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ONE-POINT EXTENSIONS OF LOCALLY COMPACT
PARACOMPACT SPACES
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ABSTRACT. A space Y is called an extension of a space X, if Y
contains X as a dense subspace. Two extensions of X are said to
be equivalent, if there is a homeomorphism between them which
fixes X point-wise. For two (equivalence classes of) extensions Y
and Y’ of X let Y < Y’, if there is a continuous function of Y’
into Y which fixes X point-wise. An extension Y of X is called a
one-point extension, if Y\X is a singleton. An extension Y of X
is called first-countable, if Y is first-countable at points of Y\ X.
Let P be a topological property. An extension Y of X is called a
P-extension, if it has P.

In this article, for a given locally compact paracompact space
X, we consider the two classes of one-point Cech-complete; P-
extensions of X and one-point first-countable locally-P extensions
of X, and we study their order-structures, by relating them to the
topology of a certain subspace of the outgrowth SX\X. Here P is
subject to some requirements and include o-compactness and the
Lindel6f property as special cases.

1. Introduction

A space Y is called an extension of a space X, if Y contains X as a
dense subspace. If Y is an extension of X, then the subspace Y\ X of
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Y is called the remainder of Y. Extensions with a one-point remainder
are called one-point extensions. Two extensions of X are said to be
equivalent, if there exists a homeomorphism between them which fixes
X point-wise. This defines an equivalence relation on the class of all ex-
tensions of X. The equivalence classes will be identified with individuals
when this causes no confusion. For two extensions Y and Y’ of X we let
Y <Y, if there exists a continuous function of Y’ into Y which fixes X
point-wise. The relation < defines a partial order on the set of exten-
sions of X (see Section 4.1 of [16] for more details). An extension Y of
X is called first-countable, if Y is first-countable at points of Y\ X, that
is, Y has a countable local base at every point of Y\ X. Let P be a topo-
logical property. An extension Y of X is called a P-extension, if it has
P. If P is compactness, then P-extensions are called compactifications.

This work was mainly motivated by our previous work [9] (see [1, 7, 8,
11, 12] and [13] for related results) in which we have studied the partially
ordered set of one-point P-extensions of a given locally compact space
X by relating it to the topologies of certain subspaces of its outgrowth
BX\X. In this article, we continue our studies by considering the classes
of one-point Cech-complete P-extensions and one-point first-countable
locally-P extensions of a given locally compact paracompact space X.
The topological property P is subject to some requirements and include
o-compactness, the Lindelof property and the linearly Lindelof property
as special cases.

We review some of the terminology, notation and well-known results
that will be used in the sequel. Our definitions mainly come from the
standard text [3] (thus, in particular, compact spaces are Hausdorff,
etc.). Other useful sources are [5] and [16].

The letters I and N denote the closed unit interval and the set of all
positive integers, respectively. For a subset A of a space X we let clx A
and int x A denote the closure and the interior of A in X, respectively. A
subset of a space is called clopen, if it is simultaneously closed and open.
A zero-set of a space X is a set of the form Z(f) = f71(0) for some
continuous f : X — I. Any set of the form X\Z, where Z is a zero-set
of X, is called a cozero-set of X. We denote the set of all zero-sets of X
by Z(X) and the set of all cozero-sets of X by Coz(X).

For a Tychonoff space X the Stone-Cech compactification of X is
the largest (with respect to the partial order <) compactification of X
and is denoted by 8X. The Stone-Cech compactification of X can be
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characterized among all compactifications of X by either of the following
properties:
(1) Every continuous function of X to a compact space is continu-
ously extendible over X.
(2) Every continuous function of X to I is continuously extendible
over BX.
(3) For every Z,S € Z(X) we have
Clgx(Z N S) = ClﬁXz N Clﬁxs.

A Tychonoff space is called zero-dimensional, if it has an open base
consisting of its clopen subsets. A Tychonoff space is called strongly zero-
dimensional, if its Stone-Cech compactification is zero-dimensional. A
Tychonoff space X is called Cech-complete, if its outgrowth 3X\ X is an
F, in BX. Locally compact spaces are Cech-complete, and in the realm
of metrizable spaces X, Cech-completeness is equivalent to the existence
of a compatible complete metric on X.

Let P be a topological property. A topological space X is called
locally-P, if for every x € X there exists an open neighborhood U, of z
in X such that clxU, has P.

A topological property P is said to be hereditary with respect to closed
subsets, if each closed subset of a space with P also has P. A topological
property P is said to be preserved under finite (closed) sums of subspaces,
if a Hausdorff space has P, provided that it is the union of a finite
collection of its (closed) P-subspaces.

Let (P,<) and (Q,<) be two partially ordered sets. A mapping
f:(P,<) = (Q,<) is said to be an order-homomorphism (anti-order-
homomorphism, respectively), if f(a) < f(b) (f(b) < f(a), respectively)
whenever a < b. An order-homomorphism (anti-order-homomorphism,
respectively) f : (P, <) — (Q,<) is said to be an order-isomorphism
(anti-order-isomorphism, respectively), if f~! : (Q,<) — (P, <) (ex-
ists and) is an order-homomorphism (anti-order-homomorphism, respec-
tively). Two partially ordered sets (P, <) and (@, <) are called order-
isomorphic (anti-order-isomorphic, respectively), if there exists an order-
isomorphism (anti-order-isomorphism, respectively) between them.

2. Motivations, notations and definitions

In this article we will be dealing with various sets of one-point exten-
sions of a given topological space X. For the reader’s convenience we
list all these sets at the beginning.
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Notation 2.1. Let X be a topological space. Denote
&(X)={Y :Y is a one-point Tychonoff extension of X'}
o £*(X)={Y € &(X) : Y is first-countable at Y\ X }
£C(X)={Y € &(X) :Y is Cech-complete}
EE(X)={Y € &X) :Y is locally compact}
and when P is a topological property
o &p(X)={Y € &X):Y has P}
o Elocai-p(X) ={Y € &X) : Y is locally-P}.
Also, we may use notations which are obtained by combinations of the
above notations, e.g.

éDIZCal—'P(X) = @@*(X) N édloczzl—P(X)‘

Definition 2.2 ([10]). For a Tychonoff space X and a topological prop-
erty P, let

ApX = U {intgxclng :C € Coz(X) and clxC has 77}.

Definition 2.3 ([14]). We say that a topological property P satisfies
Mréwka’s condition (W), if it satisfies the following: If X is a Tychonoff
space in which there exists a point p with an open base B for X at p

such that X\B has P, for each B € A, then X has P.

