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COMMON FIXED POINTS OF GENERALIZED
CONTRACTIVE MAPS IN CONE METRIC SPACES

A. AZAM* AND M. ARSHAD

Communicated by Fraydoun Rezakhanlou

Abstract. We prove a coincidence and common fixed point the-
orems of three self mappings satisfying a generalized contractive
type condition in cone metric spaces. Our results generalize some
well-known recent results.

1. Introduction and preliminaries

Huang and Zhang [3] introduced the concept of cone metric space and
established some fixed point theorems for contractive type mappings
in a normal cone metric space. Subsequently, some other authors [1,
2, 4-7] studied the existence of fixed points of self mappings satisfying
a contractive type condition. Here, we obtain points of coincidence
and common fixed points for three self mappings satisfying generalized
contractive type condition in a complete normal cone metric space. Our
results improve and generalize the results in [1, 3].

A subset P of a real Banach space E is called a cone if it has the
following properties:

(i) P is non-empty, closed and P 6= {0};
(ii) 0 ≤ a, b ∈ R and x, y ∈ P ⇒ ax + by ∈ P ;
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(iii) P ∩ (−P ) = {0}.

For a given cone P ⊆ E, we can define a partial ordering ≤ on E
with respect to P by x ≤ y if and only if y − x ∈ P . We shall write
x < y if x ≤ y and x 6= y, while x � y stands for y − x ∈ intP ,
where intP denotes the interior of P. The cone P is called normal if
there is a number κ ≥ 1 such that for all x, y,∈ E,

(1.1) 0 ≤ x ≤ y ⇒ ‖x‖ ≤ κ ‖y‖ .

The least number κ ≥ 1 satisfying (1.1) is called the normal constant
of P.

In the following, we always suppose that E is a real Banach space and
P is a cone in E with intP 6= ∅ and ≤ is a partial ordering with respect
to P.

Definition 1.1. Let X be a nonempty set. Suppose that the mapping d :
X ×X → E satisfies:

(1) 0 ≤ d(x, y), for all x, y ∈ X and d(x, y) = 0 if and only if x = y;
(2) d(x, y) = d(y, x), for all x, y ∈ X;
(3) d(x, y) ≤ d(x, z) + d(z, y),for all x, y, z ∈ X.

Then d is called a cone metric on X and (X, d) is called a cone metric
space.

Let xn be a sequence in X and x ∈ X. If for each 0 � c there is
n0 ∈ N such that for all n > n0, d(xn, x) � c, then {xn} is said to be
convergent (or {xn} converges) to x and x is called the limit of {xn}.
We denote this by limnxn = x, or xn −→ x, as n → ∞. If for each
0 � c there is n0 ∈ N such that for all n, m > n0, d(xn, xm) � c, then
{xn} is called a Cauchy sequence in X. If every Cauchy sequence is
convergent in X, then X is called a complete cone metric space. Let us
recall [5] that if P is a normal cone, then xn ∈ X converges to x ∈ X if
and only if d(xn, x) → 0, as n →∞. Furthermore, xn ∈ X is a Cauchy
sequence if and only if d(xn, xm) → 0, as n, m →∞.

A pair (f, T ) of self-mappings on X are said to be weakly compatible
if they commute at their coincidence point (i.e., fTx = Tfx, whenever
fx = Tx). A point y ∈ X is called a point of coincidence of T and f if
there exists a point x ∈ X such that y = fx = Tx.
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2. Main results

We start with a lemma that will be required in the sequel.

Lemma 2.1. Let X be a non-empty set and the mappings S, T, f : X →
X have a unique point of coincidence v in X. If (S, f) and (T, f)are
weakly compatible, then S, T and f have a unique common fixed point.

Proof. Let v be the point of coincidence of S, T and f . Then, v = fu =
Su = Tu, for some u ∈ X. By weakly compatibility of (S, f) and (T, f) we
have,

Sv = Sfu = fSu = fv and Tv = Tfu = fTu = fv.

