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ABSTRACT. This paper is concerned with the best proximity pair
problem in Hilbert spaces. Given two subsets A and B of a Hilbert
space H and the set-valued maps F : A — 28 and G : A9 — 240,
where A9 = {z € A : |lxr — y|| = d(A, B) for some y € B}, best
proximity pair theorems provide sufficient conditions that ensure
the existence of an z9 € A such that

d(G(zo), F(x0)) = d(A, B).

1. Introduction

Let (M,d) be a metric space and let A and B be nonempty subsets
of M. Let d(A, B) = inf{d(a,b) : a € A,b € B}. Let

By:={be B : d(a,b) = d(A, B) for some a € A},

and

Ap:={a€ A : d(a,b) =d(A, B) for some b € B}.
Let G : Ag — 240 and F : A — 2B be set valued maps. (G(x), F(z0)) is
called a best prozimity pair, if d(G(zo), F(x0)) = d(A, B). Best proxim-
ity pair theorems analyse the conditions on F';, G, A and B under which
the problem of minimizing the real valued function =z — d(G(z), F(z))
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has a solution. In the setting of normed spaces and hyperconvex metric
spaces, the best proximity pair problem has been studied by many au-
thors, see [1, 2, 3, 5, 7, 8|.

Let H be a Hilbert space and A, B C H. It is well-know that if A and
B are compact subsets of M, then there exist ag € A and by € B such
that d(A, B) = d(ag, bp). Therefore, in this case

d(A,B)=0& ANB#1.

Let M be a metric space and let M denotes the family of nonempty,
closed bounded subsets of M. Let A, B € M. The Hausdorff metric dg
on M defined by

dp(A,B) =inf{e >0: A C N(B) and B C N.(A)},

where N¢(A) denotes the closed e-neighborhood of A, that is, Ne(A) =
{r € M :d(x,A) <e€}. Let X and Y be topological spaces with C C Y.
Let G : X — 2Y be a set-valued map with nonempty values. The inverse
image of C' under G is

G (C)={zr e X :G(x)N B #0}.

A set-valued map F : A — 28 is said to be nonezpansive, if for each
r,y €A

du(F (@), Fy) < |z — y]l.
Given a nonempty closed convex subset A of a Hilbert space H, P4 will
always denote the nearest point projection of H onto A. We will use the
well-known fact that P4 is nonexpansive and so is continuous.

Lemma 1.1. ([5, Lemma 3.1]) Let A be a nonempty closed convex subset
of a Hilbert space H. If C and D are nonempty closed and bounded
subsets of H, then

dir(P4(C), PA(D)) < du(C, D).

Let (X, ||.]]) be a reflexive Banach space and A C X be nonempty,
closed, convex and bounded. It is well-known that for each x € X,
Pa(z) # (. Here we give the proof for the completeness. For each
neN,let A,(z) = {y € A:d(z,y) < d(z,A)+ L}. Notice that (A4, (z))
is a decreasing sequence of nonempty closed, convex bounded subsets of
the reflexive Banach space X, so by Smulina theorem we have [4, page
433]

Pa(x) = () Aulx) # 0.
n=1
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Lemma 1.2. ([5, Lemma 3.2]) Let X be a reflexive Banach space. Let
A be a nonempty bounded closed convex subset of X, and let B be a
nonempty closed convex subset of X. Then, Ay and By are nonempty
and satisfy

PB(AU) g Bo and PA(B()) g Ao.

Recall that a Banach space X is uniformly convez, if given € > 0 there
is a 0 > 0 such that whenever ||z|| = |ly|| = 1 and ||z — y|| > ¢, then
1752 < 1 - 4.

Theorem 1.3. ([6]) Let X be a uniformly convex Banach space, Let K
be a bounded, closed and convex subset of X, and suppose F : K — 2K
s a compact-valued, nonexpansive set-valued map. Then, F has a fized
point.

2. Main results

We first present a coincidence point theorem for nonexpansive set-
valued self maps.

Theorem 2.1. Let H be a Hilbert space and K be a closed, bounded
convez subset of H. Let F : K — 2K be a nonexpansive set-valued map
with nonempty compact values. Let G : K — 25 be an onto, set-valued
map for which G~ (C') is compact for each compact set C C K. Assume
that for each compact subsets C' and D of K

dr (G~ (C),G™ (D)) <dy(C,D).
Then, there exists a xo € K with

F(z0) N G(xg) # 0.