Mréwka’s condition (W) is satisfied by a large number of topological
properties; among them are (regularity +) the Lindel6f property, para-
compactness, metacompactness, subparacompactness, the para-Lindelof
property, the o-para-Lindelof property, weak #-refinability, f-refinability
(or submetacompactness), weak d6-refinability, df-refinability (or the
submeta-Lindel6f property ), countable paracompactness, [0, k]-compact-
ness, k-boundedness, screenability, o-metacompactness, Dieudonné com-
pleteness, N-compactness [15], realcompactness, almost realcompact-
ness [4] and zero-dimensionality (see [10, 12] and [13] for proofs and
[2, 17] and [18] for definitions).

In [11] we have obtained the following result.

Theorem 2.4 ([11]). Let X and Y be locally compact locally-P non-
P spaces where P is either pseudocompactness or a closed hereditary
topological property which is preserved under finite closed sums of sub-
spaces and satisfies Mrowka’s condition (W). Then, the following are
equivalent:
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(1) MpX\X and \pY'\Y are homeomorphic.

(2) (&p(X),<) and (Ep(Y), <) are order-isomorphic.

(3) (£5(X),<) and (65 (Y), <) are order-isomorphic.

(4) (EX(X), <) and (€5 (Y), <) are order-isomorphic, provided that

X andY are moreover strongly zero-dimensional.

There are topological properties, however, which do not satisfy the as-
sumption of Theorem 2.4 (o-compactness, for example, does not satisfy
Mréwka’s condition (W); see [10]). The purpose of this article is to prove
the following version of Theorem 2.4. Specific topological properties P
which satisfy the requirements of Theorem 2.5 below are o-compactness,
the Lindelof property and the linearly Lindelof property. Note that in
Theorem 3.19 of [9] we have shown that conditions (1) and (3) of The-
orem 2.5 are equivalent, if P is o-compactness, and in Theorem 3.21 of
[9] we have shown that conditions (1) and (2) of Theorem 2.5 are equiv-
alent, if P is the Lindelof property. Thus, in some sense, Theorem 2.5
generalizes Theorems 3.19 and 3.21 of [9], and at the same time, brings
them under a same umbrella.

Theorem 2.5. Let X and Y be locally compact paracompact spaces
and let P be a closed hereditary topological property of compact spaces
which is preserved under finite sums of subspaces and coincides with o-
compactness in the realm of locally compact paracompact spaces. Then,
the following are equivalent:

(1) ApX\X and ApY'\Y are homeomorphic.
(2) (£5(X),<) and (£S5 (Y), <) are order-isomorphic.
3) (Epear—p(X), <) and (8 u—p(Y), <) are order-isomorphic.

We now introduce some notation which will be widely used in this
article.

Notation 2.6. Let X be a Tychonoff space X. For a subset A of X
denote

Af = Clng\X
In particular, X* = g X\ X.

Remark 2.7. Note that the notation given in Notation 2.6 can be am-
biguous, as A* can mean either SA\A or clgx A\X. However, since for
C*-embedded subsets these two notions coincide, this will not cause any
confusion.
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Definition 2.8 ([7]). For a Tychonoff space X, let
oX = U{clﬁxH : H C X is o-compact}.

Notation 2.9. Let X be a locally compact paracompact non-compact
space. Then, X can be represented as

X=X
el
for some index set I, with each X;, for ¢ € I, being o-compact and
non-compact (see Theorem 5.1.27 and Exercise 3.8.C of [3]). For J C I
denote
X;=Jx.
ieJ
Thus, using the notation of 2.6, we have

X5 = elax (U %) \X.

iceJ

Remark 2.10. Note that in Notation 2.9 the set X} is homeomorphic
to X \X s, as clgx X is homeomorphic to X (see Corollary 3.6.8
of [3]). Thus, when J is countable (since X j is o-compact and locally
compact) X7 is a zero-sets in clgx Xy (see 1B of [19]). But, clgx X is
clopen in BX, as X is clopen in X (see Corollary 3.6.5 of [3]) therefore,
X7 is a zero-set in 3X. Also, note that with the notation given in 2.9,
we have
oX = U{ClﬁXXJ : JJ C 1 is countable}.

Note that 0 X is open in BX and it contains X.

3. Partially ordered set of one-point extensions as related to
topologies of subspaces of outgrowth

In Lemma 3.5 we establish a connection between one-point Tychonoff
extensions of a given space X and compact non-empty subsets of its
outgrowth X*. Lemma 3.5 (and its preceding lemmas) is known (see
e.g. [12]). It is included here for the sake of completeness.

Lemma 3.1. Let X be a Tychonoff space and let C' be a non-empty
compact subset of X*. Let T be the space which is obtained from BX
by contracting C' to a point p. Then, the subspace Y = X U{p} of T is
Tychonoff and 8Y =T.
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Proof. Let q : 6X — T be the quotient mapping. Note that T is Haus-
dorff, and thus, being a continuous image of X, it is compact. Also,
note that Y is dense in T'. Therefore, T' is a compactification of Y. To
show that Y =T, it suffices to verify that every continuous h : Y — I
is continuously extendable over T. Let h : Y — I be continuous. Let
G : BX — I continuously extend hg|(X UC) : X UC — I (note that
B(XUC) =pX,as X C XUC C pX, see Corollary 3.6.9 of [3]).
Define H : T'— I such that H|(BX\C) = G|(X\C) and H(p) = h(p).
Then, H|Y = h, and since Hq = G is continuous, the function H is
continuous. 0

Notation 3.2. Let X be a Tychonoff space and let Y € &(X). Denote
by

Ty : X — BY
the (unique) continuous extension of idx.

Lemma 3.3. Let X be a Tychonoff space and let Y = X U{p} € &(X).
Let T be the space which is obtained from BX by contracting Ty 1(p) to
the point p, and let q : BX — T be the quotient mapping. Then, T = BY
and Ty = q.

Proof. We need to show that Y is a subspace of T. Since BY is also
a compactification of X and 7v|X = idx, by Theorem 3.5.7 of [3], we
have 7y (X*) = Y\ X. For an open subset W of BY’, the set g(7y- ' (W))
is open in T, as ¢~ (q(ry,* (W))) = 73,1 (W) is open in BX. Therefore,

YNW =Y ngq(ry (W))

is open in Y, when Y is considered as a subspace of T'. For the converse,
note that if V' is open in 7', since

YNV =yYn(@BY\r(8X\¢ (V)

and 7y (8X\q (V) is compact and thus closed in BY, the set Y NV
is open in Y in its original topology. By Lemma 3.1 we have T' = Y.
This also implies that v = ¢, as 7y, q : X — BY are continuous and
coincide with idx on the dense subset X of 5X. O

Lemma 3.4. Let X be a Tychonoff space. Let Y; € &(X), fori=1,2,
and denote by 7; = Ty, : BX — BY; the continuous extension of idx.
Then, the following are equivalent:
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(1) Y1 <Ya.
(2) 75 (Y2\X) C ' (V1\X).

