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QUENCHING TIME FOR A NONLOCAL DIFFUSION
PROBLEM WITH LARGE INITIAL DATA
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ABSTRACT. We are concerned with the study of the following non-
local diffusion problem,

ur=J*xu—u+ f(u) in Qx(0,7T),

u=0 in (RY —Q)x(0,7),

u(z,0) =up(z) >0 in £,

where € is a bounded domain in RY with smooth boundary 99,
Jxu(z,t) = [on J(x — y)uly,t)dy, J : RY — R is a kernel
which is nonnegative, symmetric (J(z) = J(—z)), bounded and
Jan J(2)dz = 1 and f : (—o00,b) — (0,00) is a C' convex, in-
creasing function, lim,_; f(s) = oo, f; % < oo with b a positive
constant. The initial datum uo € C*(Q) is nonnegative in Q, with
luollee = SUPgecq [uo(z)| < b. Under some assumptions, we show
that if ||uo||eo is large enough, then the solution of the above prob-
lem quenches in a finite time, and its quenching time goes to that
of the solution of the differential equation,

& (8) = flalt), t>0, a(0)=|uollw,

as ||uo|loc tends to b. Finally, we give some numerical results to
illustrate our analysis.
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1. Introduction

Let Q be a bounded domain in R with smooth boundary 9. Con-
sider the following initial-boundary value problem,

(1.1) up=Jxu—u+ f(u) in Qx(0,7),

(1.2) u=0 in (RY —Q)x(0,7),

(1.3) u(z,0) =up(z) >0 in 9,

where J x u(z,t) = [pn J(z — y)uly,t)dy, J : RY — R is a ker-
nel which is nonnegative, symmetric (J(z) = J(—z)), bounded and
Jgn J(2)dz = 1 and f : (—o00,b) — (0,00) is a C! convex, increas-
ing function, lims . f(s) = oo, Ob% < oo with b a positive con-

stant. The initial datum ug € C'(Q) is nonnegative in Q and ||ug|lec =
Sup,cq |uo(z)| < b. Here, (0,T') is the maximal time interval on which
the solution u of (1.1)—(1.3) exists. The time T" may be finite or infinite.
If T is infinite, then we say that the solution u exists globally. If T is
finite, then the solution u develops a singularity in a finite time, namely,

li : -
Ty (- 1) oo = b

where |[u(-,t)]|cc = maxgeq |u(x,t)]. In the latter case, we say that
the solution u quenches in a finite time, and the time T is called the
quenching time of the solution u. Recently, nonlocal diffusion problems
have been the subject of investigations for many authors (see [3]-[8],
[11]-[16], [19]-[21], [23], [24], [35], [38], and the references cited therein).
Nonlocal evolution equations of the form

u = /R Iy, 1)~ ula, 1)dy,

and variations of it, have been used by several authors to model diffusion
processes (see [5], [11], [19], [20]). The solution u(x,t) can be interpreted
as the density of a single population at the point x, at the time ¢, and
J(x — y) as the probability distribution of jumping from location y to
location x. Then, the convolution J  u(x,t) = [pn J( Ju(y, t)dy is
the rate at which individuals are arrivmg to posmon x from all other
places, and —u(z,t) = — [pn J( Ju(z,t)dy is the rate at which they
are leaving location x to travel to any other site (see [19]). Solutions of
nonlinear parabolic equations (local diffusion) which quench in a finite
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time have been widely studied by many authors (see [9], [17], [18], [31],
and the references cited therein). Here, we are interested in the asymp-
totic behavior of the quenching time when the L norm of the initial
datum is large enough for the nonlocal diffusion problem described by
(1.1)-(1.3). Note that the determination of the quenching time is an
interesting question, and theoretically, it is not possible to obtain this
time. In the case of one dimensional space, if one constructs suitable
schemes, it is possible to obtain a good approximation of the quenching
time (see for instance, [34]). In [34], Nabongo and Boni showed that the
quenching time approaches that of the solution of a semidiscrete scheme
when the mesh size goes to zero. It is worth noting that the quenching
time of the semidiscrete scheme is the same as that of the solution of a
differential system and can be determined easily using standard meth-
ods. In the case of several dimensional spaces, the problem is generally
more complicated because of the geometry of the domain. However, in
certain cases, it is possible to approach the quenching time by that of
the solution of a certain differential equation. Our work was motivated
by the paper of Friedman and Lacey [22], where they considered the
following initial-boundary value problem,

