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MODIFIED HALPERN ITERATION OF
ASYMPTOTICALLY NON-EXPANSIVE MAPPINGS
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Communicated by Mohammad Sal Moslehian

ABSTRACT. For an asymptotically non-expansive self-mapping 7T,
we will prove the strong convergence of {z,} defined by

Tn+1 = (l_an_ﬂn)wn"‘anu"‘ﬁnTnmn, Int+1 = ocnu—l—(l—an)T"xn,
whenever {8}, {an} C (0, 1) satisfy (C1) lim an =0, (C2) Y an
kn —

= o0, (C3) lim 1_ 0 or (C4) io: (kn — 1) < 400. As an

n—oo n n=
application, we also establish the strong convergence of the viscosity
approximation schemes with a contraction f given by

Tn41 = anf(xn) + (1 - an)Tnxn

and
Tn4+1 = (1 — Qp — ﬂn)xn + anf(-'rn) + ﬂnTnl'n.

1. Introduction

Throughout this paper, a Banach space E will always be over the real
scalar field. We denote its norm by || - || and its dual space by E*. The
value of z* € E* at y € E is denoted by (y,z*). Let F(T') be the set of
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all fixed points of a mapping T, that is, F(T) ={z € E: Tz = x}, and
let N denote the set of all positive integers.

Let K be a nonempty closed convex subset of E. A mapping T :
K — K is said to be asymptotically non-expansive if for each n > 1,
there exists a nonnegative real number k,, satisfying nh_)n(f)lo k, = 1 such

that
|T"x — T"y|| < knl|lz —y|l, Vz,y € K;

when k, =1, T is called non-expansive.

The concept of asymptotically non-expansive mapping, a natural gen-
eralization of the important class of non-expansive mappings, was intro-
duced by Goebel and Kirk [10] in 1972. Furthermore, Goebel and Kirk
also showed the existence of a fixed point of the asymptotically non-
expansive mapping in uniformly convex Banach space E. Kirk et al.
[16] extended this result to a reflexive Banach space E with the fixed
point property for non-expansive mappings. Subsequently, considerable
research works have been devoted to the approximation of fixed point of
asymptotically non-expansive mapping (see, e.g., [3, 4, 6-8, 10, 16, 25,
34-37, 41-43, 46, 47] and the references contained therein).

In 1967, Halpern [12] (v = 0) was the first who introduced the fol-
lowing iteration scheme for a nonexpansive mapping 7', referred to as
Halpern iteration, for u,xg € K, ay, € [0, 1],

(1.1) Tnt1 = apu+ (1 — ap)Txy, VYV n>0.

Subsequently, considerable research efforts, within the past 40 years
or so, have been devoted to studying strong convergence of this scheme
for approximating fixed points of 7" with various types of additional
conditions. For examples, see Lions [13], Wittmann [51], Reich [19-23]
Shioji and Takahashi [40], Song [27], Song and Chen [29-32], Song and
Xu [33], Suzuki [38, 39], Takahashi and Ueda [44].

The Halpern iteration is employed by Chang et al. [7] for asymptoti-
cally non-expansive mapping T, referred to as modified Halpern iteration,
for u,zg € K, o, € [0, 1],

(1.2) Tni1 = apu+ (1 — )T 2y, VY n>0.
They showed the result.

Theorem 1.1. ([7, Theorem 2])Let E be a real Banach space with
a uniformly Géteauz differentiable norm, K a nonempty closed convex
subset of E and T : K — K an asymptotically non-expansive mapping
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with a sequence ky and F(T) # 0. Let 3 (k, — 1) < 400 and {an}
n=0

be a real sequence in (0,1) satisfying the conditions: lim o, = 0 and
n—oo

o
> ap =00. Let {z,} be the iterative sequence defined by (1.2). For a
n=0
given u € K, define a sequence of contractive mappings S, : K — K by

t t
Sp(z)=(1—-)u+ Tz, z€ K, n>1,
kn kn
where lim t, =1 and k2 —1 < (1 — ,i—”)Q,Vn < ng. Let z, be the unique
n—oo n
fized point of Sy; i.e.,
t t
(1.3) Zn = Sn(2n) = (1 = 2u+ —T"2,.
kn kn

If

lim ||z, —Tz,| =0
n—oo

and {z,} converges strongly to some z € F(T'), then the sequence {z,}
converges strongly to z if and only if {x,} is bounded.

In 2000, Moudafi [15] introduced the following viscosity approxima-
tion method with a contraction f for a non-expansive mapping 7":

(1.4) Tnt1 = anf(an) + (1 — an)Tay,,

and proved that {x, } converged to a fixed point p of T" in a Hilbert space.
Xu [48] proved that under certain appropriate conditions on {ay,}, {zn}
converged strongly to a fixed point of 7', a uniformly smooth Banach
space which solved some variational inequality. Several mathematicians
studied the strong convergence of the viscosity approximation method to
some (common) fixed point of a non-expansive mapping (finite or infinite
family). For examples, see [14, 26, 28-31, 33, 38]. Recently, the viscos-
ity approximation method is extended by Shahzad and Udomene [36]
to develop new iterative schemes for an asymptotically non-expansive
mapping. They proved the following result.

Theorem 1.2. ([36, Theorem 3.3])Let E be a real Banach space with a
uniformly Gateauz differentiable norm possessing uniform normal struc-
ture, K a nonempty closed convex subset of E, T : K — K an asymp-
totically non-expansive mapping with a sequence ky, F(T) # 0, and f :

o0
K — K a contraction with constant o € [0,1). Let > (k,—1) < 400 and
n=0
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{tn} be a real sequence in (0,&,) satisfying the conditions: lim t, =1,
n—oo

(1- a)kn 1
—a ' kn

Z tn(1 —t,) = oo and hm kfin = 0, where &, = mln{

For an arbitrary xo € K, let the sequence {x,} be iteratively deﬁned by
t t
(1.5) Tpi1 = (1 — ) f(xn) + T 2.

