BEST PROXIMITY PAIR AND COINCIDENCE POINT THEOREMS FOR NONEXPANSIVE SET-VALUED MAPS IN HILBERT SPACES

A. AMINI-HARANDI

Communicated by Nezam Mahdavi-Amiri

ABSTRACT. This paper is concerned with the best proximity pair problem in Hilbert spaces. Given two subsets A and B of a Hilbert space H and the set-valued maps $F: A \to 2^B$ and $G: A_0 \to 2^{A_0}$, where $A_0 = \{x \in A: ||x - y|| = d(A, B) \text{ for some } y \in B\}$, best proximity pair theorems provide sufficient conditions that ensure the existence of an $x_0 \in A$ such that

$$d(G(x_0), F(x_0)) = d(A, B).$$

1. Introduction

Let (M, d) be a metric space and let A and B be nonempty subsets of M. Let $d(A, B) = \inf\{d(a, b) : a \in A, b \in B\}$. Let

$$B_0 := \{ b \in B : d(a, b) = d(A, B) \text{ for some } a \in A \},$$

and

$$A_0 := \{ a \in A : d(a,b) = d(A,B) \text{ for some } b \in B \}.$$

Let $G: A_0 \to 2^{A_0}$ and $F: A \to 2^B$ be set valued maps. $(G(x_0), F(x_0))$ is called a *best proximity pair*, if $d(G(x_0), F(x_0)) = d(A, B)$. Best proximity pair theorems analyse the conditions on F, G, A and B under which the problem of minimizing the real valued function $x \to d(G(x), F(x))$

MSC(2000): Primary: 47H09; Secondary: 41A65, 46B20.

Keywords: Best proximity pair, coincidence point, nonexpansive map, Hilbert space.

Received: 10 February 2010, Accepted: 27 July 2010.

^{© 2011} Iranian Mathematical Society.

230 Amini-Harandi

has a solution. In the setting of normed spaces and hyperconvex metric spaces, the best proximity pair problem has been studied by many authors, see [1, 2, 3, 5, 7, 8].

Let H be a Hilbert space and $A, B \subseteq H$. It is well-know that if A and B are compact subsets of M, then there exist $a_0 \in A$ and $b_0 \in B$ such that $d(A, B) = d(a_0, b_0)$. Therefore, in this case

$$d(A, B) = 0 \Leftrightarrow A \cap B \neq \emptyset.$$

Let M be a metric space and let \mathcal{M} denotes the family of nonempty, closed bounded subsets of M. Let $A, B \in \mathcal{M}$. The Hausdorff metric d_H on \mathcal{M} defined by

$$d_H(A, B) = \inf\{\epsilon > 0 : A \subseteq N_{\epsilon}(B) \text{ and } B \subseteq N_{\epsilon}(A)\},\$$

where $N_{\epsilon}(A)$ denotes the closed ϵ -neighborhood of A, that is, $N_{\epsilon}(A) = \{x \in M : d(x, A) \leq \epsilon\}$. Let X and Y be topological spaces with $C \subseteq Y$. Let $G: X \to 2^Y$ be a set-valued map with nonempty values. The inverse image of C under G is

$$G^{-}(C) = \{x \in X : G(x) \cap B \neq \emptyset\}.$$

A set-valued map $F:A\to 2^B$ is said to be nonexpansive, if for each $x,y\in A$

$$d_H(F(x), F(y)) \le ||x - y||.$$

Given a nonempty closed convex subset A of a Hilbert space H, P_A will always denote the nearest point projection of H onto A. We will use the well-known fact that P_A is nonexpansive and so is continuous.

Lemma 1.1. ([5, Lemma 3.1]) Let A be a nonempty closed convex subset of a Hilbert space H. If C and D are nonempty closed and bounded subsets of H, then

$$d_H(P_A(C), P_A(D)) \le d_H(C, D).$$

Let $(X, \|.\|)$ be a reflexive Banach space and $A \subseteq X$ be nonempty, closed, convex and bounded. It is well-known that for each $x \in X$, $P_A(x) \neq \emptyset$. Here we give the proof for the completeness. For each $n \in \mathbb{N}$, let $A_n(x) = \{y \in A : d(x,y) \leq d(x,A) + \frac{1}{n}\}$. Notice that $(A_n(x))$ is a decreasing sequence of nonempty closed, convex bounded subsets of the reflexive Banach space X, so by Šmulina theorem we have [4, page 433]

$$P_A(x) = \bigcap_{n=1}^{\infty} A_n(x) \neq \emptyset.$$

Lemma 1.2. ([5, Lemma 3.2]) Let X be a reflexive Banach space. Let A be a nonempty bounded closed convex subset of X, and let B be a nonempty closed convex subset of X. Then, A_0 and B_0 are nonempty and satisfy

$$P_B(A_0) \subseteq B_0$$
 and $P_A(B_0) \subseteq A_0$.