u=cAu+g(u) in Qx(0,7),
u=0 on 00 x(0,T),

u(z,0) = up(z) in £,

where A is the Laplacian, g : [0,00) — (0,00) is a C! convex, increasing
function, with [ % < o0o. The initial datum ug is a positive and
continuous function in 2. Under some additional conditions on the
initial datum, they proved that if € was small enough, then the solution
u of the above problem blew up in a finite time, and its blow-up time

went to that of the solution of the following differential equation,

(1.4) o/ (t) = gla(t), t>0, a(0)= [ugllec,

as € tended to zero (we say that a solution blows up in a finite time if it
attains the value infinity in a finite time). Comparable studies can also
be found in [26] and [27]. In [26], ||uo||co is taken as a parameter. In this
case, it is shown that the blow-up time tends to that of the solution of a
certain differential equation when [|ug||s tends to infinity. In the same
way, in [33], Nabongo and Boni considered the initial-boundary value
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problem below,
ur =¢elu+ f(u) in Qx(0,7),

u=0 on 09Qx(0,T),

u(z,0) = up(z) in O,

where the initial datum ug € C1(£2) is nonnegative in €, L is an elliptic
operator and f is the same function given in the introduction of the
paper. They showed that when £ was small enough, then the solution
of the above problem quenched in a finite time, and its quenching time
went to that of the solution of the following differential equation,

(1.5) o () = fla(t), >0, a(0)=ug|loe,

as ¢ approached zero. To prove this result in the case where the initial
datum is not null, the idea consists of showing that the solution of the
above problem quenches in a small neighborhood where the initial datum
attains its maximum. To reveal that quenching occurs, the authors used
the method of Kaplan (see, [29]) where the eigenvalue introduced takes
large values. Here, we establish a similar result taking as a parameter
the L° norm of the initial datum. More precisely, in the case with
f(s) = (b—s)"P and p a positive constant, we show that, if b — ||ug||cc <
min{1, (26?)~1/P}, then the solution u of (1.1)-(1.3) quenches in a finite
time T obeying the following estimates,

(1.6)0<T —T,, < (% F1)(b — [Juollec)2P T + o((b — [[uo||ss)2PHY),

_ (b—Jlugllso)?t?
p+1
the differential equation defined as follows:

L7 QM) =(b-a)?, t>0, a0)=]uol.

To prove this result, we take the advantage that it is possible to mod-
ify the method of Kaplan and to adapt this modified method to our
problem showing that the solution quenches in a small neighborhood.
Contrary to the method used by Nabongo and Boni in [33], here, we
use a bounded eigenvalue which allows us to obtain the estimates given
in (1.6) for any positive constant p. It is worth mentioning that it is
not possible to obtain the estimates as those given by (1.6) in the case
of local problems, that is, if one considers for instance the following
initial-boundary problem,

(1.8) uw=Lu+(b—u)"? in Qx(0,7T),

where T, is the quenching time of the solution «(t) of
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(1.9) u=0 on 00Qx(0,T),

(1.10) u(z,0) = up(z) in Q.

In fact, when p takes small positive values, it is not possible to control
the effect of the values of the first eigenvalue of the operator L which
takes large values in a small neighborhood. Some numerical experiments
in the last section have confirmed this assertion. The remainder of the
paper is organized as follows. In Section 2, we prove the local existence
and uniqueness of the solution of (1.1)—(1.3). We also give some results
about the maximum principle for nonlocal problems. In Section 3, under
some conditions, we show that the solution u of (1.1)-(1.3) quenches in
a finite time, and its quenching time goes to that of the solution of the
differential equation defined by (1.7) as ||ug||s tends to b. Finally, in
Section 4, we give some numerical results to illustrate our analysis.

2. Local existence

Here, we establish the existence and uniqueness of the solution of
(1.1)-(1.3) in 2 x (0,T") for small T. We also state some results about
the maximum principle for nonlocal problems to be used subsequently.
Let top > 0 be fixed, and define the function space Y, = {u ;u € C(]0, o],
C(Q))} equipped with the norm defined by [[ully;;= maxo<i<ty [u(-; )/ 00s
for u € Yy,. It is easy to see that Y}, is a Banach space. Introduce the

set Xy, = {u;u € Yy, [lully,, < bo}, where by = Huo”%“’. We observe
that X;, is a nonempty bounded closed convex subset of Y;,. Define the
map R as follows:

R : Xto e Xto,

R(v(z,t)) = uo(x)—i—/o /RN J(a:—y)(v(y,s)—v(m,s))dyds—i—/o f(v(z,s))ds,
where,
v(z,t) =0, for zeRN —Q.