K, ko,
Then,
(i) for each n > 0, there is a unique z, € K satisfying (1.3).
If in addition, nlLII;O |zn — T2yl = 0 and nh_)n(a)o |zn — Ty || = 0, then
(ii) the sequence {xy} converges strongly to the unique solution of the
variational inequality,

(1.6) (I =fp, J(p—2")) <0, Vz* e F(T).

Very recently, Ceng et al. [5] and Ceng et al. [6] considered the follow-
ing viscosity approximation scheme for a finite family of asymptotically
non-expansive mappings {7;}

1 1-1,
1. nt1 =1 ——)zp T”
(A7) = (= ) 2 ) +
where > (k, — 1) < 400 and {t,} is a real sequence in (0,&,)(§, =
n=0
mm{(1 a)a e ) satisfying the conditions:

limtnzl,Z(l—t) oo and hm fnl =0,

n—oo n=0 n—tn
and r, = n mod N, with the mod functlon taking values in the set
{1,2,...,N}. Ceng et al. [5] and Ceng et al. [6] showed that if

lim ||z, — Tjx,|| = 0 for each ¢ € {1,2,..., N}, then {z,} converged
n—oo

strongly to the unique solution of the variational inequality (1.6) in a
real Banach space with uniformly Gateaux differentiable norm possess-
ing uniform normal structure and in a real Banach space with a weakly
continuous duality mapping J,,, respectively.

Here, for an asymptotically non-expansive self-mapping T', we will
prove that the sequence {z,} defined by (1.2) converges strongly to a
fixed point of T, whenever nlLIl’olo‘|$n — Txy,|| = 0 and {ay,} C (0,1)
satisfies the following conditions:

(C1) lim «, =0,

n—oo

(C2) > ay = o0,
n=0
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n 1 s
either (C3) lim F =0or (C4) > (kn—1) < +o0.
n—oo Qi n=0

Furthermore, we show the strong convergence of {x,} defined by
(1.8) Tnt1 = (1 —ay — Bp)zn + aqu + BTy,

when lim ||z, — Tz,|| =0, {8,} C (0,1) and {a,,} is a real sequence in
(0, 1) satisfying the conditions (C1), (C2) and (C3) or (C4).

As an application, we also establish the strong convergence of the
viscosity approximation scheme with a contraction given by

(1.9) Tpt1 = anf(an) + (1 — an) Tz,
and
(1.10) Tyl = (1 —apn — Bn)zn + anf(zn) + BTy

where f is a contractive self-mapping.
2. Preliminaries and basic results

In the proof of our main results, we need the following definitions and
results.

By a gauge function we mean a continuous strictly increasing function
¢ : [0,00) — [0,00) such that ¢(0) = 0 and lim ¢(r) = oco. The
T—00

mapping J, : £ — 2" defined by
Jo(x) ={f € E% (. f) = |=llIIfIl, If]l = ez}, Vo € E}

is called the duality mapping with gauge function . In particular, the
duality mapping with gauge function ¢(t) = t, denoted by J, is referred
to as the normalized duality mapping. Browder [1] initiated the study of
certain classes of nonlinear operators by means of the duality mapping
Jo.

‘pFollowing Browder [1], we say that a Banach space E has a weakly
continuous duality mapping if there exists a gauge ¢ for which the duality
map J,, is single-valued and weak-weak™ sequentially continuous; that
is, if {z,,} is a sequence in E weakly convergent to a point x, then the
sequence Jo,(z,) converges weak* to J,(x). It is known that I (1 < p <
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o0) has a weakly continuous duality map with gauge ¢(t) = tP~!. Set

B(t) = /O o(r)dr,t > 0.

Then,
Jo(x) = 00(||z]]),z € E,
where 0 denotes the subdifferential in the sense of convex analysis.
The first part of the following lemma is an immediate consequence of

the subdifferential inequality and the proof of the second part can be
found in [2, Theorem 5]; see also [9, 34].

Lemma 2.1. Assume E has a weakly continuous duality mapping J,
with gauge @.
(i) For all x,y € E, there holds the inequality,

O([lz +yll) < @(ll])) + (v, Jo(z + ).

(ii) If a sequence {x,} in E is weakly convergent to a point x, then
there holds the identity,

lim sup (||, — y||) = limsup &([lzn — z()) + S([ly — ),
n—o00 n—00

forallx,y € F.

If C is a nonempty convex subset of a Banach space ¥ and D is a
nonempty subset of C, then a mapping P : C' — D is called a retraction
if P is continuous with F(P) = D. A mapping P : C — D is called
sunny if

P(Px +t(x — Px)) = Px, Vx € C,
whenever Pz +t(x — Px) € C'and t > 0. A subset D of C' is said to be
a sunny non-expansive retract of C' if there exists a sunny non-expansive
retraction of C onto D; for more details, see [19, 24, 45]. The following
lemma is well known [24, 45].

