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(Communicated by Ebadollah S. Mahmoodian)

Abstract. A µ-way (v, k, t) trade of volume m consists of µ dis-
joint collections T1, T2, . . . Tµ, each of m blocks, such that for every
t-subset of v-set V the number of blocks containing this t-subset
is the same in each Ti (1 ≤ i ≤ µ). In other words any pair of
collections {Ti, Tj}, 1 ≤ i < j ≤ µ is a (v, k, t) trade of volume m.
In this paper we investigate the existence of µ-way (v, k, t) trades
and prove the existence of: (i) 3-way (v, k, 1) trades (Steiner trades)
of each volume m,m ≥ 2. (ii) 3-way (v, k, 2) trades of each volume
m,m ≥ 6 except possibly m = 7. We establish the non-existence of
3-way (v, 3, 2) trade of volume 7. It is shown that the volume of a
3-way (v, k, 2) Steiner trade is at least 2k for k ≥ 4. Also the spec-
trum of 3-way (v, k, 2) Steiner trades for k = 3 and 4 are specified.
Keywords: µ-way (v, k, t) trade, 3-way (v, k, 2) trade, one-solely.
MSC(2010): Primary 05B30; Secondary 05B05.

1. Introduction

Given a set of v treatments V , let k and t be two positive integers
such that t < k < v. A (v, k, t) trade T = {T1, T2} of volume m consists
of two disjoint collections T1 and T2, each one containing m k-subsets of
V , called blocks, such that every t-subset of V is contained in the same
number of blocks in T1 and T2. A (v, k, t) trade is called (v, k, t) Steiner
trade if any t-subset of V occurs at most once in T1(T2).
A t − (v, k, λ) design (V,B) is a collection of blocks such that each
t−subset of V is contained in λ blocks.
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When m = 0 the trade is said to be void. A (v, k, t) trade (design) is
also a (v, k, t′) trade (design), for all t′ with 0 < t′ < t. In a (v, k, t)
trade, both collections of blocks must cover the same set of elements.
This set of elements is called the foundation of the trade and is denoted
by found(T ).
A 2− (v, 3, 1) design is called a Steiner triple system of order v and is
often denoted by STS(v). It is well known that a STS(v) exists if and
only if v ≡ 1, 3 (mod 6).
A Kirkman triple system of order v that is often denoted by KTS(v)
is a Steiner triple system of order v (V,B) together with a partition R
of the set of triples B into subsets R1, R2, . . . , Rn called parallel classes
such that each Ri (i = 1, 2, . . . , n) is a partition of V .
A partial triple system (PTS) is a pair (V, P ) where V is a finite
nonempty n-set and P is a collection of 3-subsets of V , called blocks
(or triples), such that every pair of distinct elements of V is contained
in at most one block of P .
Two partial triple systems (V, P1) and (V, P2) are said to be disjoint and
mutually balanced (DMB) if:
(i) P1 ∩ P2 = ϕ.
(ii) any given pair of distinct elements of V is contained in a block of P1

if and only if it is contained in a block of P2.
Milici and Quattrocchi (1986) used what is now known as Steiner trades
and named them, DMB (disjoint and mutually balanced). The concept
of trade was first introduced in 1960s by Hedayat [11]. Hedayat and
Li applied the method of trade-off and trades for building BIBDs with
repeated blocks (1979-1980). Papers by Hwang [12], Mahmoodian and
Soltankhah [15], and Asgari and Soltankhah [3] deal with the existence
and non-existence of (v, k, t) trades. The concept of trade was intro-
duced for BIBDs first and then it was used in the Latin squares with
Latin trade title (see [1]) and in the Graph theory with G-trade title
(see [4]).
The definition of trades can be generalized, and here we introduce µ-way
trades (µ ≥ 2) as follows:

Definition 1.1. A µ-way (v, k, t) trade of volume m consists of µ dis-
joint collections T1, T2, . . . Tµ, each of m blocks, such that for every
t-subset of v-set V the number of blocks containing this t-subset is the
same in each Ti (1 ≤ i ≤ µ). In other words any pair of collections
{Ti, Tj}, 1 ≤ i < j ≤ µ is a (v, k, t) trade of volume m.
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Definition 1.2. A µ-way (v, k, t) trade is called µ-way (v, k, t) Steiner
trade if any t-subset of found(T) occurs at most once in T1 (Tj , j ≥ 2).
Example 1.3. The following trades are 3-way (8, 3, 2) Steiner trade
and 3-way (11, 3, 2) Steiner trade of volume 8 and 13, respectively:

T1 T2 T3

1, 2, 3 1, 2, 4 1, 2, 7
1, 4, 7 1, 3, 8 1, 3, 5
1, 5, 8 1, 5, 7 1, 4, 8
2, 4, 8 2, 3, 7 2, 4, 6
2, 6, 7 2, 6, 8 2, 3, 8
3, 5, 7 4, 6, 7 3, 6, 7
3, 6, 8 4, 5, 8 4, 5, 7
4, 5, 6 3, 5, 6 5, 6, 8

T1 T2 T3

1, 2, 11 2, 3, 11 1, 3, 11
3, 10, 11 1, 10, 11 2, 10, 11
1, 3, 7 1, 2, 8 1, 2, 9
1, 10, 9 1, 3, 5 1, 10, 8
1, 5, 8 1, 7, 9 1, 5, 7
2, 3, 6 2, 10, 9 2, 3, 4
2, 10, 8 2, 4, 6 2, 6, 8
2, 4, 9 3, 10, 6 3, 10, 7
3, 4, 5 3, 4, 7 3, 5, 6
6, 8, 4 6, 5, 8 7, 9, 4
6, 10, 5 7, 5, 10 9, 5, 10
7, 9, 5 9, 4, 5 8, 4, 5
7, 10, 4 8, 4, 10 6, 4, 10

Trades are also intimately connected with the so-called intersection
problem for combinatorial structures. This basically asks, given two
combinatorial structures with the same parameters, and based on the
same underlying set, such as a pair of block designs or a pair of latin
rectangles, in how many ways may they intersect? So for two block
designs, how many common blocks may there be? Of course, removing
a set of m blocks from a design and replacing them with a distinct set
of m blocks which nevertheless still make the whole collection of blocks
a design with the same parameters, is utilising a trade of volume m to
yield two designs with m blocks different, and so a known number of
blocks in common.
The intersection problem has also been considered for more than just
pairs of combinatorial structures; the intersection of µ combinatorial
structures with µ > 2 was dealt with in, for example, [17] for three
Steiner triple systems and [2] for three latin squares. These correspond
in the same manner to µ-way trades in the corresponding combinatorial
structure.
So it is clear that if there exist three t − (v, k, λ) designs (V,B) which
intersect in the same set of m blocks, and which differ in the remaining
blocks then we obtain a 3-way (v′, k, t) trade of volume bv − m where
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bv = |B|. Conversely let D = (V,B) be a t − (v, k, λ) design and
T = {T1, T2, T3} be a 3-way (v, k, t) trade of volume m. If T1 ⊆ B,
we say that D contains the trade T , and if we replace Ti (i = 2, 3) with
T1, then we obtain new designs Di = (D−T1)∪Ti which are denoted by
Di = D+Ti with the same parameters of D, and |Di∩D| = |Di∩Dj | =
bv−m (2 ≤ i, j ≤ 3). If there is not a 3-way (v′, k, t) trade of volume m,
then there does not exist three designs with intersection number bv−m.
It is important to understand the structure of µ-way trades and condi-
tions for their existence and non-existence. Here, the following question
is of interest.

Question 1.4. For a given µ, what is the set of all possible volume sizes
(the “volume spectrum”) of a µ-way (v, k, t) trade?

We now introduce some notations. Let Sµ(t, k) (Sµs(t, k)) denote the
set of all possible volume sizes of a µ-way (v, k, t) trade (µ-way (v, k, t)
Steiner trade).

This question has been answered for µ = 2 until now as follows:

(1) [12] S2(2, k) = N \ {1, 2, 3, 5}.

(2) [14] S2s(2, 3) = N \ {1, 2, 3, 5}.

(3) [7] S2s(2, 4) = N \ {1, 2, 3, 4, 5, 7}.

(4) [8] S2s(2, 5) = N \ {1, 2, 3, 4, 5, 6, 7, 9, 11}.

(5) [8] S2s(2, 6) = N \ {1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 13}.