Proof. Let Y; = X U {p;}, for i = 1,2. (1) implies (2). Suppose that
(1) holds. By the definition, there exists a continuous f : Yo — Y;
such that f|X = idx. Let fg : 8Y> — [Y; continuously extend f.
Note that the continuous functions fg7o, 7 : BX — BY; coincide with
idx on the dense subset X of X, and thus fgm = 7. Note that X
is dense in BY; (for i = 1,2), as it is dense in Y;, and therefore, 5Y;
is a compactification of X. Since f3|X = idx, by Theorem 3.5.7 of
[3], we have fz(BY2\X) = BY1\X, and thus fg(p2) € SY1\X. But,
fs(p2) = f(p2), which implies that fg(p2) € Y1\X = {p1}. Therefore,

7 '(p2) C 7 (f5 (fs(p2))

= (fam) ™ (fa(p2)) =71 (f5(p2)) =71 ' (p1).

(2) implies (1). Suppose that (2) holds. Let f : Yo — Y7 be defined
such that f(p2) = p1 and f|X = idx. We show that f is continuous,
this will show that Y7 < Y5. Note that by Lemma 3.3, the space Y5 is
the quotient space of 32X which is obtained by contracting 7, 1(])2) to a
point, and 7 is its corresponding quotient mapping. Thus, in particular,
Y5 is the quotient space of X U 7, 1(p2), and therefore, to show that f
is continuous, it suffices to show that f7|(X U7, '(p2)) is continuous.
We show this by verifying that fra(t) = 71(t), for each t € X U, *(p2).
This obviously holds if t € X. If t € 7, *(pa), then m(t) = pa, and
thus fra(t) = p1. But, since t € 7, '(12(t)), we have t € 7, (p1), and
therefore 71(t) = py. Thus, fr2(t) = 71(¢) in this case as well. O

Lemma 3.5. Let X be a Tychonoff space. Define a function
0: (£(X),<) = ({CCX*:C is compact}\{0},C )
by
oY) = (Y\X),
forY € &(X). Then, © is an anti-order-isomorphism.

Proof. To show that O is well-defined, let Y € &(X). Note that since
X is dense in Y, the space X is dense in Y. Thus, 7v : BX — BY is
onto, as 7y (8X) is a compact (and therefore closed) subset of fY and it
contains X = 7y (X). Thus, 75} (Y\X) # 0. Also, since 7y |X = idx we
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have 731 (Y\X) C X*, and since the singleton Y\ X is closed in BY, its
inverse image 7' (Y\X) is closed in BX, and therefore it is compact.
Now, we show that © is onto, Lemma 3.4 will then complete the proof.
Let C' be a non-empty compact subset of X*. Let T be the quotient
space of X which is obtained by contracting C to a point p. Consider
the subspace Y = X U{p} of T. Then, Y € &(X), and thus, by Lemma
3.1 we have Y = T. The quotient mapping q : X — T is identical to
Ty, as it coincides with idx on the dense subset X of 8X. Therefore,

o) =r"(p)=q"'(p) =C.

Notation 3.6. For a Tychonoff space X denote by
Ox : (£(X),<) = ({C € X*:C is compact}\{0}, C )
the anti-order-isomorphism defined by
Ox(Y) = (Y\X),
for Y € £(X).

Lemmas 3.7 and 3.8 below are known results (see [9]).

Lemma 3.7. Let X be a Tychonoff space. ForY € &(X) the following
are equivalent:

(1) Y e £*(X).

(2) ©x(Y) € Z(6X).

Proof. Let Y = X U{p}. (1) implies (2). Suppose that (1) holds. Let
{V,, : n € N} be an open base at p in Y. For each n € N, let V! be
an open subset of 8Y such that Y NV, =V, and let f,, : BY — I be
continuous and such that f,(p) = 0 and f,(8Y\V,)) C {1}. Let

Z =) Z(f.) € Z(BY).

n=1

We show that Z = {p}. Obviously, p € Z. Let t € Z and suppose to the
contrary that ¢t # p. Let W be an open neighborhood of p in 8Y such
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that t ¢ clgyW. Then, Y N W is an open neighborhood of p in Y. Let
k € N be such that V;, CY NW. We have

teZ(fr) SV C cagyVg
= Clgy(Y N Vkl)
= Clgka - Clﬁy(y N W) - ClﬁyW
which is a contradiction. This shows that ¢t = p and therefore Z C {p}.
Thus, {p} = Z € Z(BY), which implies that ' (p) € Z(8X).
(2) implies (1). Suppose that (2) holds. Let 7y.'(p) = Z(f) where
f : BX — I is continuous. Note that by Lemma 3.3 the space BY is
obtained from SX by contracting T;l(p) to p with 7y : X — BY as

the quotient mapping. Then, for each n € N, the set 7y (f~1([0,1/n)))
is an open neighborhood of p in Y. We show that the collection

{rom (17 ([o.5))) s nen}

of open neighborhoods of p in Y constitutes an open base at p in Y.
This will show (1). Let V' be an open neighborhood of p in Y. Let V'
be an open subset of Y such that Y N V' = V. Then, p € V/ and thus

ﬁ JH([O’ %D = Z(f) =7 "(p) Sy (V).

By compactness we have f~1([0,1/k]) C 7' (V’), for some k € N.

Therefore,
o (i () € v (o)
YNy (' (V) CYynv =V

N N
| =

0

Lemma 3.8. Let X be a locally compact space. For'Y € &(X) the
following are equivalent:

(1) Y € £9(X).

(2) Ox(Y) € Z(X7).

Proof. Let Y = X U{p}. (1) implies (2). Suppose that (1) holds. Then,
Y*isan F, in Y. Let Y* = |J;2, K,, where each K, is closed in 8Y,
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for n € N. Then,
00
* —1
X*=1,"(p)U U K,
n=1

(recall that BY is the quotient space of X which is obtained by con-
tracting T;l(p) to p and 7y is its quotient mapping; see Lemma 3.3).
For each n € N, let f,, : X — I be continuous and such that

Fo(7y'(p)) = {0} and £, (Ky) € {1},
Let f =3 7", fn/2". Then, f: X — Iis continuous and
v (p) = Z(f) N X* € Z(X*).
(2) implies (1). Suppose that (2) holds. Let 7,'(p) = Z(g) where
g : X* — Iis continuous. Then, using Lemma 3.3, we have
Y =X"\17y'(p) = X"\Z(9)

- )= U ([31))

and each set g71([1/n,1]), for n € N, being closed in X*, is compact
(note that since X is locally compact, X* is compact) and thus closed
in BY. Therefore, Y* is an F, in 8Y, that is, Y is Cech-complete.

O

Then, the following lemma justifies our requirement on P in Theorem
3.16. We simply need Ap X to have a more familiar structure.

Lemma 3.9. Let P be a topological property which is preserved under
finite closed sums of subspaces. The following are equivalent:
(1) The topological property P coincides with o-compactness in the
realm of locally compact paracompact spaces.
(2) For every locally compact paracompact space X we have

ApX =0X.