Lemma 2.2. Let C' be nonempty convex subset of a smooth Banach
space E, 0 # D C C and P : C — D a retraction. Then, P is both
sunny and non-expansive if and only if there holds the inequality,

(2.1) (r — Px,J(y — Px)) <0, forallz € C andy € D,

where J is the normalized duality mapping associated with the gauge
©(t) = t. Hence, there is at most one sunny non-erpansive retraction
from C onto D.
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Note that the inequality (2.1) is equivalent to the inequality,
(2.2) (x — Px,J,(y — Px)) <0, forallz € C and y € D,

where ¢ is an arbitrary gauge. This is because there holds the relation,

o)
o) = g

Let S(E) := {z € E;||z| = 1} denote the unit sphere of a Ba-

nach space E. E is said to have: (i) a uniformly Gateauz differentiable
|Iw+tytH—H$||

J(x),Vx # 0.

norm, if for each y in S(F), }iH(l) is uniformly attained for
x € S(E); (i) a uniformly Fréchet differentiable norm (we also say
that E is uniformly smooth) if the above limit is attained uniformly for

(z,y) € S(E) x S(E). The modulus of convexity of E is defined by

) rT+y
dn(e) = int (1 — I <1y <1, ey 2 <,

for each € € (0,2]. A Banach space E is said to be uniformly convex if
0r(e) >0, for all € € (0,2]. If F is uniformly convex, then
T+Y

(2.3) |52 < rft =62,

for every z,y € E with ||z|| <, |ly|| <r < R, and ||z —y|| > > 0 ([45,
Theorem 4.1.4, pp. 93-98]). We also need the demiclosedness principle
for asymptotically non-expansive mappings.

Lemma 2.3. (Cho et al. [4, Theorem 1.6]) Let K a nonempty closed
convex subset of a uniformly convexr Banach space E, and T : K — K
an asymptotically non-expansive mapping. Then, I —T is demiclosed at
0; i.e., if x, — = weakly and x, — Txy — 0 strongly, then x = Tx.

Quite recently, Song [25] essentially proved the following result.

Lemma 2.4. (Song [25, Proposition 2.4])Let K be a nonempty closed
convex subset of a uniformly convexr Banach space E. Suppose that T :
K — K is an asymptotically non-expansive mapping with k,. Suppose
that for the bounded sequence {x,} in K, there exists a subsequence
{zn, } satisfying one of the two conditions:

1 LR
(i) lim ||z, — STz, | = 0 and h(z) = limsup ||z, —
k—o0 ng+1 ;5 k—o0

2|2, Vz € K.
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e | .
(11) im ||y, +1 — YTz, || =0 and h(z) = limsup ||y, +1 —
k—o0 ng+ 1= k—oo

z||?, Vz € K.
Then, there exists a unique x € K such that

h(z) = inf h(z) and x = Tx.
zeEK

Lemma 2.5. (Song [25, Lemma 3.1]) Let K be a nonempty closed
conver subset of a smooth Banach space E. Suppose that T : K — K s
an asymptotically non-expansive mapping with a coefficient ky, € [1,400)

bm,
and F(T) # 0. If t,, € (0,1) satisfies the condition lim — = 0, where
by, = #ﬂ Z;ﬁ:o(kj —1). Then,

(1) for each ty, € (0,1), there exactly exists one z,, € K such that for
sufficiently large nonnegative integer N and an any anchor point u € K,

(2.4) xreK, m=0,12,.--- /N —1,
. Zm = .
" tmts 4 (1= tm) g 250 T 2m, m > N.

(i) For any fized y € F(T), 3o > 0 such that

lom —yl < — (u— g, Tzm — ).
(7i1) {zm} is bounded.
(1) (u— 2m, J(Y — 2m)) < i—mM for ally € F(T) and some constant
M > 0.

Lemma 2.6. (Song [25, Theorem 3.2]) Let K be a nonempty closed
convez subset of a uniformly convex Banach space E with a weakly con-
tinuous duality mapping J,. Suppose that T : K — K is an asymptot-
ically non-expansive mapping with ky, € [1,+00) and F(T) # (. Then,
F(T) is a sunny non-expansive retract of K. Furthermore, let {zy} be
defined by (2.4) and t,, € (0,1) satisfy n}ij)nmtm =0 and lim Om = 0.

m—00 Ty,

Then, Pu = lim z,, defines a unique sunny non-expansive retraction
m—0o0

from K into F(T); i.e. Pu is the unique solution in F(T') of the follow-
ing variational inequality,

(2.5) (u—Pu,Jo(y — Pu)) <0, forallye F(T).
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Lemma 2.7. (Liu [17] and Xu [49, 50]) Let {a,} be a sequence of
nonnegative real numbers satisfying the property,

an+1 < (1 —tp)an +tpen + by, V>0,

oo o0
where {t, }, {bn} and {c,} satisfy the restrictions: > t, =00, Y. |by| <
n=0 n=0
+00 and limsup ¢, < 0. Then, {a,} converges to zero as n — oco.
n—oo

3. Strong convergence of modified Halpern iteration

With the help of Lemma 2.5, we first show the strong convergence
of {z,} defined by (2.4) in a uniformly convex Banach space with a
Géateaux differentiable norm, extending and complementing Lemma 2.6.

Lemma 3.1. Let K be a nonempty closed convex subset of a uniformly
convexr Banach space E with a uniformly Gateaux differentiable norm.
Suppose T : K — K is an asymptotically nonexpansive mapping with
kn. Then, (1) F(T) is a sunny non-expansive retract of K.

Furthermore, let {z,} be defined by (2.4) and t,, € (0,1) satisfy the

following conditions: lim t,, =0 and lim —— = 0. Then,
m—0o0 m—o0 m

(2) Pu = lim z, defines a unique sunny non-exrpansive retraction
m—00
from K into F(T).

Proof. Lemma 2.5 (i) implies the boundedness of {zp,} and {1z, }.