It implies that Sv = Tv = fv = w (say). Thus, w is a point of coinci-
dence of S, T and f . Therefore, v = w by uniqueness. Hence, v is the
unique common fixed point of S, T and f . �

Here, by providing the next result, we state the following generaliza-
tion of some recent results.

Theorem 2.2. Let (X, d) be a cone metric space, P be a normal cone
with normal constant κ. Suppose the mappings T, f : X → X satisfy:

d(Tx, Ty) ≤ α [d(fx, Ty) + d(fy, Tx)] + γ d(fx, fy)

for all x, y ∈ X, where α, γ ∈ [0, 1) with 2α + γ < 1. Also, suppose that
T (X) ⊆ f(X) and f(X) is a complete subspace of X. Then, T and
f have a unique point of coincidence. Moreover, if (T, f) are weakly
compatible, then T and f have a unique common fixed point.

Corollary 2.3. Let (X, d) be a cone metric space, P be a normal cone
with normal constant κ. Suppose the mappings T, f : X → X satisfy:

(2.1) d(Tx, Ty) ≤ αd(fx, Ty) + βd(fy, Tx) + γ d(fx, fy),

for all x, y ∈ X, where α, β, γ ∈ [0, 1) with α + β + γ < 1. Also, suppose
that T (X) ⊆ f(X) and f(X) is a complete subspace of X. Then, T
and f have a unique point of coincidence. Moreover, if (T, f) are weakly
compatible, then T and f have a unique common fixed point.
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Proof. In (2.1) interchanging the roles of x and y and adding the
resulting inequality to (2.1), we obtain:

d(Tx, Ty) ≤ α + β

2
[d(fx, Ty) + d(fy, Tx)] + γ d(fx, fy).

Now, by using Theorem 2.2 we obtain the required result. �

Corollary 2.4. [1] Let (X, d) be a cone metric space, P be a normal
cone with normal constant κ and the mappings T, f : X → X satisfy:

d(Tx, Ty) ≤ γ d(fx, fy),

for all x, y ∈ X, where 0 ≤ γ < 1. If T (X) ⊆ f(X) and f(X) is a
complete subspace of X, then T and f have a unique point of coincidence.
Moreover, if (T, f) are weakly compatible, then T and f have a unique
common fixed point.

Corollary 2.5. [1] Let (X, d) be a cone metric space, P be a normal
cone with normal constant κ and the mappings T, f : X → X satisfy:

d(Tx, Ty) ≤ α [d(fx, Ty) + d(fy, Tx)] ,

for all x, y ∈ X, where 0 ≤ α < 1
2 . Also, suppose that T (X) ⊆ f(X) and

f(X) is a complete subspace of X. Then, T and f have a unique point
of coincidence. Moreover, if (T, f) are weakly compatible, then T and
f have a unique common fixed point.

Here, we further improve Theorem 2.2 as follows.

Theorem 2.6. Let (X, d) be a cone metric space, P be a normal cone
with normal constant κ. Suppose the mappings S, T, f : X → X satisfy:

(2.2) d(Sx, Ty) ≤ αd(fx, Ty) + βd(fy, Sx) + γd(fx, fy),

for all x, y ∈ X, where α, β, γ are non-negative real numbers with

α + β + γ < 1.

If S(X) ∪ T (X) ⊆ f(X) and f(X) is a complete subspace of X, then
S, T and f have a unique point of coincidence. Moreover, if (S, f)
and (T, f) are weakly compatible, then S, T and f have a unique common
fixed point.

Proof. Let x0 be an arbitrary point in X. Choose a point x1 in X such
that fx1 = Sx0. Similarly, choose a point x2 in X such that fx2 = Tx1.
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Continuing this process till having chosen xn in X, we obtain xn+1 in
X such that

fx2k+1 = Sx2k

fx2k+2 = Tx2k+1, (k ≥ 0).

Then,

d(fx2k+1, fx2k+2) = d(Sx2k, Tx2k+1)

≤ αd(fx2k, Tx2k+1) + βd(fx2k+1, Sx2k)

+ γd(fx2k, fx2k+1)

≤ [α + γ]d(fx2k, fx2k+1) + αd(fx2k+1, fx2k+2).