Proof. (1) implies (2). Suppose that (1) holds. Let X be a locally
compact paracompact space. Assume the notation of 2.9. Let J C [
be countable. Then, X ; is o-compact and thus (since it is also locally
compact and paracompact) it has P. Note that X is clopen in X thus
it has a clopen closure in X, therefore

clgx Xy = intgxclgx X; C ApX
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that is, 0 X C ApX. To see the reverse inclusion, let C' € Coz(X) be
such that clxC has P. Then, (since clyC being closed in X is also
locally compact and paracompact) clxC' is o-compact. Therefore,

intgxcngC’ - clng CoX

which shows that A\pX C 0 X. Thus, \pX =o0X.

(2) implies (1). Suppose that (2) holds. Let X be a locally compact
paracompact space. By the assumption we have A\p X = 0 X. We verify
that X has P if and only if X is o-compact. Assume the notation of
Notation 2.9. Suppose that X has P. Then, ApX = X and thus
0cX = BX. Now, by compactness, we have

BX = Clngjl U”’UCI@)(XJM
for some n € N and some countable Jy,...,J, C I. Therefore,
X=X,U---UX,,

is o-compact. For the converse, suppose that X is o-compact. Then,
cX = BX and (since A\pX = oX) we have X = ApX. Thus, by

compactness, we have
BX =intgxclgxCi U---Uintgxclgx Cy,

for some n € N and some C1,...,C, € Coz(X) such that clxC; has P,
for i =1,...,n. Now, using our assumption, the space

X=clxCiU---UclxC,

being a finite union of its closed P-subspaces, has P. O

Lemma 3.10. Let X be a locally compact paracompact space and let P
be a closed hereditary topological property of compact spaces which is pre-
served under finite sums of subspaces and coincides with o-compactness
in the realm of locally compact paracompact spaces. For'Y € &(X) the
following are equivalent:

(1) Ye é"PC(X)

Thus, in particular

Ox(65(X)) = {Z € Z(X*): BX\N\pX C Z}\{0}.
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Proof. Let Y = X U {p}. (1) implies (2). Suppose that (1) holds. By
Lemma 3.8 we have 7,.'(p) € Z(X*). Note that by Lemma 3.9 we
have A\pX = 0X. Let t € fX\oX and suppose to the contrary that
t ¢ 7 (p). Let f: BX — I be continuous and such that f(t) = 0 and
f(ry1(p)) = {1}. Since 7y (f~1([0,1/2])) is compact, the set

r=xns"(o. %D =y (r7([o, %D)

being closed in Y, has P. But, 7', being closed in X, is locally compact
and paracompact, and thus, having P, it is o-compact. Therefore, by
definition of 0 X we have clgxT C ¢ X. But, since

ter(0g) < a7 ([03))
= ClﬂX(Xﬂf_l([Oé)»
e (X077 ([0.5])) = cnT

we have ¢ € 0 X, which contradicts the choice of t. Thus, ¢ € 73! (p) and
therefore BX\oX C 75, (p).

(2) implies (1). Suppose that (2) holds. Note that since X is locally
compact, the set X* is closed in (the normal space) 5X and thus, since
71 (p) € Z(X*) (using the Tietze-Urysohn Theorem) we have 74! (p) =
Z N X* for some Z € Z(BX). Note that by Lemma 3.9 we have
ApX = oX. Now, since fX\oX C T;I(p) C Z we have fX\Z C 0X.
Therefore, assuming the notation of 2.9 (since SX\Z, being a cozero-set
in BX, is o-compact) we have

N

o
BX\Z C U clax X, Cclgx X

n=1

where Ji,Js,... C I are countable and J = J; U JyU---. But,
Y=mn(Z)U(X\Z)C1v(Z)UXy

and thus we have

(3.1) Y=mn(Z)UXj.

Now, since X has P, as it is o-compact (and being closed in X, it is
locally compact and paracompact) and 7y (Z) has P, as it is compact,
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from (3.1) it follows that the space Y, being a finite union of its P-
subspaces, has P. The fact that Y is Cech-complete follows from Lemma
3.8. O

The following generalizes Lemma 3.18 of [9].

Lemma 3.11. Let X be a locally compact paracompact space and let P
be a closed hereditary topological property of compact spaces which is pre-
served under finite sums of subspaces and coincides with o-compactness
in the realm of locally compact paracompact spaces. For'Y € &(X) the
following are equivalent:

( ) Y e éalocal 'P(X)
(2) ©x(Y) € Z(BX) and Ox(Y) C ApX.
Thus, in particular

@X(glf)cal—P(X)) = {Z € D@F(ﬁX) 1 Z C )\PX\X}\{@}

Proof. Let Y = X U{p}. (1) implies (2). Suppose that (1) holds. Since
Y € £*(X), by Lemma 3.7 we have 7,,'(p) € Z(B8X). Let 7y, (p) =
Z(f), for some continuous f : X — I. Since Y is locally-P, there exists
an open neighborhood V of p in Y such that clyV has P. Let V' be an
open subset of BY such that Y NV’ = V. Then, p € V', and thus since

N ([0.2]) =200 = ') € 51 0)
n=1

by compactness, we have f~1([0,1/k]) C T;I(V’), for some k € N. Now,
for each n > k, since

van (7 (v () € v (e ([o1]))
ERAACRA

the set

Ko = x0 (7 (o) (fo n+1>>)
= vonr (7o ]>\f ([ n+1))>

being closed in cly'V, has P, and therefore (since being closed in X
it is locally compact and paracompact) it is o-compact. (It might be
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helpful to recall that by Lemma 3.3 the space fY is obtained from X
by contracting 7 L(p) to p with 7y as its quotient mapping.) Thus, the

set -
xor(fo4]) - U

is o-compact, and therefore, by the definition of o X, we have

clsx (X n f—l([o, %])) CoX.

znei((o3)) < awr([o.5))
_ clﬁx(Xﬂf’l([O’%)»

¢ an(xar (1))

from which it follows that 7y L(p) C 6 X. Finally, note that by Lemma
3.9 we have \pX =0X.

(2) implies (1). Suppose that (2) holds. By Lemma 3.7 we have
Y € &£*(X). Therefore, it suffices to verify that Y is locally-P. Also,
since by the assumption X is locally compact, it is locally-P, as P is
assumed to be a topological property of compact spaces. Thus, we only
need to verify that p has an open neighborhood in Y whose closure in
Y has P. Let g : BX — I be continuous and such that Z(g) = 7' (p).
Then, since

But,

N ([0.2]) = 26 < e
n=1

by compactness (and since A\p X is open in X ) we have g~1([0,1/k]) C
ApX, for some k € N. Note that by Lemma 3.9 we have \p X = cX.
Assume the notation of Notation 2.9. By compactness, we have

1
g71(|:0, E}) - ClﬂXX]l U--- UCIB)(XJn = ClﬁXXJ

where n € N, the sets Ji,...,J, C I are countable and J = J1U---UJ,.
The set X N g~1([0,1/k]) € X, being closed in the latter (o-compact
space) is o-compact, and therefore (since being closed in X, it is locally
compact and paracompact) it has P. Let

vevon (i (b))
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Then, V is an open neighborhood of p in Y. We show that clyV has P.
But, this follows, since

wvernn((p ) = (xonle(b)ow

- (xn (1)) o

and the latter, being a finite union of its P-subspaces (note that the
singleton {p}, being compact, has P) has P, and thus, its closed subset
clyV, also has P. O

Lemmas 3.12-3.14 are from [8].