Let A, = %—l—l Z;’;O T9. Then, we have,

1 &
|Amzm —pll < m—|—1§% 177 2 — pl| < (b + 1)||2m — pl|-
j:

Thus, {A2zm} is bounded. It follows from (2.4) that
lim ||z — Azl = lm t||lu — Apzn|| = 0.
m—0o0 m—0o0
Now, we claim that the set {z,,} is relatively sequentially compact.
In fact, for each subsequence {z,, } of {zp,}, let

h(y) = limsup ||z, — y||2, vy € K.

k—oo



238 Song and Tian

It follows from Lemma 2.4(7) that there exists a unique z* € K such
that

h(z*) = ylél}f{ h(y), a*=Tz".

For any given t € (0,1), if z; = 2* + t(u — 2*) = (1 — t)z* + tu, then
xp =" +t(u—2%) = (1 —t)x* +tu € K by the convexity of K and
hence h(z*) < h(zy). Since zp, — ¢ = (2m, — 2*) — t(u — 2*), then we
have,

Hzmk - xtHZ = <zmk - x*v J(ka - xt» - t(“ - 1'*, J(ka - ‘Tt»

Mo P e ol e
implying

2y, = @el® < [l2my, — 2*(1* = 26w — &%, J (2, — z2))-
Thus, we have,

h(xy) < h(z*) — 2t likm inf(u — 2%, J(2m, — x¢)),

that is,

h(z*) — h
(3.1) h’ifnilflf(u—m*,J(zm,C —1x)) < (m)%(xt)
On the other hand, since J is uniformly continuous on the bounded

set from norm topology to weak star topology and lim; .o x; = x*, for
any € > 0, there exists § > 0 such that

(u—a*, J(zm, —2")) < (u—2a",J(z2m, —x1)) +, Vte(0,0), keN.
Thus, by (3.1), we have,

likm inf(u — z*, J (2, — ")) < likminf<u — 2%, J(2m, —x1)) +€ <e.

<0.

Since ¢ is arbitrary, then we obtain:

(3.2) liminf(u — 2, J(2pm, — ™)) <0.

k—o0
Therefore, by Lemma 2.5 (7i), we have,

1
liminf ||z, — 2*||? < = liminf{u — 2*, J (2, — 2*)) <0,
k—oo o k—oo

that is,
lim inf ||z,,, — || = 0.
k—o0
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Hence, {2, } has a subsequence converging strongly to z* € F(T'). Since
then {2, } is an arbitrary subsequentially, {2,,} is relatively sequently
compact.

Finally, we prove that the sequence {z,} converges strongly. For
this, we assume that two subsequences {zp, } and {z,,} of {2z} are
such that z,,, — x* and z,,, — x, respectively. Then, we need to show
x* = x. Indeed, from Lemma 2.4(7), we obtain z*,z € F(T), because
lim supy,_, o ||2m, —2*|?> = 0 and limsup,_, ., ||2m; — z||*> = 0. Therefore,
noting Lemma 2.5 (%), for any p € F(T'), we obtain:

b, b,
(3.3) (U — zmy, J(p— 2my,) < t—'“M, (U= 2zm;, J(p— 2m;) < — M.

mg tm,

Since the duality mapping J is norm-weak* uniformly continuous, limy_, 2m, =

z* and lim;_, 2m; = @, then letting k¥ — oo and i — oo in (3.3), re-

spectively, we obtain (noting the condition lim —* = 0),
m—0o0 m

(34) (u—z",J(p—2%) <0, (u—=z,J(p—2x)) <0, Vpe F(T).
In particular,
(u—a*, J(x—2%)) <0, (u—xz,J(@"—1x)) <O0.
Thus, by the addition of the above two inequalities, we have,
o = 2*2 = & — 2", J(z — ")) <0

and so we have z = x*. Thus, we proved that the sequence {z,,} was
sequentially compact and each cluster point of {z,,} equaled to the point
x*. Therefore, from [18, Proposition 2.1.31], we obtain that z,, — x* as
m — oo.

Let Pu = lim z, = z*. Then, from (3.4), we have,
m—o0

(u—Pu,J(p—Pu)) <0 Vpe F(T).

It follows from Lemma 2.2 that P is a unique sunny non-expansive re-
traction from K into F'(T'). This completes the proof. O

Theorem 3.2. Let K be a nonempty closed conver subset of a uniformly
convexr Banach space E with a uniformly Gateaux differentiable norm.
Suppose that T : K — K is an asymptotically non-expansive mapping

with ky, =1+ 0,. Let {x,} be defined by
(3.5) Tpt1 = apu+ (1 — o) T"x,, n>0.

Assume that {ay,} is a real sequence in (0,1) satisfying the conditions:
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(C1) hm an =0, (C2) Zan—oo and (C3) lim 0—”20.

n—0o0 Qlp

If lim ||£L'n Tx,|| =0, then asn — oo, {x,} converges strongly to Pu,
n—oo

where P is a unique sunny non-expansive retraction from K into F(T).

Proof. Take p € F(T). Since lim a—” = 0, then there exists N € N,
n—oo -~

for alln > N, fTZ < % Choose a constant M > 0 sufficiently large such

that

M
lzn = pll < M and [lu —pl| < —-.

We proceed by induction to show ||z, — p|| < M,¥n > 1. Assume
|z — p|| < M, for some n > N. We show ||z,+1 — p|| < M. From the
iteration process (3.5), we estimate as follows:
[Zn1 = pll <emlu = pll + (1 = an)[| T2 — p|
<an[lu —pl + (1 = an) (1 + 6n)|[zn — pl|

M M
S?an + 70471(1 —an) + (1 —an)M

M M

This proves the boundedness of the sequence {z,}.
From the hypothesis lim ||z, — Tz,| = 0, we have,
n—oo
||Tj$n = an| <llzn — Tapl| + | T2n — T2xn|| +ot ||Tj_1$n - zjnH
<A +ki+ke+ -+ Ej_1)||zn — Tan|| — 0(n — 00).

