance f has property (C ′), if
it satisfies the following condition:

fx,y(t) = C ′, for all t > 0, implies C ′ = 1.

Theorem 3.5. Let (X,F , T ) be a complete Menger PM-space, f be an
r-distance on it and A,B : X −→ X be maps that satisfy the following
conditions:

(a) B(X) ⊆ A(X);
(b) A and B are continuous;
(c) fB(x),B(y)(t) ≥ fA(x),A(y)( t

k ), for all x, y ∈ X, t > 0 and 0 < k <
1.

Assume that for each x ∈ X,

Ef (A(x), B(x))+Ef (A(x), z)+Ef (B(x), z)+Ef (B(x), B(B(x))) < ∞,

for all z ∈ X with B(z) 6= B(B(z)), where,

Ef (w, u) = sup{Eγ,f (w, u) : γ ∈ (0, 1)}.
Also, suppose if {xn} is a sequence in X with limn→∞A(xn) = y ∈ X,
then for every µ ∈]0, 1[, we have,

Eµ,f (A(xn), y) ≤ lim
p→∞

Eµ,f (A(xn), A(xp)).
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In addition,
(i) If (1.1) holds and there exists a x0 ∈ X with

Ef (A(x0), B(x0)) = sup{Eγ,f (A(x0), B(x0)) : γ ∈ (0, 1)} < ∞,

and

Ef (B(x0), B(B(x0))) = sup{Eγ,f (B(x0), B(B(x0))) : γ ∈ (0, 1)} < ∞,

then A and B have a common fixed point provided that A and B com-
mute.

(ii) If (1.2) holds, then A and B have a common fixed point provided
that A and B commute.

Moreover, if f has property (C ′), f(.) is non-decreasing and B(v) =
B(B(v)), for all v ∈ X, then fB(v),B(v)(t) = 1.

Proof. (i). We claim that for every x ∈ X,

inf{Ef (A(x), B(x)) + Ef (A(x), z) + Ef (B(x), z)

+Ef (B(x), B(B(x)))} > 0,

for every z ∈ X with B(z) 6= B(B(z)). For the moment, suppose
that the claim is true. Let x0 in X with Ef (A(x0), B(x0)) < ∞ and
Ef (B(x0), B(B(x0))) < ∞. By (a), we can find x1 such that A(x1) =
B(x0). By induction, we can define a sequence {xn}n such that A(xn) =
B(xn−1). By induction again,

fA(xn),B(xn+1)(t) = fB(xn−1),B(xn)(t)

≥ fA(xn−1),A(xn)(
t

k
)

≥ · · · ≥ fA(x0),A(x1)(
t

kn
),

and therefore,

Eλ,f (A(xn), A(xn+1)) ≤ knEλ,f (A(x0), A(x1)),
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for n = 1, 2, · · · , which implies that, for p > n and for any µ ∈]0, 1[,
there exists λ ∈]0, 1[ such that

Eµ,f (A(xn), A(xp))
≤ Eλ,f (A(xp−1), A(xp)) + Eλ,f (A(xp−2), A(xp−1)) +

· · ·+ Eλ,f (A(xn), A(xn+1))

≤ Ef (A(x0), A(x1))
p−1∑
j=n

kj ≤ kn

1− k
Ef (A(x0), A(x1)).

Thus, {A(xn)} is a Cauchy sequence. Since X is complete, then there
exists y ∈ X such that limn→∞A(xn) = y. As a result, B(xn−1) =
A(xn) tends to y, and so {B(A(xn))}n converges to B(y). However,
B(A(xn)) = A(B(xn)) by the commutativity of A and B, and so A(B(xn))
converges to A(y). Because limits are unique, A(y) = B(y), and so
A(A(y)) = A(B(y)). On the other hand, we have,

Eµ,f (A(xn), y) ≤ lim
p→∞

Eµ,f (A(xn), A(xp)) ≤
kn

1− k
Ef (A(x0), A(x1)).