Proof. Since
F(zo) NG(xg) # 0 z90 € G (F(xo)) ={x € H: G(x) N F(xy) # 0}),

then, the conclusion follows, if we show that the set-valued map J(z) =
G*(F( )) : K — 2K has a fixed point. Since G is onto, then J(z) # 0.
For each x € K, since F(x) is compact, then J(x) = G~ (F(x)) is
compact. Now, we show that J is nonexpansive. For each x,y € K we
have
du(J(x), J(y)) = du(G™ (F(z)), G"(F(y))) <
A (F(x), F(y)) < |z =yl
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Therefore, J satisfies all conditions of Theorem 1.3 and so has a fixed
point. ]

Now, we obtain a best proximity pair theorem for nonexpansive set-
valued maps in Hilbert spaces.

Theorem 2.2. Let H be a Hilbert space. Let A be a nonempty bounded
closed convex subset of H, and let B be a nonempty closed convex subset
of H. Let F : A — 2B be a nonexpansive set-valued map with nonempty
compact values. Let G : Ay — 249 be an onto set-valued map for which
G~ (C) is compact for each compact set C C Ag. Assume that for each
compact subsets C' and D of Ag

dp(G—(C),G7 (D)) <dg(C,D).
Assume that F(Ag) C By. Then, there exists a xg € Ay such that
d(G(x0), F(z0)) = d(A, B).

Proof. By Lemma 1.2, Ay and By are nonempty. Let us show that
Ap is closed. To this end, let x,, € Ay be a convergent sequence, say,
Tn — x9 € A. Then, for each n € N, there exists y, € B such that
d(xp,yn) = d(A, B). Thus, {y,} is a bounded sequence in B (note that
{zn} is bounded). Since bounded subsets of a reflexive Banach space are
weakly sequentially compact [4, Theorem 28, page 68], then passing to
a subsequence, if necessary, we may assume that (y,) converges weakly,
say to yo € B. Since ||.|| is weakly lower semicontinuous, then we get

lzo = yoll < lim ||z, — yn|| = d(A, B).
n—oo

Therefore, ||xg — yol|| = d(A, B), and so xg € Ap. From Lemma 1.2,
P4(By) € Ap and by Lemma 1.1,

du(Pa(F(2)), Pa(F(y))) < du(F(x), F(y)) < [z =yl

Then, the map Pa(F(.)) : Ag — Ap is a nonxpansive set-valued map.
Moreover, Ag is a nonempty closed bounded convex subsets of H, and
for each © € Ap, Pa(F(z)) is a compact subset of Ag (note F(z) is
compact and Py is continuous). Hence, by Theorem 2.1 there exists a
xo € Ag such that

PA(F(CIZ())) N G(xo) 75 0.
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Let zg € Pa(F(x0)) N G(xp), then there exists yo € F(xg) so that zg =
P4, (yo). Since zg € Ag and yo € F(z9) C By, there exists ag € Ap such
that d(ag,yo) = d(A, B). Therefore,

d(A, B) < d(G(wo), F(a0)) < d(z0, F(x0)) <

d(Pay(y0), y0)) < d(ao, yo) = d(A, B)
Thus,
d(G(z0), F(x0)) = d(A, B).
O

Remark 2.3. Let A be a nonempty bounded, closed convexr subset of
H. Let G : Ag — Ag be an onto isometry. We show that G satisfies
all the conditions of Theorem 2.2. Let C' be a compact subset of Ag.
Since G is an isometry, then G~ (C) = G~1(C) is compact (note G~}
is isometry and so is continuous). Since G : Ay — Ag is isometry, then
dg(G=(C),G7 (D)) =dy(C, D), for compact subsets C and D of Ag.

If we take G = I, Theorem 2.2 reduces to Theorem 3.3 of Kirk, Reich
and Veeramani [5].

Theorem 2.4. Let H be a Hilbert space. Let A be a nonempty bounded
closed convex subset of H, and let B be a nonempty closed convex subset
of H. Let F : A — 2B be a nonexpansive set-valued map with nonempty
compact values. Assume that F(Ay) C By. Then, there ezists a xg € Ay
such that

d(zo, F(z9)) = d(A, B).
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