Let Ay = 727 3770 T9. Then,
1 &
and hence,
(3.6) lim ||Ap,z, — 2] = 0.
n—oo

1 n
Let b, = — >~ 6;. We may choose t,, € (0,1) such that
n i—=0

(3.7) lim — =0, lim ¢, =
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Then, it follows from Lemma 3.1 that Pu = lim z,,, where {z,,},
defined by (2.4). For each m > My, using the eqlrfa_lﬁes,
(1 —tm)(Amzm — 2m) + tm(u — Pu+ Pu — zp,) =0
and
(Amz = Ay, J(x = y)) < [Apz = Apy|lz = yll < (b + Dz -y,
we have
tm(u — Pu, J (X — 2m))
=1 —tm)(zZm — Amzm, J(Xn — 2m)) + tm{zm — Pu, J(xn — 2m))
< (1 —tm){zm — Tn + xn — Ap@n + Ay — Az, J (0 — 2m))
+ tmllzm — Pullllzn — 2|
< (1 —tm)[(zm — Tny J (@0 — 2m)) + (AmTn — Amzm, J(Tn — 2m))]
+ (1 —tm){xn — AmZn, J(Tn — 2m)) + tm||2m — Pu||L
< (1 —tm)[=llzn — Zm”2 + (b + Dlzn — Zm||2]
+ ||en — Amxn||L + tm||2m — Pul|L
< b L2 + ||p — Apxyp|| L + tm||zm — Pul|L,

where L is a constant such that L > ||x,, — z,||. Thus, it follows,

b — A
(= Pu, J(wn = 2n)) < L2+ WL + |lzm — PullL,

m m

and so it follows from (3.6) and (3.7),
(3.8) lim sup lim sup(u — Pu, J(xy — 2m)) < 0.

m—00 n—oo

On the other hand, the fact that z,, — Pu, as m — oo, together with
the fact that the duality mapping J is norm-weak™* uniformly continuous,
would result in:

lim (v — Pu, J(xy, — 2m)) = (u — Pu, J(zy, — Pu)), Vn€N.

m—0o0

Thus, for all € > 0, there exists m; € N such that
(u— Pu, J(xy, — Pu)) < (u— Pu,J(xp, — 2m)) +&, Ym>mi,neN
and so, using (3.8),

lim sup{u — Pu, J(x, — Pu)) <limsup limsup{u — Pu, J(x,, — z;,)) + € < e.

n—oo m— 00 n—oo
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Since ¢ is arbitrary, then we obtain,
(3.9) limsup(u — Pu, J(z, — Pu)) <0.

n—oo

We next show z,, — Pu. It follows from the equality (3.5) that
|41 = Pul®
= (u — Pu, J(zpt1 — Pu)) + (1 — an){(T" @y — Pu, J(xp41 — Pu))
<o (u — Pu, J(xpt1 — Pu)) + (1 — o) || T"xy, — Pul|||xn+1 — Pul|
<(1 = apn)(On + Dllzn = Pull[|zn1 = Pu|

+ an(u — Pu, J(xp11 — Pu))

<(1—ay) (6n +1)?||l2p — Pu2||2 + ||Zni1 — Pull?

+ an(u — Pu, J(xp41 — Pu)).
Therefore,
|Zns1 — Pul|®> <(1 — an)||zn — Pull® + 200, (u — Pu, J (2,11 — Pu))
+ (1 = a)[(0n + 1)* = 1)||2, — Pul?
<(1 = ap)[lzn — Pull? + 0n(05 + 2)||z — Pul/?
+ 2 (u — Pu, J(xp 1 — Pu)),

that is,
(3.10) |41 = Pull® < (1 = an)llan — Pull + man,
where ~,, = 2—2(% +2)||lzn — Pul|? + 2{u — Pu, J(zp1+1 — Pu)).

It follows from the condition lim % = 0 and boundedness of {z,}
n—oo - mn

along with the inequality (3.9) that
lim sup v, < 0.

n—oo

Applying Lemma 2.7 to the inequality (3.10), we conclude z,, — Pu.
This completes the proof. O

Theorem 3.3. Let K be a nonempty closed convex subset of a uniformly
conver Banach space E with a uniformly Gateaux differentiable norm.
Suppose T : K — K 1is an asymptotically non-expansive mapping with
kn =14 6,. Let {x,} be defined by (3.5) and {a,} be a real sequence
in (0,1) satisfying the conditions:

(C1) lim a,, =0, (C2) 3 an =00, and (C4) > 0, < +o0.
n—oo n=0 n=0
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If {x,} is bounded and lim |z, — Tx,|| = 0, then as n — oo, {x,}
n—oo

converges strongly to Pu, where P is a unique sunny non-expansive re-
traction from K into F(T).