Lemma 3.12. Let X be a locally compact paracompact space. If Z €
Z(BX) in non-empty, then Z NoX # ()

Proof. Let {x,}5°; be a sequence in ¢ X. Assume the notation of 2.9.
Then, {x, : n € N} C clgx X, for some countable J C I. Therefore,
{zy, : n € N} has a limit point in clgx X; € 0 X. Thus, 0X is countably
compact, and therefore is pseudocompact, and v(cX) = B(cX) = X
(note that the latter equality holds, as X C oX C X). The result
now follows, as for any Tychonoff space T', any non-empty zero-set of
vT meets T (see Lemma 5.11 (f) of [16]). O

Lemma 3.13. Let X be a locally compact paracompact space. If Z €
Z(X*) is non-empty, then ZNoX # 0.

Proof. Let S € Z(5X) be such that SN X* = Z (which exists, as X* is
closed in (the normal space) X, as X is locally compact, and thus, by
the Tietze-Urysohn Theorem, every continuous function from X* to I is
continuously extendible over 3X). By Lemma 3.12 we have SNoX # ().
Suppose that SN (e X\X) = 0. Then, SNocX = X NS. Assume the
notation of 2.9. Let J = {i € I : X; NS # 0}. Then, J is finite. Note
that since X is clopen in X, it has a clopen closure in 5X. Now,

T=5n(BX\clgxXy) € Z(BX)

misses 0 X, and therefore, by Lemma 3.12 we have T'= (). But, this is a
contradiction, as Z = SN (X \oX) C T. This shows that

ZN(eX\X)=5N(cX\X) #0.
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g

Lemma 3.14. Let X be a locally compact paracompact space. For S, T €
Z(X*),if SNoX CTnNoX, then SCT.

Proof. Suppose to the contrary that S\T # 0, let s € S\T. Let f :
BX — I be continuous and such that f(s) =0 and f(7) C {1}. Then,
Z(f) NS is non-empty, and thus by Lemma 3.13 it follows that Z(f) N
SNoX # (. But, this is not possible, as

Z(f)NSNoX C Z(f)NT = 0.

The following lemma is from [9].

Lemma 3.15. Let X and Y be locally compact spaces. The following
are equivalent:

(1) X* and Y* are homeomorphic.
(2) (69 (X),<) and (£C(Y),<) are order-isomorphic.

Proof. This follows from the fact that in a compact space the order-
structure of the set of its all zero-sets (partially ordered with C) deter-
mines its topology. O

The proof of the following theorem is essentially a combination of
the proofs we have given for Theorems 3.19 and 3.21 in [9] with the
appropriate usage of the preceding lemmas. The reasonably detailed
proof is included here for the reader’s convenience.

Theorem 3.16. Let X and Y be locally compact paracompact (non-
compact) spaces and let P be a closed hereditary topological property of
compact spaces which is preserved under finite sums of subspaces and co-
incides with o-compactness in the realm of locally compact paracompact
spaces. Then, the following are equivalent:

(1) MpX\X and A\pY'\Y are homeomorphic.
(2) (£5(X),<) and (£5(Y), <) are order-isomorphic.
(3) (Epear—p(X), <) and (8 p_p(Y), <) are order-isomorphic.
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Proof. Let
X=X andY =PyY;
i€l jeJ
for some index sets I and J with each X; and Y;, for i € I and j € J
being o-compact and non-compact. We will use notation of 2.9 and

Remark 2.10 without mentioning. Note that by Lemma 3.9 we have
ApX =0X and \pY =Y. Let

woX =ocX U{Q} and woY = oY U{Q}
denote the one-point compactifications of X and oY, respectively.
(1) implies (2). Suppose that (1) holds. Suppose that either X or Y,

say X, is o-compact. Then, cY'\Y is compact, as it is homeomorphic to
o X\X = X*, and the latter is compact, as X is locally compact. Thus,

oY\Y =Yj U---UYy =Yg
where n € N, the sets Hy,...,H, C J are countable and
H=HU---UH,.
Now, if there exists some u € J\H, then since Y;, N Yy = () we have
ClﬁyYu N CI@yYH = .
Therefore, clgyY, C Y, contradicting the fact that Y, is non-compact.
Thus, J = H and Y is o-compact. Therefore, cY'\Y = Y*. Note that by
Lemmas 3.8 and 3.10 we have &5 (X) = &Y(X) and &5 (Y) = £°(Y).
The result now follows from Lemma 3.15.

Suppose that X and Y are non-o-compact. Let f: o X\X — oY\Y
denote a homeomorphism. We define an order-isomorphism

¢ (Ox(67 (X)), C) = (Or (65 (Y)), € ).
Since O x and Oy are anti-order-isomorphisms, this will prove (2). Let
D € Ox(&F (X)). By Lemma 3.10 we have D € 2°(X*) and SX\o X C
D. Since X*\D C 0X, being a cozero-set in X* is o-compact, there
exists a countable G C I such that X*\D C X(. Now, since DN X7, €
Z(X(), we have
f(DNXg) € Z(f(X)).
Since X(, is open in ¢ X\X, its homeomorphic image f(X¢) is open
in oY\Y, and thus, is open in Y*. But, f(X() is compact, as it is a
continuous image of a compact space, and therefore, f(X¢) is clopen in
Y*. Thus,
FIDNXEH U (Y\f(Xg)) € Z(Y7).



One-point extensions of locally compact paracompact spaces 217

Let
¢(D) = f(DN (e X\X)) U(BY\oY).
Note that since
f(DN(eX\X)) = f(DNXEH U ((eX\X)\XE))
= f(DNXE) U ((eY\Y)\F(XE))

we have

¢(D)

f(DN(eX\X)) U(BY\oY)
FDNXE) U ((eY\Y)\f(XE) U (BY\oY)
= f(DNXE) U (Y\f(XE)

which shows that ¢ is well-defined. The function ¢ is clearly an order-
homomorphism. Since f~! : 0Y\Y — 0 X\ X also is a homeomorphism,
as above, it induces an order-homomorphism

v (Oy (65 (Y)),C) = (0x (65 (X)), C)
which is defined by
Y(D) = fTH(DN(eY\Y)) U(BX\oX),

for D € Oy (&5 (Y)). It is now easy to see that ¢ = ¢!, which shows
that ¢ is an order-isomorphism.