We have the following result.

Theorem 2.1. Assume ug € C(2). Then, R maps Xy, into X, and R
is strictly contractive if to is appropriately small relative to ||ug||co-
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Proof. We get
[R(v(z,t)) —uo(x)] < 2[|vllv; t + f(l[vllv;, )t
which implies [[R(v)l|y;, < [[uollso + 2boto + f(bo)to- If
bo — J|uolle
2.1 to < 20— 1U0llec
@1 ® = 20 + f(bo)
then
[1R()]lv;, < bo-

Therefore, if (2.1) holds, then R maps X, into X;,. Now, we prove that
the map R is strictly contractive. Let v,z € Xy,. Setting a =v — z, we
discover,

(R) =R <1 [ [ 3= )(al.s) = ate.s)duds
+| [ ((ota,9) = el )i

Use Taylor’s expansion to obtain:

(R(v) = R(2)) (@, )] < 2]lallviyt + tllv = 2]y, £ (1Bllvi,):
where 3 is a value between v and z. We deduce,
IR(v) = R(2)lv;, < 2y, to + tollv = 2lx, f (18Ilvz,);
which implies:
IR@) = Ry, < (2t +tof (40)) llo = 2l
If tg <

1
— 4+2f'(bo)’
that R(v) is a strict contraction in Y}, and the proof is complete. U

then [[R(v) — R(2)ly;, < v — z|ly,,- Hence, we see

It follows from the contraction mapping principle that for appropri-
ately chosen tp, R has a unique fixed point u € Y;,, which is a solution
of (1.1)—(1.3).

If ||lully,, < b, then taking as initial datum u(-,t) € C(Q) and arguing
as before, it is possible to extend the solution up to some interval [0, 1),
for certain t1 > to.

Now, let us give some results about the maximum principle for nonlocal
problems. The following lemma is a version of the maximum principle
for nonlocal problems.
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Lemma 2.2. Let a € C°(Q x [0,T)) and let u € CO1(Q x [0,T)) satisfy
the following inequalities,

ur — /]RN J(z —y)(u(y,t) —u(z,t))dy + a(z, t)u(z,t) >0 in Qx(0,7),

w(z,t) >0 in (RY —Q)x (0,7),

u(z,0) >0 in Q.
Then, we have u(z,t) >0 in Q x (0,T).

Proof. Let Ty < T. Since a(x,t) is bounded in Q x [0,Tp], let A
be such that a(z,t) — A > 0 in Q x [0,Tp]. Introduce the function
z(x,t) = eMu(x,t) and let m = min, .6 4e0.7] z(x,t). Then, there exists
(w0,t0) € Q x [0,Tp] such that m = z(zo,t0). If 29 € RY — Q, then
m > 0. If 29 € Q, then we get z(xg,t0) < z(xg,t) for t < to and
z(xo,t0) < 2(y,to), for y € Q, which implies:

(2.2) zt(z0,t0) <0,
and
(2.3) /R (o~ 9)(={y to) — =(av, o))y > 0.

Using the first inequality of the lemma, it is not hard to see:

oo to) = [ Tlao = 9)(=(0.t0) = (oo t0))dy

+(a(zo,to) — A)z(zo,t0) > 0.

It follows from (2.2) and (2.3) that (a(xo,to) — A)z(zo,to) > 0, which
implies z(zo,%0) > 0, because a(zo,tp) — A > 0. We deduce u(z,t) > 0
in £ x [0, Tp], which leads us to the result. O

A direct consequence of the above result is the following comparison
lemma.

Lemma 2.3. Let u,v € C%1(Q x [0,T)) be such that
w= [ I = o)l )~ ule,O)dy — flulat) = v

- [, 7@ = ot = o)y — ol ) in 2 x 0.7,
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u(z,t) > v(x,t) in (RN —Q)x(0,7),

u(z,0) > v(z,0) in Q.
Then, we have u(z,t) > v(x,t) in Q x (0,T).