This implies:

[1− α]d(fx2k+1, fx2k+2) ≤ [α + γ] d(fx2k, fx2k+1).

Thus,

d(fx2k+1, fx2k+2) ≤
[
α + γ

1− α

]
d(fx2k, fx2k+1).

Similarly,

d(fx2k+2, fx2k+3) = d(Sx2k+2, Tx2k+1)

≤ αd(fx2k+2, Tx2k+1) + βd(fx2k+1, Sx2k+2)

+ γd(fx2k+2, fx2k+1)

≤ αd(fx2k+2, fx2k+2) + βd(fx2k+1, fx2k+3)

+ γd(fx2k+2, fx2k+1)

≤ [β + γ]d(fx2k+1, fx2k+2) + βd(fx2k+2, fx2k+3).

Hence,

d(fx2k+2, fx2k+3) ≤
[
β + γ

1− β

]
d(fx2k+1, fx2k+2).
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Now, by induction, we obtain:

d(fx2k+1, fx2k+2) ≤
[
α + γ

1− α

]
d(fx2k, fx2k+1)

≤
[
α + γ

1− α

] [
β + γ

1− β

]
d(fx2k−1, fx2k)

≤
[
α + γ

1− α

] [
β + γ

1− β

] [
α + γ

1− α

]
d(fx2k−2, fx2k−1)

≤ ...≤
[
α + γ

1− α

]([
β + γ

1− β

] [
α + γ

1− α

])k

d(fx0, fx1)

and

d(fx2k+2, fx2k+3) ≤
[
β + γ

1− β

]
d(fx2k+1, fx2k+2)

≤ . . . ≤
([

β + γ

1− β

] [
α + γ

1− α

])k+1

d(fx0, fx1),

for each k ≥ 0. Let

λ =
[
α + γ

1− α

]
, µ =

[
β + γ

1− β

]
.

Then, λµ < 1. Now, for p < q we have,

d(fx2p+1, fx2q+1) ≤ d(fx2p+1, fx2p+2) + d(fx2p+2, fx2p+3)

+ d(fx2p+3, fx2p+4) + . . . + d(fx2q, fx2q+1)

≤

λ

q−1∑
i=p

(λµ)i +
q∑

i=p+1

(λµ)i

 d(fx0, fx1)

≤
[
λ(λµ)p[1− (λµ)q−p]

1− λµ
+

(λµ)p+1[1− (λµ)q−p]
1− λµ

]
d(fx0, fx1)

≤
[
λ(λµ)p

1− λµ
+

(λµ)p+1

1− λµ

]
d(fx0, fx1)

≤ (1 + µ)
[
λ(λµ)p

1− λµ

]
d(fx0, fx1)

d(fx2p, fx2q+1) ≤ (1 + λ)
[

(λµ)p

1−λµ

]
d(fx0, fx1),

d(fx2p, fx2q) ≤ (1 + λ)
[

(λµ)p

1−λµ

]
d(fx0, fx1),

and
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d(fx2p+1, fx2q) ≤ (1 + µ)
[

λ(λµ)p

1−λµ

]
d(fx0, fx1).

Hence, for 0 < n < m, there exists p < n < m such that p → ∞ as
n →∞, and

d(fxn, fxm) ≤ Max

{
(1 + µ)

[
λ(λµ)p

1− λµ

]
, (1 + λ)

[
(λµ)p

1− λµ

]}
d(fx0, fx1).

Since P is a normal cone with normal constant κ, we have,

‖d(fxn, fxm)‖ ≤

κ

[
Max

{
(1 + µ)

[
λ(λµ)p

1− λµ

]
, (1 + λ)

[
(λµ)p

1− λµ

]}]
‖d(fx0, fx1)‖ .