Recall that a Banach space X is uniformly convex, if given $\epsilon > 0$ there is a $\delta > 0$ such that whenever ||x|| = ||y|| = 1 and $||x - y|| \ge \epsilon$, then $||\frac{x+y}{2}|| \le 1 - \delta$.

Theorem 1.3. ([6]) Let X be a uniformly convex Banach space, Let K be a bounded, closed and convex subset of X, and suppose $F: K \to 2^K$ is a compact-valued, nonexpansive set-valued map. Then, F has a fixed point.

2. Main results

We first present a coincidence point theorem for nonexpansive setvalued self maps.

Theorem 2.1. Let H be a Hilbert space and K be a closed, bounded convex subset of H. Let $F: K \to 2^K$ be a nonexpansive set-valued map with nonempty compact values. Let $G: K \to 2^K$ be an onto, set-valued map for which $G^-(C)$ is compact for each compact set $C \subseteq K$. Assume that for each compact subsets C and D of K

$$d_H(G^-(C), G^-(D)) \le d_H(C, D).$$

Then, there exists a $x_0 \in K$ with

$$F(x_0) \cap G(x_0) \neq \emptyset$$
.

Proof. Since

 $F(x_0) \cap G(x_0) \neq \emptyset \Leftrightarrow x_0 \in G^-(F(x_0)) = \{x \in H : G(x) \cap F(x_0) \neq \emptyset\}$, then, the conclusion follows, if we show that the set-valued map $J(x) = G^-(F(x)) : K \to 2^K$ has a fixed point. Since G is onto, then $J(x) \neq \emptyset$. For each $x \in K$, since F(x) is compact, then $J(x) = G^-(F(x))$ is compact. Now, we show that J is nonexpansive. For each $x, y \in K$ we have

$$d_H(J(x), J(y)) = d_H(G^-(F(x)), G^-(F(y))) \le d_H(F(x), F(y)) \le ||x - y||.$$

232 Amini-Harandi

Therefore, J satisfies all conditions of Theorem 1.3 and so has a fixed point.

Now, we obtain a best proximity pair theorem for nonexpansive setvalued maps in Hilbert spaces.

Theorem 2.2. Let H be a Hilbert space. Let A be a nonempty bounded closed convex subset of H, and let B be a nonempty closed convex subset of H. Let $F: A \to 2^B$ be a nonexpansive set-valued map with nonempty compact values. Let $G: A_0 \to 2^{A_0}$ be an onto set-valued map for which $G^-(C)$ is compact for each compact set $C \subseteq A_0$. Assume that for each compact subsets C and D of A_0

$$d_H(G^-(C), G^-(D)) \le d_H(C, D).$$

Assume that $F(A_0) \subseteq B_0$. Then, there exists a $x_0 \in A_0$ such that

$$d(G(x_0), F(x_0)) = d(A, B).$$

Proof. By Lemma 1.2, A_0 and B_0 are nonempty. Let us show that A_0 is closed. To this end, let $x_n \in A_0$ be a convergent sequence, say, $x_n \to x_0 \in A$. Then, for each $n \in \mathbb{N}$, there exists $y_n \in B$ such that $d(x_n, y_n) = d(A, B)$. Thus, $\{y_n\}$ is a bounded sequence in B (note that $\{x_n\}$ is bounded). Since bounded subsets of a reflexive Banach space are weakly sequentially compact [4, Theorem 28, page 68], then passing to a subsequence, if necessary, we may assume that (y_n) converges weakly, say to $y_0 \in B$. Since $\|.\|$ is weakly lower semicontinuous, then we get

$$||x_0 - y_0|| \le \lim_{n \to \infty} ||x_n - y_n|| = d(A, B).$$

Therefore, $||x_0 - y_0|| = d(A, B)$, and so $x_0 \in A_0$. From Lemma 1.2, $P_A(B_0) \subseteq A_0$ and by Lemma 1.1,