(6) [8] If 0 < m < 2k − 2 or m = 2k − 1 then m ̸∈ S2s(2, k).

(7) [8] If m = 0,m ≥ 3k−3 or m is even and 2k−2 ≤ m ≤ 3k− 4
then m ∈ S2s(2, k).

(8) [9] 2k + 1 ∈ S2s(2, k) precisely when k ∈ {3, 4, 7}.

(9) [13] If m is odd and 2k + 3 ≤ m ≤ 3k − 4, then
S2s(2, k) does not contain m for k ≥ 7.

(10) [10] S2s(3, 4) = N \ {1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 13}.
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In this paper for µ = 3, we investigate this question and our results
include the following.

Main results:
(1) S3(1, k) = S3s(1, k) = N \ {1}, k ≥ 2.
(2) S3(2, 3) = N \ {1, 2, 3, 4, 5, 7}.
(3) S3(2, k) \ {7} = N \ {1, 2, 3, 4, 5}.
(4) S3s(2, 3) = N \ {1, 2, 3, 4, 5, 7}.
(5) S3s(2, 4) = N \ {1, 2, 3, 4, 5, 6, 7}.
(6) S3s(2, k) ⊆ N \ {1, 2, . . . , 2k − 1}.

2. Preliminary results

We start this section with some notations and useful results. Let T =
{T1, . . . , Tµ} be a µ-way (v, k, t) trade of volume m, and x, y ∈ found(T).
Then the number of blocks in Ti (1 ≤ i ≤ µ) which contains x is denoted
by rx and the number of blocks containing {x, y} is denoted by λxy. The
set of blocks in Ti (1 ≤ i ≤ µ) which contains x ∈ found(T) is denoted
by Tix (1 ≤ i ≤ µ) and the set of remaining blocks by T ′

ix (1 ≤ i ≤ µ).
By applying a result in [12], we see that if rx < m, then Tx = {T1x, . . . ,
Tµx} is a µ-way (v, k, t − 1) trade of volume rx, and furthermore T ′

x =
{T ′

1x, . . . , T
′
µx} is a µ-way (v − 1, k, t − 1) trade of volume m − rx. If

we remove x from the blocks of Tx, then the result will be a µ-way
(v − 1, k − 1, t− 1) trade which is called derived trade of T .
It is easy to show that if T is a Steiner trade then its derived trade is
also a Steiner trade.
If T = {T1, . . . , Tµ} and T ∗ = {T ∗

1 , . . . , T
∗
µ} are two µ-way (v, k, t) trades.

Then we define T + T ∗ = {T1 ∪ T ∗
1 , . . . , Tµ ∪ T ∗

µ}. It is easy to see that
T + T ∗ is a µ-way (v, k, t) trade. If T and T ∗ are Steiner trades and
found(T) ∩ found(T∗) = ϕ, then T + T ∗ is also a Steiner trade.

Definition 2.1. Let T = {T1, T2, . . . , Tµ} be a µ-way (v, k, t) Steiner
trade. We say T is t-solely balanced if Ti and Tj (1 ≤ i < j ≤ µ)
contain no common (t+ 1)−subset.

The following theorem will be used repeatedly in the sequel.
Theorem 2.2. (i) Let T = {T1, T2, . . . , Tµ} be a µ-way (v, k, t) trade
of volume m. Then, based on T , a µ-way (v + µ, k + 1, t + 1) trade T ∗

of volume µm can be constructed.
(ii) If T is t-solely balanced, then T ∗ is a Steiner trade.
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Proof. (i) Let x1, x2 and xµ be µ new elements. Then we can construct
the blocks of T ∗ = {T ∗

1 , T
∗
2 , . . . , T

∗
µ} as follows.

T ∗
1 T ∗

2 . . . T ∗
µ

x1T1 x1T2 . . . x1Tµ

x2T2 x2T3 . . . x2T1

x3T3 x3T4 . . . x3T2
...

...
...

...
xµTµ xµT1 . . . xµTµ−1

Clearly T ∗ is a µ-way (v + µ, k + 1, t+ 1) trade of volume µm.
(ii) It is obvious. □

In the next example, we show the existence of a 3-way (v, 3, 2) Steiner
trade of volume 6 from a 3-way (v, 2, 1) Steiner trade of volume 2.
Example 2.3. Let T = {T1, T2, T3} be the 3-way (v, 2, 1) Steiner trade
of volume 2.