So since this holds for all µ ∈]0, 1[, then we have,

Ef (A(xn), y) ≤ kn

1− k
Ef (A(x0), A(x1)).

Similarly, since B(xn) = A(xn+1), then we have,

Ef (B(xn), y) ≤ kn+1

1− k
Ef (A(x0), A(x1)),

and

fB(xn),B(B(xn))(t) ≥ fA(xn),A(B(xn))(
t

k
)

= fB(xn−1),B(B(xn−1))(
t

k
)

≥ fA(xn−1),A(g(xn−1))(
t

k2
)

= fB(xn−2),B(B(xn−2))(
t

k2
)

≥ · · · ≥ fA(x1),B(A(x1))(
t

kn
),

which imply:

Eµ,f (B(xn), B(B(xn))) ≤ knEµ,f (A(x1), B(A(x1)))
≤ knEf (A(x1), B(A(x1))),
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and so,
Ef (B(xn), B(B(xn))) ≤ knEf (A(x1), B(A(x1)).

Now, we show B(y) = B(B(y)). Suppose B(y) 6= B(B(y)). By the
claim above, we have,

0 < inf{Ef (A(x), B(x)) + Ef (A(x), y) + Ef (B(x), y) +
Ef (A(x), B(B(x))) : x ∈ X}

≤ inf{Ef (A(xn), B(xn)) + Ef (A(xn), y) + Ef (B(xn), y) +
Ef (B(xn), B(B(xn))) : n ∈ N}

= inf{Ef (A(xn), A(xn+1)) + Ef (A(xn), y) + Ef (B(xn), y) +
Ef (B(xn), B(B(xn))) : n ∈ N}

≤ inf{knEf (A(x0), A(x1)) +
kn

1− k
Ef (A(x0), A(x1)) +

kn+1

1− k
Ef (A(x0), A(x1)) + knEf (A(x1), B(A(x1))) : n ∈ N}

= 0.

This is a contradiction. Therefore, B(y) = B(B(y)). Thus, B(y) =
B(B(y)) = A(B(y)), and so B(y) is a common fixed point of A and B.

Furthermore, if B(y) is a common fixed point of A and B and B(v) =
B(B(v)), for all v ∈ X, then we have,

fB(y),B(y)(t) = fB(B(y)),B(B(y))(t)

≥ fA(B(y)),A(B(y))(t/k)

= fB(y),B(y)(t/k).

On the other hand, since f is non-decreasing, then we have,

fB(y),B(y)(t) ≤ fB(y),B(y)(t/k).

Hence,

fB(y),B(y)(t) = fB(y),B(y)(t/k),

which implies fB(y),B(y)(t) = C ′, for every t > 0. Thus, by property
(C ′), we have fB(y),B(y)(t) = 1.

Now, it remains to prove the claim. Assume that there exists y ∈ X
with B(y) 6= B(B(y)) and

inf{Ef (A(x), B(x)) + Ef (A(x), y) + Ef (B(x), y)
+Ef (B(x), B(B(x))) : x ∈ X} = 0.
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Then, there exists {xn} such that

lim
n→∞

{Ef (A(xn), B(xn)) + Ef (A(xn), y) + Ef (B(xn), y)

+Ef (B(xn), B(B(xn)))} = 0.

By Lemma 2.8(2), fA(xn),B(xn)(t) −→ 1 and fA(xn),y(t) −→ 1, and there-
fore by Lemma 2.7, we have,

(3.2) lim
n→∞

B(xn) = y.

Also, by Lemma 2.8(2), fB(xn),y(t) −→ 1 and fB(xn),B(B(xn))(t) −→ 1,
and therefore by Lemma 2.7, we have,

(3.3) lim
n→∞

B(B(xn)) = y.

By (3.2), (3.3) and the continuity of B we have,

B(y) = B(lim
n

B(xn)) = lim
n

B(B(xn)) = y.