(2) implies (1). Suppose that (2) holds. Suppose that either X or Y,
say X, is o-compact (and non-compact). Then, 0 X = X, and thus,
by Lemmas 3.8 and 3.10, we have &5 (X) = & “(X). Suppose that Y is
non-o-compact. Note that X, being paracompact and non-compact, is
non-pseudocompact (see Theorems 3.10.21, 5.1.5 and 5.1.20 of [3]) and
therefore, X* contains at least two elements, as almost compact spaces
are pseudocompact (see Problem 5U (1) of [16]; recall that a Tychonoff
space T is called almost compact if ST\T has at most one element).
Thus, there exist two disjoint non-empty zero-sets of X* corresponding
to two elements in & (X) with no common upper bound in & ¢(X).
But, this is not true, as &%(X) is order-isomorphic to &5 (Y), and
any two elements in the latter have a common upper bound in éapc (Y).
(Note that since Y is non-o-compact, the set Y \oY is non-empty, and
by Lemma 3.10, the image of any element in gg (Y') under ©y contains
BY\oY.) Therefore, Y also is o-compact and by Lemmas 3.8 and 3.10,
we have £5(Y) = £°(Y). Now, since oY = Y, the result follows from
Lemma 3.15.
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Next, suppose that X and Y are both non-o-compact. We show that
the two compact spaces woX\X and woY\Y are homeomorphic, by
showing that their corresponding sets of zero-sets (partially ordered with
C) are order-isomorphic. Since © x and ©y are anti-order-isomorphisms,
condition (2) implies the existence of an order-isomorphism

6+ (Ox(85(X)).C) = (Or (£5(V)).C ).
We define an order-isomorphism
V: (Z(woX\X),C) = (Z(woY\Y),C)

as follows. Let Z € Z(woX\X). Suppose that Q@ € Z. Then, since
(wo X\X)\Z is a cozero-set in (the compact space) woX\X, it is o-
compact. Thus, (woX\X)\Z C X, for some countable G C I. Since
X, is clopen in X*, we have

(2\{2}) U (BX\0X) = (Z N X§) U (X™\XG) € Z(X7).

In this case, we let

W(Z) = (¢((2\{2}) U (BX\e X))\ (BY \oY)) U{Q'}.

Now, suppose that 2 ¢ Z. Then, Z C 0 X\X, and therefore Z C X¢,
for some countable G C I, and thus, using this, one can write

(32)  Z=X"\|J Z, where BX\0X C Z, € Z(X*) forn € N.

n=1

In this case, we let
W(2) =Y\ ¢(Zn).
n=1

We check that 1) is well-defined. Assume the representation given in
(3.2). Since Y*\¢(Zy) C oY, for n € N, there exists a countable H C .J
such that Y*\¢(Z,) C Y};, for all n € N. O

Claim. For Z € Z(woX\X) with Q ¢ Z assume the representation
gwen in (3.2). Let H C J be countable and such that Y*\¢(Z,) C Y},
for alln € N. Let A be such that $(A) =Y *\Y};. Then,

Y\ 6(Zn) = 6(AU 2)\$(A).
n=1
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Proof of the claim. Suppose that y € Y* and y ¢ ¢(Z,), for each n €
N. Ify ¢ ¢p(AU Z2)\¢p(A), then since y ¢ ¢(Z1) 2 ¢(A) we have
y ¢ ¢(AU Z). Therefore, there exists some B € Z(Y™) containing y
such that BN¢(AUZ) =0 and BN ¢(Z,) = 0, for n € N. Let C be
such that ¢(C) = BU¢(AU Z), and let Sy, for n € N, be such that

¢(Sn) = o(C)NP(Zn)
= (BU®(AUZ))N¢(Zy)
= (BN(Zy)) U (6(AUZ) N G(Zn)) = ¢(AUZ) N §(Zy).

Since A C Z,, as ¢(A) C ¢(Z,) and Z N Z, = (), we have AN Z = 0,
which implies that

(AUZ)NZy = (AN Zy) U(ZN Zy) = A,

for n € N. Clearly, S, C (AU Z) N Z,, as by above ¢(S,) C ¢p(AU Z)
and ¢(S,) C ¢(Z,), for n € N. Thus, ¢(S,) C ¢(A), for n € N. But,
since ¢(A) C ¢(Zy), we have ¢p(A) C ¢(Sy), and therefore

P(CNZn) € O(C)NG(Zn) = &(Sn) = $(A),
for n € N. This implies that C'N Z,, C A, for n € N. Thus,

C\Z:Cm[jz = G(szn)gA.

n=1 n=1

Therefore, C C AU Z and we have B C ¢(C) C ¢(A U Z), which is a
contradiction, as BN ¢(AU Z) = (). This shows that

Y\ 6(Zn) C o(AUZ2)\p(A).

Now, suppose that y € ¢(A U Z)\¢(A). Suppose to the contrary that
y € ¢(Z,), for some n € N. Then,

y € d(Zn) NP(AU Z) = ¢(D),

for some D. Clearly, D C Z, and D C AU Z, as ¢(D) C ¢(Z,) and
»(D) C (AU Z). This implies that

DCZ,Nn(AUZ)=(Z,NnAU(Z,NZ)=Z,NACA

and thus y € ¢(A), as ¢(D) C ¢(A), which is a contradiction. This
proves the claim.
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Now, suppose that

o o0
Z=X"\|JSnand Z=X"\{] Z,
n=1 n=1
are two representations for Z € 2 (woX\X) with Q ¢ Z such that each
Sny Zn € Z(X*) contains fX\oX, for n € N. Choose a countable
H C J such that

Y™ \G(Sn) € Vi and Y"\$(Zy) C Y,
for n € N. Then, by the claim, we have

Y\ 6(Sh) = ¢(AU2)\$(A) = Y™\ | 6(Zn)
n=1 n=1

where A is such that ¢(A) = Y*\Y};. This shows that v is well-defined.
Next, we show that v is an order-isomorphism. Suppose that S, 7 €
Z(woX\X) and S C Z. We consider the following cases.