T1 T2 T3

12 13 14
34 24 23

Now we can construct T ∗ = {T ∗
1 , T

∗
2 , T

∗
3 } by the method of the previous

Theorem.

T ∗
1 T ∗

2 T ∗
3

x12 x13 x14
x34 x24 x23
13z 12y 12z
24z 34y 34z
14y 14z 13y
23y 23z 24y

Remark 2.4. The 3-way (v, 3, 2) Steiner trade of volume 6 is unique.
This trade is isomorphic to the 3-way (7, 3, 2) Steiner trade of volume 6
which is constructed in Example 2.3.
Let T be a 3-way (v, 3, 2) Steiner trade of volume 6. First assume that,
for each x ∈ found(T), rx > 2. So x must appear at least 3 times in
T1. Let the first block of T1x be x12. So 1 and 2 must appear at least
two times in T ′

1x, since r1, r2 ≥ 3. Hence x, 1 and 2 should each appear
twice more in different blocks which contradicts the Steiner property of
T . So there exists x ∈ found(T) such that rx = 2. We know Tx \ {x} is
a 3-way (v, 2, 1) Steiner trade. Therefore Tx can be expressed as:
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T1x T2x T3x

x12 x13 x14
x34 x24 x23

Thus the pairs 13, 24, 14 and 23 must appear in distinct blocks of
T1. Since T is a 3-way (v, 3, 2) Steiner trade, we conclude that a 3-way
(v, 3, 2) Steiner trade of volume 6 has the following structure.

T1 T2 T3

x12 x13 x14
x34 x24 x23
13z 12y 12z
24z 34y 34z
14y 14z 13y
23y 23z 24y

Theorem 2.5. Sµ(2, k) ⊆ N \ {1, 2, 3, 4, 5}, k ≥ 3.

Proof. We know S2(2, k) = N \ {1, 2, 3, 5} (see [12]). So Sµ(2, k) ⊆
N \ {1, 2, 3, 5}.
The (v, k, 2) trade of volume 4 has unique structure (see [12]). If there
exists a 3-way (v, k, 2) trade T = {T1, T2, T3} of volume 4, then (T1, T2),
(T2, T3) and (T1, T3) are three (v, k, 2) trades of volume 4 and it is a
contradiction, because the structure of (v, k, 2) trade of volume 4 is
unique. □

3. 3-way Steiner trades

In this section we characterize S3s(1, k), S3s(2, 3) and S3s(2, 4). First,
we state some of the results in [16] which are needed in the sequel.
LetD(v, k) be the maximum number of STS(v)s that can be constructed
on a set with cardinality v such that any two STS(v)s intersect exactly
in the same k blocks.
Theorem 3.1. [16] D(v, bv − 7) = 2 for every v ≥ 7; v ̸= 9.
Theorem 3.2. [5] Any partial Steiner triple system of order v can be
embedded in a Steiner triple system of order w if w ≡ 1, 3 (mod 6) and
w ≥ 2v + 1.
Theorem 3.3. 7 ̸∈ S3s(2, 3).

Proof. Let T = {T1, T2, T3} be a 3-way (v, 3, 2) Steiner trade of volume 7.
It is obvious that T1 is a partial Steiner triple system. So by Theorem 3.2,
T1 can be embedded in a STS(v′) = D, where v′ ≥ 2|found(T)|+1 ≥ 13.
Then D, D′ = D + T2 and D′′ = D + T3 are three STS(v)s which
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intersect in the same set of bv − 7 blocks. But this is impossible by
Theorem 3.1. □
Theorem 3.4. S3s(1, k) = N \ {1}, k ≥ 2.

Proof. We know the complete graph K2m has 2m− 1 disjoint 1-factors.
If we take three 1-factors F1, F2 and F3 as T1, T2 and T3 respectively,
then T = {T1, T2, T3} is a 3-way (2m, 2, 1) trade of volume m.
For k ≥ 3, let T be a 3-way (v, 2, 1) Steiner trade of volume m and A be
a (k − 2)m-set disjoint from found(T). Set a partition of A to (k − 2)
subsets A1, . . . , Am. Then by adding Ai (1 ≤ i ≤ m) to the i-th block
of T , we obtain a 3-way (v, k, 1) Steiner trade. □
Example 3.5. A 3-way (4, 2, 1) Steiner trade of volume 2 is.