Proof.. Following Theorem 3.2, we have,
limsup(u — Pu, J(z, — Pu)) <0

n—o0
and
i1 — Pull® <(1 = an)l|zn — Pull® + 006 + 220 — Pull?
+ 20 (u — Pu, J(zp+1 — Pu)).
That is,

|Zni1 — Pull® < (1 — ap)||zn — Pul|* + Apan + 6, M,
where A\, = 2(u — Pu, J(zp41 — Pu)). It follows:

(o]
ZHnM < +o0 and limsup A, < 0.
n=0 n—oo

Apply Lemma 2.7 to yield the desired result. This completes the proof.
O

Theorem 3.4. Let K be a nonempty closed convex subset of a uniformly
convex Banach space E with a weakly continuous duality mapping J,.
Suppose that T : K — K 1is an asymptotically non-expansive mapping
with k, = 1+ 6,. Let {x,} be defined by (3.5) and {an} be a real
sequence in (0, 1) satisfying the conditions:
o0
(C1) lim oy, =0, (C2) 3 a, =00, and (C3) lim bn = 0.
n— 00 ne— n—00 Qip,

If lim ||z, —Txy|| =0, then as n — 0o, {zn} converges strongly to Pu,
n—oo

where P is a unique sunny non-expansive retraction from K into F(T).

Proof. It follows from the same argument as made in the proof of
Theorem 3.2 that the sequence {z,} is bounded. By Lemma 2.6, F'(T)
is a sunny non-expansive retract of K and Pu is the unique solution in
F(T) to the following variational inequality,

(3.11) (u—Pu,J,(y — Pu)) <0 forallye F(T).

We next show that

limsup(u — Pu, J,(2n41 — Pu)) < 0.

n—o0
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Indeed, we can take a subsequence {z, } of {x,} such that

limsup(u — p, Jo(zp41 — Pu)) = klir)élo(u —p, Jp(xn 41 — Pu)).

n—oo

We may assume that z,, 3 — 2%, by the reflexivity of E and the
boundedness of {z,}. It follows from Lemma 2.3 and the assumption
lim ||z, — Tz,| = 0 that 2* € F(T). From the weak continuity of the
n—oo

duality mapping J, and (3.11), we have,
limsup(u — Pu, J,(x, — Pu)) = (u — Pu, J (" — Pu)) <0.

n—oo

Now, we show x,, — Pu. In fact, since ®(t) = fg o(T)dr,t > 0, and ¢ :
[0,00) — [0,00) is a gauge function, then for 1 > k > 0, p(kx) < ¢(x),
and

kt t t
o (kt) _/0 o(r)dr =" k/o o(kz)dr < k/o o(z)dz = kd(t).

0
Since lim —* = 0, then there exists My € N such that such that Vn >

n—00 (p,
MO7
b 1
o, 2
1
9n < ian.

Since (1 —ay)(0p+1) =1—ay, + %an(l —ay) <l—a,+ %an < 1, then
from Lemma 2.1(7), we have,

&(rns1 - Pul)

O((1 — ap) || T"xy — Pul|) + an(u — Pu, Jy(xn41 — Pu))

o((1 - Ofn)(Qn + Dllzn = Pull) + an{u — Pu, Jp(znt1 — Pu))
(1= an)(On + 1)@(lzn — Pul]) + an(u — Pu, Jo(2nt1 — Pu))

(1 = an)®(n — Pull) + o,

IN N IA TN

where v, = ﬁM + (u — Pu, Jy,(xy, — Pu)), for some constant M >
®(||zn, — pl|). An application of Lemma 2.7 yields ®(||x, — Pul|) —
0(n — o0), and hence ||z, — Pu| — 0(n — oo). This completes the
proof. O

Theorem 3.5. Let K be a nonempty closed convex subset of a uniformly
convex Banach space E with a uniformly Gateaux differentiable norm.



Modified Halpern iteration of asymptotically non-expansive mappings 245

Suppose that T : K — K 1is an asymptotically non-expansive mapping
with ky, =1+ 0,. Let {x,} be defined by:

(3.12) Tnt1 = (1 —ay — Bp)zn + apu+ BTz,
where {B,} and {an} be real sequences in (0,1) satisfying the condi-
tions (C1), (C2) and (C3). If lim |x, — Tx,|| = 0, then as n — oo,

{zp} converges strongly to Pu, where P is a unique sunny non-expansive
retraction from K into F(T).

Proof. It follows from the same argument as given in the proof of
Theorem 3.2 that the sequence {x,} is bounded and

limsup(u — Pu, J(zp41 — Pu)) < 0.

n—oo

We next show x,, — Pu. It follows from the equality (3.12) that

lns1 — Pufl?

=an(u — Pu, J(zp41 — Pu)) + (1 — oy — Bn) (@ — Pu, J(xp41 — Pu))
+ B (T"xy, — Pu, J(xp41 — Pu))

<ap(u — Pu, J(zp41 — Pu)) + (1 — o — Bn) ||z — Pul|||znt1 — Pull
T BT — Pul|ns1 — Pul

<o (u — Pu, J(zp41 — Pu))

& — Pull? + |es1 — Pul?

+ (1 — Qp — ﬁn) 2
+ Bn (0 + 1|0 — Pull* + [|£n1 — Pull®
2
— Pull?
<an(u— Pu, J(2pp1 — Pu)) + [1 — an + Bu((05 + 1)2 _ 1)]“3%2“H

|2n+1 — Pull®
5 .
Therefore,
nst — Pull® <(1 = an)n — Pull® + 5ul(0n + 12 — 1] — Pul
+ 2apn(u — Pu, J(xp+1 — Pu))
<(1 = an)[@n — PUH2 + 0n(On + 2) ||z — PU||2
+ 20 (u — Pu, J(xpn41 — Pu)).
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The rest of the proof is the same as given for Theorem 3.2. This com-
pletes the proof. O

Theorem 3.6. Let K be a nonempty closed convex subset of a uniformly
convex Banach space E with a weakly continuous duality mapping J,.
Suppose T : K — K is an asymptotically non-expansive mapping with
kn = 14 60,. Let {z,} be defined by (3.12), {B.} and {an} be real
sequences in (0,1) satisfying the conditions (C1), (C2) and (C3). If
nh_)ngo |xn — Tzy|| = 0, then, as n — oo, {x,} converges strongly to Pu,

where P is a unique sunny non-expansive retraction from K into F(T).