Case 1: Suppose that 2 € §. Then, 2 € Z, and clearly,
P(S) = (o((S\{2}) U (BX\oX))\(BY\oY)) U{Q'}
C (o((2\{2}) U (BX\e X))\ (BY\oY)) U{Q'} = 9(2).
Case 2: Suppose that Q ¢ S but Q € Z. Let
E = 6((2\{2}) U (8X\0X))
and let -
S=x"\J S
n=1
where each S,, € Z(X*) contains fX\oX, for n € N. Clearly,
Y*\E CoY. Let H C J be countable and such that Y*\¢(S,,) C
Yy, for all n € N and Y*\E C Y};. By the claim, we have
P(S) = (AU S)\¢(A), where ¢(A) = Y*\Y};. Since Y*\Y}; C
E., we have
AC (Z\{Q}) U (BX\oX).
Now,
P(S) = d(AUS)\p(A) C ¢(AUS) C o((2\{Q}) U (BX\0 X))
which implies that

¥(8) € (((2\{2}) U (BX\e X))\(BY\oY)) U{Q'} = (2).
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Case 3: Suppose that Q ¢ Z. Then, Q ¢ S. Let

S=X"\J S and Z=x"\ ] Z,
n=1 n=1
where each Sp,Z, € Z(X*) contains fX\oX, for n € N.
Clearly,

S=8nZ= (X*\ U sn) N (X*\ U Zn> = X"\ | (50U Zy)
n=1 n=1 n=1
and thus, since ¢(Z,) C ¢(S, U Z,), for n € N, it follows that

n=1 n=1

Note that since
67" (Oy (65 (Y)),C) = (0x(65 (X)), C)
also is an order-isomorphism, as above, it induces an order-isomorphism
7: (Z(woY\Y),C ) = (Z(woX\X),C)

which is easy to see that v = 1)~'. Therefore, 1 is an order-isomorphism.
It then follows that there exists a homeomorphism f : woX\X —
woY\Y such that f(Z) = ¢(Z), for any Z € Z(woX\X). Now, since
for each countable G C I we have

f(Xg) =9(Xg) CoV\Y

it follows that f(cX\X) = oY \Y. Thus, c X\ X and ocY'\Y are home-
omorphic.

(1) implies (3). Suppose that (1) holds. Suppose that either X or
Y, say X, is o-compact. Then, 0 X = X and thus, arguing as in part
(1)=-(2), it follows that Y also is o-compact. Therefore, cY = Y. Note
that by Lemmas 3.7 and 3.11 we have & ,,_p(X) = &£*(X) and since
X* e Z(BX) (as X is o-compact and locally compact, see 1B of [19]) by
Lemmas 3.7 and 3.8 we have &*(X) = &¢(X). Thus, &, »(X) =
&Y(X) and similarly &, p(Y) = &(Y). The result now follows
from Lemma 3.15.

Suppose that X and Y are non-o-compact. Let f: cX\X — oY\Y
be a homeomorphism. We define an order-isomorphism

¢ (Ox(Elearp(X)),C ) = (Ov (Efar_p(¥)), C ),
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as follows. Let Z € Ox (&) _p(X)). By Lemma 3.11 we have Z €
Z(BX) and Z C o X\X. Thus, Z C X{, for some countable G C I.
Now, f(Z) € Z(oY\Y) and since f(Z) is compact, as it is a continuous
image of a compact space, it follows that f(Z) C Y7, for some countable
H C J. Therefore, f(Z) € Z(Y};) and then f(Z) € 2 (clgyYn). Since
clgy Yy is clopen in Y we have f(Z) € Z(8Y). Define

(Z) = f(2).

It is obvious that ¢ is an order-homomorphism. If we let

¥ Oy (Elocar—p(Y)): S ) = (Ox (Eipear—p (X)) S)
be defined by
W(Z) = f1(2),
then 1) = ¢! which shows that ¢ is an order-isomorphism.

(3) implies (1). Suppose that (3) holds. Suppose that either X or Y,
say X, is o-compact (and non-compact). Then, 0 X = X, and thus, by
Lemmas 3.7 and 3.11, we have &5, »(X) = &*(X). Therefore, since
X* € Z(BX) the set &% ,;_p(X) has a smallest element (namely, its
one-point compactification wX). Thus, &} ,,_p(Y) also has a smallest
element; denote this element by 7". Then, for each countable H C J we
have

Yy € Oy (Soea—p(Y))
and therefore cY'\Y C Oy (7). By Lemma 3.14 (with ©y (7)) and Y™ as
the zero-sets in its statement) we have Y* C Oy (7). This implies that
Y* € Z(8Y) which shows that Y is o-compact. Thus, oY = gY, and
by Lemmas 3.7 and 3.11, we have &} ., »(Y) = &*(Y). Therefore, in
this case (and since by Lemmas 3.7 and 3.8 we have &*(X) = & “(X)
and &*(Y) = &°(Y)) the result follows from Lemma 3.15.

Next, suppose that X and Y are both non-o-compact. Since © x and
Oy are both anti-order-isomorphisms, there exists an order-isomorphism

qb : (®X (éalf)cal—P(X))a - ) — (®Y (éal:;cal—P(Y))a - )
We extend ¢ by letting ¢(0)) = . We define a function
V: (Z(woX\X),C) = (Z(woY\Y),C)

and verify that it is an order-isomorphism. Let Z € 2/ (woX\X) with
Q¢ Z. Since Z C X, for some countable G C I, we have Z € Z(8X),
and therefore,

Z €Oy (@((}lzcal—’P(X)) U {(Z)}
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In this case, let

W(Z) = o(2).
Now, suppose that Z € 2(woX\X) and Q € Z. Then, (woX\X)\Z is
a cozero-set in wo X\ X, and we have

(3.3)  Z=(woX\X)\ | Zn where Z, € Z(woX\X) for n € N.
n=1

Thus, as above, it follows that

Zn € ®X (éali()calfP(X)) U {®}7
for n € N. We verify that

(3.4) U (Zy) € Coz(woY\Y).

To show this, note that since ¢(Z,) C oY\Y there exists a countable
HCJsuchthat¢( n) C Yy, forn € N.

Claim. For Z € Z(woX\X) with Q € Z assume the representation
gwen in (3.3). Let H C J be countable and such that ¢(Z,) C Yy, for
alln € N. Let A be such that $(A) =Y};. Then,

$(ANZ) = \U¢

Proof of the claim. For each n € N, since ANZN Z, = (), we have
d(ANZ)NP(Z,) = 0, as otherwise, ¢(A N Z) and ¢(Z,) will have a
common lower bound in Oy (&%, »(Y)), that is, ¢(AN Z) N (Z,),
whereas AN Z and Z,, do not have. Also, (AN Z) C ¢(A). Therefore,

G(ANZ) C $(A \U¢

To show the reverse inclusion, let y € (;5( ) be such that y ¢ ¢(Z,), for
n € N. There exists B € Z°(8Y) such that y € B and BN ¢(Z,) = 0,
for alln € N. If y ¢ (AN Z), then there exists some C' € Z(8Y) such
that y e Cand CN¢p(ANZ)=0. Let D =¢(A)NBNC and let E be
such that ¢(E) = D. For each n € N, since ¢(E) N ¢(Zy,) = 0, we have
EnZ, =0, and thus E C Z. On the other hand, since ¢(E) C ¢(A)
we have £ C A, and therefore £ C AN Z. Thus, ¢(E) C ¢p(AN Z),
which implies that ¢(E) = (), as ¢(E) C C. This contradiction shows
that y € (A N Z), which proves the claim.
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Let A be such that ¢(A) = Y}, Now, ¢(ANZ) € Z(woY\Y), as
(AN Z) C ¢(A). By the claim we have

wo\Y\ J 6(Z0) = (64N 6(Z0)) U ((woV\Y)\6(4))
n=1

n=1

= GANZ) U ((woV\Y)\B(A)) € Z(wo¥\Y)

and (3.4) is verified. In this case, we let

Y(Z) = (woY\Y)\ () ¢(Zn).

n=1

Next, we show that ¢ is well-defined. Assume that

oo
Z = (woX\X)\ | Sn
n=1
with S, € Z(woX\X), for n € N, is another representation of Z. We
need to show that
oo

(3.5) ¢(Zn) = | ¢(Sn).
1 n=1

n=

Without any loss of generality, suppose to the contrary that there exists
some m € N and y € ¢(Z,,) such that y ¢ ¢(S,), for all n € N. Then,
there exists some A € Z°(8Y) such that y € A and AN ¢(S,) = 0, for
n € N. Consider

AN G(Zm) € Oy (Efpear»(Y)).