T1 T2 T3

13 14 12
24 23 34

A 3-way (8, 4, 1) Steiner trade of volume 2 is.

T1 T2 T3

x1x213 x1x214 x1x212
x3x424 x3x423 x3x434

Theorem 3.6. S3s(2, 3) = N \ {1, 2, 3, 4, 5, 7}.

Proof. By Theorem 2.2 (ii) and Theorem 3.4 there exists a 3-way (v, 3, 2)
Steiner trade of volume 3m (m ≥ 2). Note that the 3-way (2m, 2, 1)
Steiner trades of volume m constructed in Theorem 3.4 are 1-solely bal-
anced. The existence of a 3-way (v, 3, 2) Steiner trade of volumes 3m+1
and 3m+2, can be proved by using the following two recursive relations:
(i) 3m+ 1 = 3(m− 3) + 10 m− 3 ≥ 2;
(ii) 3m+ 2 = 3(m− 2) + 8 m− 2 ≥ 2.
These constructions, together with 3-way (v, 3, 2) Steiner trades of vol-
umes: 8, 10, 11 and 13 suffice to prove the existence.
We can see a 3-way (v, 3, 2) Steiner trade of volume 8 and 13 in Exam-
ple 1.3.

Consider three STS(v)s intersecting in bv−m blocks, where bv = v(v−1)
6 .

The remaining set of blocks form a 3-way (v′, 3, 2) Steiner trade of vol-
ume m. We know that there exist three STS(9)s which intersect in
b9−11 = 12−11 = 1 block and three STS(v)s which intersect in bv−10
blocks for v ≥ 19 (see [17]). So {10, 11} ⊆ S3s(2, 3).
The non-existence of Steiner trades of volumes 1, 2, 3, 4, 5 and 7 can be
concluded from Theorems 2.5 and 3.3. □
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Theorem 3.7. S3s(2, k) ⊆ N \ {1, 2, ..., 2k − 1} for k ≥ 4.

Proof. Let T = {T1, T2, T3} be a 3-way (v, k, 2) Steiner trade of volume
m. Let for each x ∈ found(T) rx ≥ 3, and a1, . . . , ak be a block in
T1. Corresponding to each ai, there exist two other blocks in T1, which
contain ai (1 ≤ i ≤ k) but not aj (j ̸= i) (Since T is a Steiner trade).
T1 must contain at least 2k + 1 blocks.
Now let there exists x ∈ found(T), such that rx = 2, then Tx is a 3-way
(v, k, 1) Steiner trade. So (T1x, T2x) has the following form from [12].

T1x T2x

S1S3S5 S1S4S5

S2S4S5 S2S3S5

with Si ⊆ V for i = 1, · · · , 5. |S1| = |S2| ≥ 1, |S3| = |S4| ≥ 1, Si∩Sj = ϕ
for all i ̸= j, and |S1|+ |S3|+ |S5| = k.
Since T is a 3-way (v, k, 2) Steiner trade and rx = 2, therefore S5 = {x}.
Without loss of generality, let
S1S3 = a2a3a4 . . . ak and S2S4 = b2b3b4 . . . bk. So there exists i such
that
S1S4 = a2 . . . aibi+1 . . . bk and S2S3 = b2 . . . biai+1 . . . ak. Then corre-
sponding to each pair apbq and bpaq in T2, 2 ≤ p ≤ i and i+ 1 ≤ q ≤ k,
there must exist 2(i− 1)(k − i) blocks in T1.
We know that there does not exist a repetitive block in T3. So a2
must appear in T3 with some bj , j /∈ {i+ 1, . . . , k} or with some aj , j ∈
{i+ 1, . . . , k} (one block of T3x contains a2 and bi+1 . . . bk). In the first
case we have at least one block for a2bj in T1. if the second case happen,
we have k − i blocks for ajbr r ∈ {i+ 1, . . . , k}. Therefore in two cases,
there exists at least another block in T1. We have the same situation for
b2. Then we have:

|T1| ≥ 2 + 2(i− 1)(k − i) + 2 ≥ 2k − 2 + 2 = 2k.