Proof. Let z(x,t) = u(z,t) —v(z,t) in RY x [0,T). Applying the mean
value theorem, a routine computation reveals,

zt — /RN J(x —y)(z(y,t) — z(x,t))dy + f/(f(z,t))z(x,t) >0
in Qx(0,7),
2(z,t) >0 in (RN —Q)x (0,7),

z(z,0) >0 in €,

where £(z,t) is an intermediate value between u(x,t) and v(x,t). Use
Lemma, 2.2 to complete the rest of the proof. ([l

3. Quenching times

Here, we suppose that f(s) = (b — s)™P with p a positive constant.
Under some hypotheses, we show that if the L° norm of the initial
datum is large enough, then the solution u of (1.1)-(1.3) quenches in a
finite time, and its quenching time goes to that of the solution of the
differential equation defined by (1.7) as ||ug|/~ tends to b.

Now, let us state our result on the quenching time.

Theorem 3.1. If b — ||lug|loc < min{1, (b2P)~Y/PY, then the solution
u of (1.1)-(1.8) quenches in a finite time T which obeys the following
estimates,

b2P
05T~ Ty < (27 1) (0= ol + 0l(b ol

= 1
where T, = % is the quenching time of the solution «(t) of

the differential equation defined by (1.7).
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Proof. Since (0,7) is the maximal time interval on which u exists, then
our goal is to prove that 7' is finite and obeys the above inequalities. Let
a € Q be such that ug(a) = ||ug|/eo. Due to the fact that uyg € C1(€),
using the mean value theorem and the triangle inequality, there exists
6 > 0 such that

(81) uo(w) > lluolloe — (b — luolloc)”*' for x € B(a,8) C O,

where B(a,d) = {z € RY; ||z —a| < 6}. Here, |.|| stands for the
Euclidean norm in RY. Consider the following eigenvalue problem,

32) [ I 0e) - pla)dy = ~Aspla) i Blad),

(3.3) o(x)=0 in RY — B(a,0),

(3.4) e(r) >0 in B(a,0).

We know that the above problem admits a solution (¢, As) such that 0 <
As < 1 (see [23] and [24]). We can normalize ¢ so that [pn ¢(x)de = 1.
Let w be the solution of the following initial-boundary value problem,

wi= [ I =) t) = wla,)dy — fluw(a) =0

(3.5) in B(a,d) x (0,7%),
(3.6) w(z,t) =0 in (RN — B(a,d)) x (0,T%),
(3.7) w(z,0) =up(x) in B(a,d),

where (0,7%) is the maximal time interval of existence of w. Since the
initial datum ug(z) is nonnegative in B(a,d), we deduce from Lemma
2.2 that w is also nonnegative in B(a, d) x (0, 7). Introduce the function

v(t) by

u(t) = /RN o(x)w(z,t)dz for te[0,TF).

Take the derivative of v in ¢ and use (3.5) to obtain:

v = [ o ([ 7= nutod) oo

+ flw(z,t))p(z)de.
RN
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From Fubini’s theorem, we have,

/RN #(@) (/RN J(z = y)w(y, t)dy) da
- /RN w(y, 1) </RN J(x — y)w(x)d:lg) dy.

Since the kernel J is symmetric, then we observe that the term on the
right hand side of the above equality is [pn w(y, t) (Jan J(y — 2)p(2)dz) dy.
It follows from (3.2) that

/RN plx) (/RN J(z = y)uwly, t)dy) dr = /RN w(y, t)(e(y) = Asp(y))dy,

which implies:

/RN ¢(z) </RN J(x — y)w(y,t)dy> dz = v(t) — Asu(t).