Therefore, B(y) = B(B(y)), which is a contradiction. Hence, if B(y) 6=
B(B(y)), then

inf{Ef (A(x), B(x)) + Ef (A(x), y) + Ef (B(x), y)
+ Ef (B(x), B(B(x))) : x ∈ X} > 0.

(ii). The argument is as in case (i) except in this case we use Remark
2.9. �

If we work with the usual distance function we can get a more gen-
eral result improving Theorem 2.3 in [10] (we do not need to assume∑∞

n=1 φn(t) < ∞, for t > 0).

Definition 3.6. Let f and g be maps from a Menger PM-space (X,F , T )
into itself. The maps f and g are said to be weakly commuting if

Ffgx,gfx(t) ≥ Ffx,gx(t),

for each x in X and t > 0.

For the remainder of the paper, let Φ be the set of all onto and strictly
increasing functions,

φ : [0,∞) −→ [0,∞),

which satisfy limn→∞ φn(t) = 0, for t > 0. Here, φn(t) denotes the n-th
iterative function of φ(t).
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Remark 3.7. First notice that if φ ∈ Φ, then φ(t) < t, for t > 0. To
see this, suppose there exists t0 > 0 with t0 ≤ φ(t0). Then, since φ is
nondecreasing, we have t0 ≤ φn(t0), for each n ∈ {1, 2, ...}, which is a
contradiction. Note also that φ(0) = 0.

Lemma 3.8. [10] Suppose a Menger PM-space (X,F , T ) satisfies the
following condition:

Fx,y(t) = C, for all t > 0.

Then, we have C = ε0(t) and x = y.

Theorem 3.9. Let (X,F , T ) be a complete Menger PM-space and f
and g be weakly commuting self-mappings of X satisfying the following
conditions:

(a) f(X) ⊆ g(X);
(b) f or g is continuous;
(c) Ffx,fy(φ(t)) ≥ Fgx,gy,(t), where φ ∈ Φ.

(i) If (1.1) holds and there exists x0 ∈ X with

EF (gx0, fx0) = sup{Eγ,F (gx0, fx0) : γ ∈ (0, 1)} < ∞,

then f and g have a unique common fixed point.
(ii) If (1.2) holds, then f and g have a unique common fixed point.

Proof. (i). Choose x0 ∈ X with EF (gx0, fx0) < ∞. Choose x1 ∈ X
with fx0 = gx1. In general, choose xn+1 such that fxn = gxn+1. Now,
Ffxn,fxn+1(φ

n+1(t)) ≥ Fgxn,gxn+1(φ
n(t)) = Ffxn−1,fxn(φn(t)) ≥ ... ≥

Fgx0,gx1(t).
Note that for each λ ∈ (0, 1) (see Lemma 1.9. of [10]),

Eλ,F (fxn, fxn+1) = inf{φn+1(t) > 0 : Ffxn,fxn+1(φ
n+1(t)) > 1− λ}

≤ inf{φn+1(t) > 0 : Fgx0,fx0(t) > 1− λ}
≤ φn+1(inf{t > 0 : Fgx0,fx0(t) > 1− λ})
= φn+1(Eλ,F (gx0, fx0))

≤ φn+1(EF (gx0, fx0)).

Thus, Eλ,F (fxn, fxn+1) ≤ φn+1(EF (gx0, fx0)), for each λ ∈ (0, 1), and
so,

EF (fxn, fxn+1) ≤ φn+1(EF (gx0, fx0)).
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Let ε > 0. Choose n ∈ {1, 2, ...} so that EF (fxn, fxn+1) < ε−φ(ε). For
λ ∈ (0, 1), there exists µ ∈ (0, 1) with

Eλ,F (fxn, fxn+2) ≤ Eµ,F (fxn, fxn+1) + Eµ,F (fxn+1, fxn+2)
≤ Eµ,F (fxn, fxn+1) + φ(Eµ,F (fxn, fxn+1))
≤ EF (fxn, fxn+1) + φ(EF (fxn, fxn+1))
≤ ε− φ(ε) + φ(ε− φ(ε))
≤ ε.