So the volume of 3-way (v, k, 2) Steiner trade is at least 2k. □

The 3-way (v, k, 1) Steiner trades (k ≥ 3), which were constructed
in Theorem 3.4, are not 1-solely balanced. But for k = 3 by using the
idea of Kirkman triple systems, in the following theorem we introduce a
3-way (v, 3, 1) Steiner trade 1-solely balanced.
Theorem 3.8. There exists a 3-way (v, 3, 1) Steiner trade which is
1-solely balanced of volume m (m ≥ 3).
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Proof. We know that, there exists aKTS(v) if and only if v ≡ 3 (mod 6) [6].
For m = 2k + 1, consider a KTS(3m). Let P1, P2, P3, be three parallel
classes of KTS(3m). We can construct a 3-way (v, 3, 1) Steiner trade
1-solely balanced of volume m as follows.

T1 T2 T3

P1 P2 P3

For m = 2k, consider two 3-way (v, 3, 1) Steiner trades 1-solely balanced
T and T ′ of odd volumes with disjoint foundations, then T + T ′ is a
3-way (v, 3, 1) Steiner trade 1-solely balanced of volume m, except for
m = 4, which we handle below.

T1 T2 T3

123 147 158
456 25a 24c
789 8b6 7b3
abc 39c 69a

□
Theorem 3.9. S3s(2, 4) = N \ {1, 2, 3, 4, 5, 6, 7}.

Proof. By Theorem 3.7, S3s(2, 4) ⊆ N \ {1, 2, 3, 4, 5, 6, 7}.
By Theorem 3.8 and Theorem 2.2 (ii), there exists a 3-way (v, 4, 2)
Steiner trade of volume 3m for m ≥ 3.
The existence of a 3-way (v, 4, 2) Steiner trade of volumes 3m + 1 and
3m+ 2, can be proved by using the following two recursive relations:
3m+ 1 = 3(m− 3) + 10 m− 3 ≥ 3;
3m+ 2 = 3(m− 2) + 8 m− 2 ≥ 3.
These constructions, together with the 3-way (v, 4, 2) Steiner trades of
volumes: 8, 10, 11, 13, 14, 16 suffice to prove the existence.
Later we handle the trades of volumes m = 8, 10, 11, 13, 14 and 16 (see
appendix). □

Example 3.10. In this example we construct a 3-way (9, 3, 1) trade
of volume 3 from a KTS(9). Then we obtain a 3-way (12, 4, 2) Steiner
trade of volume 9 from it.

KTS(9):
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P1 P2 P3 P4

123 147 159 168
456 258 267 249
789 369 348 357

the 3-way (9, 3, 1) trade of volume 3:

T1 T2 T3

123 147 159
456 258 267
789 369 348

the 3-way (12, 4, 2) Steiner trade of volume 9:

T1 T2 T3

x123 x147 x159
x456 x258 x267
x789 x369 x348
y147 y159 y123
y258 y267 y456
y369 y348 y789
z159 z123 z147
z267 z456 z258
z348 z789 z369

4. 3-way (v, k, 2) trades

In the previous section we observed that S3s(1, k) = N\{1} for k ≥ 2.
So S3(1, k) = N\{1} for k ≥ 2. In this section we investigate the spectra
S3(2, 3) and S3(2, k).
Theorem 4.1. If there exists a 3-way (v, 3, 2) trade of volume 7, then
it is a 3-way (v, 3, 2) Steiner trade.

Proof. Let T = {T1, T2, T3} be a 3-way (v, 3, 2) trade of volume 7. We
prove that there does not exist any pair x, y ∈ found(T) with λxy ≥ 2.
First, Suppose that λxy ≥ 3.
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T1 T2 T3

xyz1 xyz4 xyz7
xyz2 xyz5 xyz8
xyz3 xyz6 xyz9
−−− −−− −−−
−−− −−− −−−
−−− −−− −−−
−−− −−− −−−

The pairs xzi for i = 4 . . . 9 must appear in the blocks of T1. So the
element x must appear three times more in T1 and therefore rx ≥ 6.
But rx ̸= 6, 7 for all x ∈ found(T). Because Tx and T ′

x are trades of
volume rx and m− rx. We know that there does not exist any trade of
volume one.
If λxy = 2 then T has the following form.