$$d_H(P_A(F(x)), P_A(F(y))) \le d_H(F(x), F(y)) \le ||x - y||.$$

Then, the map $P_A(F(.)): A_0 \to A_0$ is a nonxpansive set-valued map. Moreover, A_0 is a nonempty closed bounded convex subsets of H, and for each $x \in A_0$, $P_A(F(x))$ is a compact subset of A_0 (note F(x) is compact and P_A is continuous). Hence, by Theorem 2.1 there exists a $x_0 \in A_0$ such that

$$P_A(F(x_0)) \cap G(x_0) \neq \emptyset.$$

Let $z_0 \in P_A(F(x_0)) \cap G(x_0)$, then there exists $y_0 \in F(x_0)$ so that $z_0 = P_{A_0}(y_0)$. Since $x_0 \in A_0$ and $y_0 \in F(x_0) \subseteq B_0$, there exists $a_0 \in A_0$ such that $d(a_0, y_0) = d(A, B)$. Therefore,

$$d(A, B) \le d(G(x_0), F(x_0)) \le d(z_0, F(x_0)) \le d(P_{A_0}(y_0), y_0) \le d(a_0, y_0) = d(A, B)$$

Thus,

$$d(G(x_0), F(x_0)) = d(A, B).$$

Remark 2.3. Let A be a nonempty bounded, closed convex subset of H. Let $G: A_0 \to A_0$ be an onto isometry. We show that G satisfies all the conditions of Theorem 2.2. Let C be a compact subset of A_0 . Since G is an isometry, then $G^-(C) = G^{-1}(C)$ is compact (note G^{-1} is isometry and so is continuous). Since $G: A_0 \to A_0$ is isometry, then $d_H(G^-(C), G^-(D)) = d_H(C, D)$, for compact subsets C and D of A_0 .

If we take G = I, Theorem 2.2 reduces to Theorem 3.3 of Kirk, Reich and Veeramani [5].

Theorem 2.4. Let H be a Hilbert space. Let A be a nonempty bounded closed convex subset of H, and let B be a nonempty closed convex subset of H. Let $F: A \to 2^B$ be a nonexpansive set-valued map with nonempty compact values. Assume that $F(A_0) \subseteq B_0$. Then, there exists a $x_0 \in A_0$ such that

$$d(x_0, F(x_0)) = d(A, B).$$

Acknowledgments

This research was in part supported by a grant from IPM (No. 89470016). The author was also partially supported by the Center of Excellence for Mathematics, University of Shahrekord.

References

[1] M. A. Al-Thagafi and N. Shahzad, Best proximity pairs and equilibrium pairs for Kakutani multimaps, *Nonlinear Anal.*, **70** (2009) 1209-1216.

234 Amini-Harandi

[2] A. Amini-Harandi, A. P. Farajzadeh, D. O'Regan and R. P. Agarwal, Best proximity pair theorems for continuous set-valuedmaps, Fixed Point Theory Appl., Vol. 2008, Art ID 607926.

- [3] A. Amini-Harandi, A. P. Farajzadeh, D. O'Regan and R. P. Agarwal, Coincidence point, best approximation, and best proximity theorems for condensing set-valued maps in hyperconvex metric spaces, Fixed Point Theory Appl., Vol. 2008, Article ID 543154.
- [4] N. Dunford and J. T. Schwartz, *Linear Operators*, Part I, General theory, With the assistance of William G. Bade and Robert G. Bartle, Reprint of the 1958 original, Wiley Classics Library, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1988
- [5] W. A. Kirk, S. Reich and P. Veeramani, Proximinal retracts and best proximity pair theorems, *Numer. Funct. Anal. Optim.* 24 (2003), No. 7-8, 851-862.
- [6] T. C. Lim, A fixed point theorem for multivalued nonexpansive mappings in a uniformly convex Banach space, Bull. Amer. Math. Soc. 80 (1974) 1123-1126.
- [7] S. Sadiq Basha and P. Veeramani, Best proximity pair theorems for multifunctions with open fibers, *J. Approx. Theory* **103** (2000) 119-129.
- [8] P. S. Srinivasan and P. Veeramani, On best proximity pair theorems and fixed-point theorems, [MR1954244 (2004a:47069)], Proceedings of the International Conference on Fixed-Point Theory and its Applications, *Hindawi Publ. Corp.*, Cairo (2003) 33-47.

A. Amini-Harandi

Department of Mathematics, University of Shahrekord, P.O. Box 115, Shahrekord, Iran

and

School of Mathematics, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5746, Tehran, Iran

Email: aminih_a@yahoo.com