Thus, if m,n →∞, then

Max

{
(1 + µ)

[
λ(λµ)p

1− λµ

]
, (1 + λ)

[
(λµ)p

1− λµ

]}
→ 0,

and so d(fxn, fxm) → 0. Hence, {fxn} is a Cauchy sequence. Since
f(X) is complete, there exist u, v ∈ X such that fxn → v = fu. Since

d(fu, Su) ≤ d(fu, fx2n) + d(fx2n Su)

≤ d(vfx2n) + d(Tx2n−1, Su)

≤ d(v, fx2n) + αd(fu, Tx2n−1)

+ β [d(fx2n−1, fu) + d(fu, Su)] + γd(fu, fx2n−1),

it implies that

d(fu, Su) ≤ 1
1− β

[d(v, fx2n) + αd(v, fx2n) + βd(fx2n−1, v)

+ γd(v, fx2n−1)]

≤ 1
1− β

[(1 + α) d(v, fx2n) + βd(fx2n−1, v) + γd(v, fx2n−1)] .

Hence,

‖d(fu, Su)‖ ≤ κ

1− β
‖(1 + α) d(v, fx2n) + (β + γ) d(v, fx2n−1)‖ .

If n →∞, then we obtain ‖d(fu, Su)‖ = 0. Hence, fu = Su. Similarly, by
using the inequality, we have,

d(fu, Tu) ≤ d(fu, fx2n+1) + d(fx2n+1, Tu).

We can show that fu = Tu, implying that v is a common point of
coincidence of S, T and f ; that is,

v = fu = Su = Tu.
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Now, we show that f, S and T have unique point of coincidence. For
this, assume that there exists another point v∗ in X such that v∗ =
fu∗ = Su∗ = Tu∗, for some u∗ in X. Now,

d(v, v∗) = d(Su, Tu∗)

≤ αd(fu, Tu∗) + βd(fu∗, Su) + γd(fu, fu∗)

≤ (α + β + γ) d(v, v∗).

Hence, v = v∗. If (S, f) and (T, f) are weakly compatible, then

Sv = Sfu = fSu = fv and Tv = Tfu = fTu = fv.

It implies that Sv = Tv = fv = w (say). Hence, w is a point of
coincidence of S, T and f, and so v = w by uniqueness. Thus, v is the
unique common fixed point of S, T and f . �

Example 2.7. Let X = {1, 2, 3}, E = R2 and P = {(x, y) ∈ E : x, y ≥
0}. Define d : X ×X → E as follows:

d(x, y) =


(0, 0) if x = y
(5
7 , 5) if x 6= y and x, y ∈ X − {2}

(1, 7) if x 6= y and x, y ∈ X − {3}
(4
7 , 4) if x 6= y and x, y ∈ X − {1}.

Define the mappings T, f : X → X as follows:

T (x) =
{

1 if x 6= 2
3 if x = 2 and fx = x.

Then, d(T (3), T (2)) = (5
7 , 5). Now, for 2α + γ < 1, we have,

α [d(f(3), T (2)) + d(f(2), T (3))] + γd(f(3), f(2))

= α [d(3, T (2)) + d(2, T (3))] + γd(3, 2)

= γ(
4
7
, 4) + α [d(3, 3) + d(2, 1)]

= α [0 + (1, 7)] + γ(
4
7
, 4) = (

7α + 4γ

7
, 7α + 4γ)

< (
8α + 4γ

7
, 8α + 4γ) = (

4 (2α + γ)
7

, 4 (2α + γ))

< (
4
7
, 4) < (

5
7
, 5) = d(T (3), T (2)).

It follows that the mappings T and f do not satisfy the conditions of
Theorem 2.2. Hence, Theorem 2.2 and its corellaries 2.3, 2.4 and 2.5 are
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not applicable here. Now, define the mapping S : X → X by Sx = 1 for
all x ∈ X. Then,

d(Sx, Ty) =
{

(0, 0) if y 6= 2
(5
7 , 5) if y = 2

and
αd(fx, Ty) + βd(fy, Sx) + γd(fx, fy) = (

5
7
, 5)

if y = 2, α = γ = 0 and β = 5
7 . It follows that all conditions of Theorem

2.6 are satisfied for α = γ = 0, β = 5
7 and one can obtain the unique

common fixed point 1 for S, T and f .

3. Conclusion

Our results generalized theorems 1 and 4 in [2] and theorems 2.3 and
2.7 in [1].
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