We can do this argument for each λ ∈ (0, 1), and so,

EF (fxn, fxn+2) ≤ ε.

For λ ∈ (0, 1), there exists µ ∈ (0, 1) with

Eλ,F (fxn, xn+3) ≤ Eµ,F (fxn, fxn+1) + Eµ,F (fxn+1, fxn+3)
≤ Eµ,F (fxn, fxn+1) + φ(Eµ,F (fxn, fxn+2))
≤ EF (fxn, fxn+1) + φ(EF (fxn, fxn+2))
≤ ε− φ(ε) + φ(ε) = ε.

Note here that we used the fact that Ffxn+1,fxn+3(φ(t)) ≥ Fgxn+1,gxn+3(t) =
Ffxn,fxn+2(t) so Eλ,F (fxn+1, fxn+3) ≤ φ(Eµ,F (fxn, fxn+2)). Thus,

EF (fxn, fxn+3) ≤ ε.

By induction,

EF (fxn, fxn+k) ≤ ε for k ∈ {1, 2, ...}.

Thus, {fxn}n is Cauchy and by the completeness of X , {fxn}n con-
verges to say z in X. Also {gxn}n converges to z. Let us now sup-
pose that the mapping f is continuous. Then, limn ffxn = fz and
limn fgxn = fz. Furthermore, since f and g are weakly commuting, we
have,

Ffgxn,gfxn(t) ≥ Ffxn,gxn(t).

Let n →∞ in the above inequality and get limn gfxn = fz, by continu-
ity of F . We now prove z = fz. Suppose z 6= fz. By (c), for any t > 0,
we have,

Ffxn,ffxn(φk+1(t)) ≥ Fgxn,gfxn(φk(t)), k ∈ N.

Let n →∞ in the above inequality and get

Fz,fz(φk+1(t)) ≥ Fz,fzφ
k(t)).
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Also, we have,
Fz,fz(φk(t)) ≥ Fz,fz(φk−1(t)),

and
Fz,fz(φ(t)) ≥ Fz,fz(t).

As a result, we have,

Fz,fz(φk+1(t)) ≥ Fz,fz(t).

On the other hand, we have (see Remark 3.7),

Fz,fz(φk+1(t)) ≤ Fz,fz(t).

Then, Fz,fz(t) = C, and by Lemma 3.8, z = fz. Since f(X) ⊆ g(X),
then we can find z1 in X such that z = fz = gz1. Now,

Fffxn,fz1(t) ≥ Fgfxn,gz1(φ
−1(t)).

Taking the limit as n →∞, we get,

Ffz,fz1(t) ≥ Ffz,gz1(φ
−1(t)) = ε0(t)

which implies fz = fz1, i.e., z = fz = fz1 = gz1. Also, for any t > 0,
since f and g are weakly commuting, we have,

Ffz,gz(t) = Ffgz1,gfz1(t) ≥ Ffz1,gz1(t) = ε0(t),

which again implies fz = gz. Thus z, is a common fixed point of f and
g.

Now, to prove uniqueness, suppose z′ 6= z is another common fixed
point of f and g. Then, for any t > 0 and n ∈ N, we have,

Fz,z′(φn+1(t)) = Ffz,fz′(φn+1(t)) ≥ Fgz,gz′(φn(t)) = Fz,z′(φn(t)).

Also, we have,

Fz,z′(φn(t)) ≥ Fz,z′(φn−1(t)),

and

Fz,z′(φ(t)) ≥ Fz,z′(t).

As a result, we have,

Fz,z′(φn+1(t)) ≥ Fz,z′(t).

On the other hand, we have,

Fz,z′(t) ≤ Fz,z′(φn+1(t)).

Then, Fz,z′(t) = C, and by Lemma 3.8, z = z′, which is contradiction.
Therefore, z is the unique common fixed point of f and g.
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(ii). The argument is as in case (i) except in this case we make use
of Remark 1.11 in [10]. �
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