T1 T2 T3

xyz1 xyz3 xyz6
xyz2 xyz4 xyz5
−−− −−− −−−
−−− −−− −−−
−−− −−− −−−
−−− −−− −−−
−−− −−− −−−

The pairs xzi for i = 3, . . . , 6 must appear in the blocks of T1. So
rx, ry ≥ 4.

T1 T2 T3

xyz1 xyz3 xyz6
xyz2 xyz4 xyz5
x−− x−− x−−
x−− x−− x−−
y −− y −− y −−
y −− y −− y −−
−−− −−− −−−

It is obvious that the 3rd and 4th blocks of T1, also the 4th and 5th
blocks of T1 contain the elements zi for i = 3, . . . , 6. Hence the 7th
block of T1 contains z1 and z2, because the order of each element is at
least two.
Now there exists an empty place in the last block of T1. By the previous
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reason, there does not exist any new element in this place. If one of the
elements x, y and zi, i = 1, . . . , 6 appears in this place (Name it w), then
the pair z1w must appear in the blocks of T2(T3) which is impossible. □
Theorem 4.2. S3(2, 3) = N \ {1, 2, 3, 4, 5, 7}.

Proof. The conclusion follows from Theorems 4.1, 2.5, and 3.6. □

Theorem 4.3. S3(2, k) contains N \ {1, 2, 3, 4, 5}, except possibly 7.

Proof.We have a 3-way (v, 3, 2) trade of volumem, m ∈ N\{1, 2, 3, 4, 5, 7}
from Theorem 4.2. Let A be a (k − 3)m-set disjoint from found(T).
Set a partition of A to (k − 3) subsets A1, . . . , Am. Then by adding
Ai (1 ≤ i ≤ m) to the i-th block of T , we obtain a 3-way (v, k, 2) trade of
volume m, m ∈ N \ {1, 2, 3, 4, 5, 7}. The non-existence of 3-way (v, k, 2)
trades of volume m, m ∈ {1, 2, 3, 4, 5} follows from Theorem 2.5. □

5. Appendix

The following trades are necessary in the proof of Theorem 3.9.

m = 8 :

T1 T2 T3

124a 125b 124b
1568 1468 156c
17bc 17ac 17a8
235b 234a 235a
346c 356c 3468
378a 378b 37cb
489b 589a 4c9a
59ac 49bc 59b8

m = 10 :

T1 T2 T3

0139 0238 089c
028c 091c 0123
124a 987a 824a
17bc 84bc 87b3
235b 935b 295b
2679 9642 267c
346c 376c 9463
378a 341a 971a
489b 127b 41cb
59ac 52ac 5ca3
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m = 11 :

T1 T2 T3

028c 025c 0286
0457 0468 045b
06ab 07ab 07ac
1568 1675 1578
17bc 18bc 1bc6
235b 236b 235c
2679 2789 27b9
346c 347c 3476
378a 385a 3b8a
489b 459b 89c4
59ac 69ac 596a

m = 13 :

T1 T2 T3

0139 149c 0739
028c 248c 328c
0457 04b7 3451
06ab 46a5 36ab
124a 18a0 724b
1568 1b62 7568
17bc 157c 17ac
235b 835b 205a
2679 8679 2691
346c 306c 046c
378a 372a 018b
489b 0295 489a
59ac b9ac 59bc

m = 14 :

T1 T2 T3

0456 1456 2456
28ad 08ed 18ad
37be 37ba 37fe
19cf 29cf 09cb
0789 1789 2789
15bd 25bd 05fd
24ce 04ca 14ce
36af 36ef 36ab
0abc 1abc 2afc
68e1 268a 068e
257f 057f 157b
0def 1dfa 2deb
147a 247e 047a
269b 069b 169f

m = 16 :

T1 T2 T3

0456 1456 0856
28ad 38ad 2bad
37be 07be 37fe
19cf 29cf 19c4
0789 1789 07b9
15bd 25bd 15fd
24ce 34ce 28ce
36af 06af 36a4
0abc 1abc 0afc
68e1 268e 16be
257f 357f 2574
349d 049d 38d9
0def 1def 0de4
147a 247a 187a
269b 369b 269f
358c 058c 35bc
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