Hence, we deduce:
V'(t) = —dsv(t) + fw(z,t))p(z)dx for te (0,T).
RN

Due to Jensen’s inequality, we arrive at
V'(t) > —Asv(t) + f(v(t)) for te (0,TF).
Obviously, we have,
V() > (b—v(t) P (1 —bb—uv(t)P) for te (0,T%),
because 0 < A\s < 1 and 0 < v(t) < b, for t € (0,7%). Since v(0) >
|0 loo — (b — |luo]loo)PT?, then we see:
b—v(0) < b~ Jluolloc + (b — [[uolec)"* < 2(b — [|uol|o),
which implies 1 — b(b —v(0))? > 1 — b2P(b — ||ug||oc )P > 0. Therefore, we
have,
(3.8) v (0) > (b —v(0)) (1 = b(b — v(0))?) > 0.
We deduce that v'(t) > 0, for t € (0,7%). In fact, suppose that there
exists to € (0,7%) such that v'(t) > 0, for ¢t € (0,tp), but v'(tg) = 0. We
observe that v(tg) > v(0). Hence, we have,
0="1'(tg) > (b—v(ty)) P (1 — b(b—v(0))?) >0,
which is a contradiction. Consequently, we get
V() > (b—v(t) P (1 —bb—0v(0)P) for te(0,TF),
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because v(t) > v(0), for t € (0,7*). Due to the fact that (b — v(0))? <
2P(b — ||uo|leo )P, We arrive at
V() > (b—v(t) " (1= b2°(b — [luollc)?) for ¢ € (0,77).
This estimate may be rewritten in the following manner,
(b—v)Pdv > (1 —b2P(b — |luo|lec)?) dt  for t e (0,77).
Integrate the above inequality over (0,7™) to obtain:
(b —v(0))*
— > (1-02°(b— o)) T,
P > ( (0 — [uollsc)?)
which implies:
(b —v(0))P+!
~ (p+ 1)1 = b2°(b — [Juolleo)?)
Since v(0) > [|uolloo — (b — [Juo]|oo)PT, then we get
o~ (0= uolloo + (b — [luolloc)”*H)P*
— (p+ 1)L = 52°(b — Jluolleo)?)
We deduce that w quenches in a finite time because the quantity on the
right hand side of the above inequality is finite. On the other hand, since

the initial datum wug is nonnegative in {2, from Lemma 2.2 we know that
w is also nonnegative in 2 x (0,7"), which implies:

w= I =)o)~ ule.0)dy = (6= u(a )
> wy — /]RN J(x —y)(w(y,t) — w(z,t))dy

—(b—w(x,t))? in B(a,d) x (0,T%),
u(z,t) > w(z,t) in (RN — B(a,d)) x (0,T,),

u(z,0) > w(xz,0) in B(a,d),
where T, = min{7’,7*}. We deduce from Lemma 2.3 that
u(z,t) > w(z,t) in B(a,0) x (0,T).
This implies that T° < T*. Indeed, suppose that T' > T™*. We find,
[u(, T*) oo = [ (-, T7)|loc = b,
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which is a contradiction because (0,7) is the maximal interval time of
existence of the solution u. We conclude:

(b — lluolloo + (b — JJuolloc)? )P+
(p+ 1)1 = 2P(b — [0 )?)
On the other hand, setting

2(z,t) = a(t) in RN x[0,T)),

(3.9) T<T" <

it is not hard to see:

a—/‘J@—yxa%w—zwxww—fuwxnzo i Qx (0,T),
RN

2(z,t) >0 in (RY —Q) x (0,Ty,),

z(x,0) > u(z,0) in Q.
Lemma 2.3 implies:
0 <u(z,t) < z(w,t)=at) in Qx(0,T)),
where T = min{T, T, }. It follows that T' > T,,,. Indeed, suppose that
T < Ty,, which implies:
[u(, T oo < (T) <.

But, this is a contradiction because (0,7") is the maximal time interval
of existence of the solution u. Hence, we have,

(b — lluol|so)?*!
(p+1)
Apply Taylor’s expansion to obtain:

(b lluollse + (b= [luolloc)FHPF!

(3.10) T>T,, =

= (b= lluollee)”™" + (p + 1)(b = lluolloc) ™ + 0((b = [luo o)1),

and
1
1= 02(b — [Juol|oo)?

Use (3.9), (3.10) and the above equalities to complete the rest of the
proof. O

— 14 527(b — Juolloo)? + o((5 — Iluolloc)?).
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Remark 3.2. If Theorem 3.1 holds, then we observe:

T
07— =1=< (02 +p+ 1)~ Jluollee)” + o((b — |luolleo)?)-

uo

We deduce that #- goes to one when |[ug|/e goes to b.
1[.0

4. Numerical results

Here, we give some computational results to confirm the theory es-
tablished in the previous section. We consider the problem (1.1)—(1.3)
in the case where Q = (—3,3), f(u) = (1 —u)™P, up(z) = asin(mrx) with
a€(0,1),p>0,

1 .
_ g itz <2,
‘](x)_{o if || > 2.