Proof. It follows from the same argument as given for the proof of
Theorem 3.4 that the sequence {x,} is bounded and

lim sup(u — Pu, J,(n41 — Pu)) < 0.

n—oo

)
Now we show z, — Pu. Since lim — = 0, then there exists My € N
n—oo (v
such that VYn > M), !
On

— < 1,
Qp

0, < an.
From Lemma 2.1(7), we have,
(i1 — Pul)
<O((1 — an — Ba) [0 — Pull + Bull T, — Pul)
+ an(u — Pu, Jo(2ni1 — Pu))
<O((1 = o + 008n) ||z — Pul|) + an{u — Pu, Jp(xni1 — Pu))
<(1 = an + 0,.8,) 2|z, — Pul|) + an{u — Pu, Jp(xnt1 — Pu))
<(1 = a) (|20 — Pull) + 0080 (|l — Pu)
+ an(u — Pu, Jy(xn41 — Pu)).
The rest of the proof is the same as given for Theorem 3.4. This com-
pletes the proof. O

Similarly, we have the following result.

Theorem 3.7. Let K be a nonempty closed convex subset of a uniformly
convex Banach space E either with a uniformly Gateaux differentiable
norm or with a weakly continuous duality mapping J,. Suppose T :
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K — K is an asymptotically non-expansive mapping with k, = 1+ 0,,.
Let {z,,} be defined by (3.12), {Bn} and {ay,} be real sequences in (0, 1)
satisfying the conditions (C1), (C2) and (C4). If {xn} is bounded with

lim ||z, — Tx,| =0, then, as n — oo, {x,} converges strongly to Pu,
n—oo

where P is a unique sunny non-expansive retraction from K into F(T).

tn . : :
Remark 1.(1) If o, = 7 o (3.5), then (3.5) becomes the iteration of

Chidume et al. [8, Theorem 3.3] and Shahzad and Udomene [36]. In
particular, our proof is simpler than theirs as well as Chang et al.’s [7,
Theorem 2].

1—-1¢ t
(2) If vy, = ? “ and B, = k—n in (3.12), then (3.12) turns into the

iteration of Ceng et al. 5, Corollrzlaury 3.5] and Ceng et al. [6, Corollary
3.7]. Our proof and iteration coefficient are simpler and more general.

(3) Using our proof technique, for an asymptotically non-expansive
mappings {7;}¥, defined on a uniformly convex Banach space E with a
weakly continuous duality mapping J,,, the strong convergence of {z,}
defined by (3.13) or (3.14) is proved easily:

(3.13) Tpt1 = apu + (1 — o) T} @y,

(3.14) Ty = (1 = an — Bn)xn + anu + B, 1))

whenever {f3,} and {«a,} are real sequences in (0, 1) satisfying the con-

ditions (C1), (C2) and (C3) or (C4) along with lim ||z, — T;x,|| = 0,
n—oo

for each 7, where r, = n mod N, with the mod function taking values

in the set {1,2,..., N}.

4. Some applications to the viscosity approximation methods

Theorem 4.1. Let K be a nonempty closed conver subset of a uniformly
convexr Banach space E either with a uniformly Gateaux differentiable
norm or with a weakly continuous duality mapping J,. Suppose T' :
K — K is an asymptotically non-expansive mapping with k, = 1 + 0,
and f: K — K is a contraction with a constant o € [0,1). Let {z,} be
defined by:

(4.1) Tnt1 = o f(xn) + (1 — apn)T"zy,
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and {ay} be a real sequence in (0,1) satisfying the conditions (C1), (C2)
and (C3). If lim ||z, — Txzy,| = 0, then, as n — oo, {x,} converges
n—oo

strongly to ©* = P(fz*), where P is a unique sunny non-expansive
retraction from K into F(T).

Proof. Take p € F(T). Since lim g—" = 0, then there exists N € N

n—oo - n
such that for all n > N, g—ﬁ < 1_T0‘ Choose a constant M > 0 sufficiently
large such that

(1—a)M

|zn —pll < M and [|f(p) — pll < 5

We proceed by induction to show that ||z, — p|| < M,Vn > 1. Assume
|zn, — p|| < M, for some n > N. We show that ||x,+1 —p| < M. From
the iterative process (4.1), we estimate as follows:

[Zn+1 =
<an|[f(zn) = f(p) + f(p) = pll + (1 — ) [ T" 20 — pl|
<(I = an(l = a))lzn —pll + anllf(p) = pll + (1 = an)Onllzn — pll
M1 - oz)a N 1 -«
2 2
M(1—«) 1

<(1—ap(l —a))M + 5 o+ ;aanM =M.

<(1—ap(l—a))M + an (1 — o) M

This proves the boundedness of the sequence {z,}.

It follows from Lemma 3.1 or Lemma 2.6 that F'(T") is the sunny non-
expansive retract of K. Denote by P a sunny non-expansive retraction
of K onto F(T'). Then, Pf is a contractive mapping of K into itself. In
fact,

|P(fx) = P(fy)ll < | fx — fyll < allz —y|, for all z,y € K.