Let B be such that ¢(B) = AN ¢(Zy,). Since ¢(B) C A we have
#(B) N ¢(S,) = O from which it follows that BN S, = 0, for n € N.
But, B C Z,,, as ¢(B) C ¢(Z,,), and we have

BC|JZn=J 5

n=1 n=1
which implies that B = (). But, this is a contradiction, as ¢(B) # 0.
Therefore, (3.5) holds, and thus 1 is well-defined. To prove that v is an
order-isomorphism, let S, Z € Z(woX\X) and S C Z. The case when
S = (0 holds trivially. Assume that S # (). We consider the following

cases.
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Case 1: Suppose that Q ¢ Z. Then, 2 ¢ S and we have

Y(S) = #(S) € ¢(2) = ¢(2).
Case 2: Suppose that Q ¢ S but Q € Z. Let

Z = (woX\X)\ | Zn

n=1

with Z,, € Z(woX\X), for n € N. Then, since S C Z we have
SN Z, =0, and therefore ¢(S) N ¢(Z,) = 0, for n € N. Thus,

P(8) = ¢(S) € (woV\Y )\ | ¢(Zn) = ¥(2).

n=1

Case 3: Suppose that Q2 € S. Then, Q € Z. Let

S = (woX\X)\ | J Sn and Z = (woX\X)\ | J Z»
n=1

n=1

where S, Z,, € Z(woX\X), for n € N. Therefore,

S=8nZ = ((waX\X)\ fj sn) N <(waX\X)\ G Zn>

= (woX\X)\ | J(Snu 7).

n=1

Thus, since ¢(Z,,) C ¢(S, U Zy,), for n € N, we have

P(S) = (woY\Y)\ | ¢(Sn U Zy) € (woY\Y)\ | J ¢(Zn) = %(2).
n=1

n=1

This shows that ¢ is an order-homomorphism. To show that v is an
order-isomorphism, we note that

¢~ (O (Elocar—p(Y)), S ) = (Ox (Elocar—p(X)), S )
is an order-isomorphism. Let
v (ff(waY\Y), C ) — (Q"(waX\X), C )

be the induced order-homomorphism which is defined as above. Then, it
is straightforward to see that v = 1!, that is, v is an order-isomorphism.
This implies the existence of a homeomorphism f: woX\X — woY\Y
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such that f(Z) = ¢(Z), for every Z € Z(woX\X). Therefore, for any
countable G C I, since X, € Z(woX\X), we have

f(X&) = ¥(Xg) = ¢(Xg) CoY\Y.

Thus, f(eX\X) C oYY, which shows that f(2) = €. Therefore,
cX\X and oY'\Y are homeomorphic.

Example 3.17. The Lindelof property and the linearly Lindeldf property
(besides o-compactness itself) are examples of topological properties P
satisfying the assumption of Theorem 3.16. To see this, let X be a
locally compact paracompact space. Assume a representation for X as
in Notation 2.9. Recall that a Hausdorff space X is said to be linearly
Lindel6f [6] provided that every linearly ordered (by set inclusion C) open
cover of X has a countable subcover, equivalently, if every uncountable
subset of X has a complete accumulation point in X . (Recall that a point
x € X 1is called a complete accumulation point of a set A C X if for
every neighborhood U of x in X we have |U N A| = |A|.) Note that if X
is non-o-compact, then (using the notation of Notation 2.9) the set I is
uncountable. Let A = {x; :i € I} where x; € X;, fori € I. Then, A is
an uncountable subset of X without (even) accumulation points. Thus,
X cannot be linearly Lindeldf as well. For the converse, note that if X is
not linearly Lindeldf, then, obviously, X is not Lindeldf, and therefore, is
non-o-compact, as it is well-known that o-compactness and the Lindeldf
property coincide in the realm of locally compact paracompact spaces (this
fact is evident from the representation given for X in Notation 2.9).

Theorem 3.16 above might leave the impression that (&5 (X), <) and
(€ car—p(X), <) are order-isomorphic. The following is to settle this,
showing that in most cases this is indeed not going to be the case.

Theorem 3.18. Let X be a locally compact paracompact (non-compact)
space and let P be a closed hereditary topological property of compact
spaces which is preserved under finite sums of subspaces and coincides
with o-compactness in the realm of locally compact paracompact spaces.
Then, the following are equivalent:

(1) X is o-compact.

(2) (£5(X),<) and (E)u_p(X), <) are order-isomorphic.

Proof. Since X is locally compact, the set X* is closed in (the normal
space) SX and thus, using the Tietze-Urysohn Theorem, every zero-set
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of X* is extendible to a zero-set of fX. Now, if X is o-compact (since
X is also locally compact) we have X* € Z°(SX) and therefore every
zero-set of X* is a zero-set of SX. Note that A\pX = ¢ X = X. Thus,
using Lemmas 3.10 and 3.11 we have

Ox (€5 (X)) = Z(X)N\{0} = Ox (Epear_p(X))
from which it follows that
EF(X) = Epear—p(X).

If X is non-o-compact, then any two elements of &5 (X) have a com-
mon upper bound while this is not the case for & ,,_p(X). To see

this, note that by Lemma 3.10 the set © x (&5 (X)) is closed under finite
intersections (note that the finite intersections are non-empty, as they
contain fX\oX and the latter is non-empty, as X is non-o-compact)
while there exist (at least) two elements in © x (&7} ,;_p (X)) with empty
intersection; simply consider X and X ]* , for some distinct 7,5 € I (we
are assuming the representation for X given in Notation 2.9). g

Project 3.19. Let X be a (locally compact paracompact) space and
let P be a (closed hereditary) topological property (of compact spaces
which is preserved under finite sums of subspaces and coincides with
o-compactness in the realm of locally compact paracompact spaces).
Explore the relationship between the order structures of (&5 (X), <)
and (gZZCal—P(X)7 S)
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