We start by the construction of an adaptive scheme as follows. Let [
be a positive integer and h = % Define the grid x; = ih, —1 <1 < 1,
and approximate the solution u(x,t) of the problem (1.1)-(1.3) by the
solution U, ,(ln) = (UST;), LU I(n))T of the following discrete equations,

(n+1) ) I

vt S

A N hd (i - z)(U —U™M)
=1

+1 U™y, —(I-1)<i<I-1

Y

v =0, UM =o,

Ul® = asin(rz;), —I<i<I,

)

where n > 0. It is easy to check that the condition of stability of the
above scheme is given by At, < m. Due to the fact that the
kernel J is bounded, one sees that this condition is not restrictive in
comparison with the condition of stability of local parabolic problems
given generally by At,, < %2 (see [33] and [34]). In order to permit the
discrete solution to reproduce the properties of the continuous one when
the time ¢ approaches the quenching time T, we need to adapt the size
of the step so that we take

4

At,, = min{6+h,

R2(1 = U [lo)? 1,
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where HU}(Ln)HOO = SUp_j<i<s \Ui(n)]. Note that the restriction on the
time step ensures the nonnegativity of the discrete solution.

It is important to point out that the first condition on the time step is
obtained by noting that ||.J|| = 1. Due to this condition, which is not
restrictive, one may weaken the factor h? on the second condition taking
h® with « a nonnegative constant. The use of this kind of restriction
may provoke instabilities in the case of local diffusion problems.

We need the following definition.

Definition 4.1. We say that the discrete solution U}(L”) of the explicit

scheme quenches in a finite time if lim, .o ||U,(1n) loo = 1 and the series
> oo2 o Aty converges. The quantity » 2 Aty is called the numerical

quenching time of the discrete solution U f(Ln).

In the following tables, in rows we present the numerical quenching
times, the numbers of iterations, CPU times and the orders of the ap-
proximations corresponding to meshes of size 16, 32, 64, 128. We take,
for the numerical quenching time, ¢, = Z;‘;& At;, which is computed
at the first time when

|t — tn| < 10716
The order (s) of the method is computed by

o — 108((Tun — Top) /(T2 — T))
log(2) '

Numerical results for a = 0.9, p =1 are given in Table 1.

Table 1: Numerical quenching times, numbers of iterations, CPU
times (seconds) and orders of the approximations obtained by
the explicit Euler method.

I tn n CPU time | s
16 | 0.005044 | 1648 52 -
32 | 0.005033 | 5890 733 -
64 | 0.005023 | 10014 | 4189 0.14
128 | 0.005014 | 122120 | 11356 0.15
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Numerical results for ¢ = 0.95, p =1 are given in Table 2.

Table 2: Numerical quenching times, numbers of iterations, CPU
times (seconds), and orders of the approximations obtained by
the explicit Euler method.

I tn n CPU time | s
16 | 0.001257 | 1470 | 47 -
32 10.001255 | 5176 | 582 -
64 | 0.001254 | 16206 | 4114 0.99
128 | 0.001253 | 58582 | 11273 0.01

Remark 4.2. If we consider the problem as defined by (1.1)—(1.3) in the
case with the initial datum wug(x) = 0.9sin(7z) and the reaction term
f(u) = (1 —u)~!, it is not hard to see that the quenching time of the
solution of the differential equation defined by (1.7) equals 0.005. We
observe from Table 1 that the numerical quenching time is approximately
0.005. with the initial datum ug(x) = 0.95sin(zxm) and the reaction term
f(u) = (1 —u)~!, we find that the quenching time of the solution of the
differential equation defined by (1.7) equals 0.00125. We discover from
Table 2 that the numerical quenching time is approximately 0.00125.
These results have been proved in Theorem 3.1.

Remark 4.3. Consider the following initial-boundary value problem,

up = Ugy + (1 —u)"? in (=3,3) x (0,7,
u(=3,t) =0, u(3,t)=0, te(0,7),

u(z,0) = asin(nzx), =z € (-3,3),

where a = 0.95 > 0. The discretization of the above problem leads us to
the scheme below,

1

Aty h? ’
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(0) . . .
U/ =asin(mih), —1<i<I,

where At, = min{% h2(1 — [|U{™]| )71}
We find the following results as shown in Table 3.

Table 3: Values of the exponent, Numerical quenching times, Nu-
merical quenching times for ODE defined in (1.7) .

p | Numerical quenching time | Quenching time of the ODE in (1.7)
1| 2.3780e-3 1.2500e-3
2 | 4.2516e-5 4.1666e-5
3 | 1.5647¢-6 1.5625¢-6
4 16.2510e-8 6.2500e-8

In view of the above results, we note that when p = 1 or 2, the
quenching time of the above problem does not approach that of the
solution of the differential equation defined by (1.7).
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