Banach contraction principle assures that there exist a unique element
x* € K such that 2* = P(fz*). Such an #* € K is an element of F/(T).
Thus, we may define a sequence {y,} in K by:

Yn+1 = O‘Nf(x*) + (1 - an)Tnyn
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and assume that lim ||y, — Tyn| = 0. Then, Theorem 3.2 or Theorem
n—oo

3.4 assures that y, — P(f(z*)) = 2*, as n — oo. For every n, we have,

41 — Ynt1l]

<ol f(zn) = f(@°)[| + (1 = an)[[T"zp — T ||

<ol f(@n) = fyn)ll + anll f(yn) — F@) |+ (1 — an)knlzn — yall

<(1 =1 =a)ap)|zn = ynl + canllyn — 2| + (1 = an)Onl|l2n — ynll

<(1 = (1 = a)an)l|en = ynll + acnllyn — 7| + Onllzn — yall.
Thus, we obtain, for some constant M > 0, the following recursive
inequality,

1 = pnsa | < (1= (1= @)an) o = yull + 2 g — 27| + 621,
Since ||y, — z*|| — 0, then an application of Lemma 2.7 yields:

1 [l — gl = 0.
Hence,
T [l 2" < 1 (e — gall + llyn —2°]) = 0.

Consequently, we obtain the strong convergence of {x,,} to * = P(fz*).
This completes the proof. O

Similarly, we have the following result.

Theorem 4.2. Let K be a nonempty closed conver subset of a uniformly
convex Banach space E either with a uniformly Gateauz differentiable
norm or with a weakly continuous duality mapping J,. SupposeT : K —
K is an asymptotically non-expansive mapping with k, = 140, and f :
K — K is a contraction with a constant o € [0,1). Let {z,,} be defined
by (4.1) and {a,} be a real sequence in (0,1) satisfying the conditions
(C1), (C2) and (C4). If {xn} is bounded with 7115{.10”3:” — Txy,| =0,
then, as n — oo, {x,} converges strongly to x* = P(fxz*), where P is a
unique sunny non-expansive retraction from K into F(T).

Theorem 4.3. Let K be a nonempty closed conver subset of a uniformly
convexr Banach space E either with a uniformly Gateaux differentiable
norm or with a weakly continuous duality mapping J,. Suppose T :
K — K is an asymptotically non-expansive mapping with k, = 1 + 0,
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and f: K — K is a contraction with a constant o € [0,1). Let {zy} be
defined by:

(42) In+1 = (1 - Qp — ﬁn)wn + anf(xn) + ﬁnTnxna
{Bn} and {an} be real sequences in (0, 1) satisfying the conditions (C1),
(C2) and (C3). If lim ||x,—Tx,|| =0, then, asn — oo, {z,} converges

strongly to z* = P(fz*), where P is a unique sunny non-expansive
retraction from K into F(T).

Proof. Take p € F(T). Since lim g—" = 0, then there exists N € N
n—oo —n

such that for all n > N, STZ < I_Ta Choose a constant M > 0 sufficiently
large such that
(1—a)M

5 .
We proceed by induction to show that ||z, — p|| < M,Vn > 1. Assume
|zn, — p|| < M, for some n > N. We show ||xp4+1 — p|| < M. From the
iterative process (4.2), we estimate as follows:

|lzn —pll < M and [|f(p) — pll <

[#nt1 — P
<(1 = an = B)llzn — pll + anll f(zn) — f(p) + f(2) — 2l

+ BullT"zn — p||
<(1 = an(1 = a))llen = pll + anll f(p) = pll + Brbnllzn — pll
<1 - an(t - anar+ M= 1200 5 0
<(1—ap(l —a)M + (1= a)anM—l— - aanM = M.

This proves the boundedness of the sequence {z,}.

The rest of the proof is similar to the one given for Theorem 3.4. The
only difference is that usage of Theorem 3.2 or Theorem 3.4 is replaced
with Theorem 3.5 or Theorem 3.6. This completes the proof. U

Now, using Theorem 3.7, we obtain the following result.

Theorem 4.4. Let K be a nonempty closed convex subset of a uniformly
conver Banach space E either with a uniformly Gateauz differentiable
norm or with a weakly continuous duality mapping J,. Suppose T' :
K — K is an asymptotically non-expansive mapping with k, = 1+ 0,
and f : K — K is a contraction with a constant o € [0,1). Let {zp}
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be defined by (4.2), {Bn} and {a,} be real sequences in (0,1) satisfying
the conditions (C1), (C2) and (C4). If {xy} is bounded with lim ||z, —

Tz,|| = 0, then, as n — oo, {x,} converges strongly to x* = P(fz*),
where P is a unique sunny non-expansive retraction from K into F(T).

tn . : :
Remark 2.(1) If o, = 7o (4.1), then (4.1) becomes the iteration of

n
Shahzad and Udomene [36, Theorem 3.3]. In particular, our proof and
iteration coefficient are simpler.

1-1¢ t
(2) If a = " and 3, = k—n in (4.2), then we obtain the iteration

of Ceng et al. [5,nCorollary 3.6.] "and Ceng et al. [6, Corollary 3.6.].

(3) Using our proof technique, for a finite family of asymptotically
non-expansive mappings {7;}, defined on a uniformly convex Banach
space I/ with a weakly continuous duality mapping J,,, the strong con-
vergence of {z,} defined by (4.3) or (4.4) is shown easily:

(4.3) T+l = anf(@n) + (1 — an)T}, on,

(44> Tn41 = (1 — Op — Bn)xn + anf(l'n) + 6nT131xna

whenever {f3,} and {«a,} are real sequences in (0, 1) satisfying the con-

ditions (C1), (C2) and (C3) or (C4) along with lim ||z, — Tiz,|| = 0,
n—oo

for each i, where 1, = n mod N. The proof and iteration coefficient

are simpler and more general than those of Ceng et al. [5, Theorem 3.4]
and Ceng et al. [6, Theorem 3.5].
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