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Abstract. We show that the character space of the vector-valued
Lipschitz algebra Lipα(X,E) of order α, is homeomorphic to the
cartesian product X × ME in the product topology, where X is a
compact metric space and E is a unital commutative Banach alge-
bra. We also characterize the form of each character on Lipα(X,E).

By appealing to the injective tensor product, we then identify
the character space of the vector-valued polynomial Lipschitz al-
gebra LipαP (X,E), generated by the polynomials on the compact
space X ⊆ Cn. It is also shown that LipαP (X,E) is the injective
tensor product LipαP (X)⊗̂ϵE. Finally, we characterize the form of
each character on LipαP (X,E).
Keywords: Vector-valued Lipschitz algebra, character space, in-
jective tensor product, polynomial approximation.
MSC(2010): Primary: 46E40; Secondary: 46J10, 46B28, 46M05,
47B48.

1. Introduction

For a compact Hausdorff space X and a topological vector space E,
let C(X,E) denote the space of all continuous maps from X into E.
Whenever (E, ∥ · ∥) is a normed algebra over the complex numbers C,
we define the uniform norm on C(X,E) by

(1.1) ∥f∥X = supx∈X∥f(x)∥.
For f, g ∈ C(X,E) and λ ∈ C, the pointwise operations λf , f+g and fg
in C(X,E) are defined as usual. It is easy to see that (C(X,E), ∥ · ∥X)
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Vector-valued Lipschitz algebras 1454

is a Banach algebra whenever E is a Banach algebra. If E = C we get
the ordinary uniform (function) algebra C(X,C) = C(X). Let (X, d)
be a compact metric space and E be a Banach algebra. For a constant
0 < α ≤ 1 and a map f : X → E, the Lipschitz constant of f and the
vector-valued Lipschitz algebra Lipα(X,E) are defined as follows:

pα(f) = sup
x,y∈X
x̸=y

∥f(x)− f(y)∥
d(x, y)α

,

Lipα(X,E) = {f : X → E : pα(f) <∞} .
We define the norm on Lipα(X,E) by ∥f∥α = ∥f∥X+pα(f). It is easy

to see that (Lipα(X,E), ∥ · ∥α) is complete and it is, in fact, a Banach
algebra [1]. Note that whenever E = C we get the classical complex-
valued Lipschitz algebra Lipα(X), which was first studied by Sherbert in
[13] and [14]. For certain properties of vector-valued Lipschitz algebras
(spaces) one may refer to [1, 8] and [15].

A character on a Banach algebra A is a nonzero complex homomor-
phism on A. The set of all characters on A, denoted by MA, is called
the character space of A. The injective tensor product of Banach alge-
bras A and B is denoted by A⊗̂ϵB (see Section 2 for the definition of
tensor products). For the following well-known result, which is due to
J. Tomiyama, see [16, Theorem 2] or [9, Theorem 2.11.2].

Theorem 1.1. Let A and B be commutative Banach algebras. If A⊗̂γB
is a Banach algebra for the cross-norm γ ≥ ϵ, then MA⊗̂γB

is homeo-

morphic to MA ×MB.

It is interesting to note that for a compact Hausdorff space X and a
commutative Banach algebra E, C(X,E) is (isometrically) isomorphic
to C(X)⊗̂ϵE [9, Proposition 1.5.6]. In order to identify the character
space of C(X,E) one can apply Theorem 1.1 to show that the character
space of C(X,E) is homeomorphic to X ×ME , which has already been
proved by Hausner in [2].

To determine the character space of Lipα(X,E), one may try to adapt
the same method as in the case of C(X,E), while applying Theorem 1.1.
However, an important question arising here is the following:

Question 1.2. Let X be a compact metric space and E be a commu-
tative Banach algebra. Is Lipα(X,E) isometrically isomorphic to the
Banach algebra Lipα(X)⊗̂γE for some cross-norm γ ≥ ϵ?
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To the best of our knowledge, the answer to this question is still
unknown (see [7] and [8, Lemma 5.10]). Although, in [15, Theorem 2.6]
there is a positive answer to this question, but there are some gaps in
the proof, which has also been mentioned by Runde in his review on
the reference [15]. Regardless of the answer to Question 1.2, in Section
2, we show that the character space of Lipα(X,E) is homeomorphic to
X ×ME . Indeed, our method is based on using a vector-valued version
of a theorem due to Honary [3] relating the character space of a Banach
function algebra to the character space of its uniform closure. We also
characterize the form of each character on Lipα(X,E).

In Section 3, for a compact set X ⊆ Cn and a unital commutative
Banach algebra E, we first introduce the vector-valued polynomial Lips-
chitz algebra LipαP (X,E) and then identify the character space of this al-
gebra as well as characterizing the form of each character on LipαP (X,E).
We also show that the answer to Question 1.2 is positive for the vector-
valued polynomial Lipschitz algebra LipαP (X,E).

For further results on the character space of the classic Lipschitz al-
gebra Lipα(X) as well as the extended analytic Lipschitz algebras, one
may refer to [5] and [6].

2. Vector-valued Lipschitz algebras

Let a be an element of the Banach algebra A and â(h) = h(a) for all
h ∈ A∗, where A∗ denotes the dual space of A. If MA is not empty then
for every a ∈ A the mapping â : MA → C is the Gelfand transform of
a. The Gelfand topology of MA is the relative topology on MA ∪ {0},
induced by the weak∗-topology of A∗.

Let X be a compact Hausdorff space. A subalgebra A of C(X) which
contains the constants and separates the points of X is called a function
algebra on X. If, moreover, A is a Banach algebra under some norm,
then it is called a Banach function algebra on X. T. G. Honary in [3]
proved that if A is a Banach function algebra on a compact Hausdorff

space X, then MA
∼=MA (homeomorphic) if and only if ∥f̂∥MA

= ∥f∥X
for every f ∈ A. Note that the condition ∥f̂∥MA

= ∥f∥X is, in fact,

equivalent to ∥f̂∥MA
≤ ∥f∥X for all f ∈ A.

We next state a vector-valued version of this result. For the proof one
may adapt the same method as in [3].

Theorem 2.1. Let X be a compact Hausdorff space, E be a unital
Banach algebra and A be a Banach subalgebra of C(X,E) such that
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MA is non-empty and A is unital, where A is the closure of A with
respect to the uniform norm (1.1) on C(X,E). Then the restriction

map F :MA →MA is a homeomorphism if and only if ∥f̂∥MA
≤ ∥f∥X

for every f ∈ A.

Corollary 2.2. Let X be a compact metric space and E be a unital
commutative Banach algebra. Then MLipα(X,E)

∼=M
Lipα(X,E)

.

Proof. Let f ∈ Lipα(X,E). By induction it is easy to see that

pα(f
n) ≤ n pα(f)∥f∥n−1

X ,

for all n ∈ N. Hence,

∥fn∥α ≤ ∥f∥nX + npα(f)∥f∥n−1
X = ∥f∥n−1

X (∥f∥X + npα(f)),

which implies that

∥f̂∥MLipα(X,E)
= lim

n→∞
∥fn∥α

1
n ≤ ∥f∥X .

Consequently, by Theorem 2.1, MLipα(X,E)
∼=M

Lipα(X,E)
. □

In [15] it has been shown that the character space of Lipα(X,E) can
be identified with X, which is not correct and has also been mentioned
by V. Runde in his report in MathSciNet on the reference [15]. Using
Theorem 2.1 and Corollary 2.2, we adapt a different approach from
the one given in [15] to show that the character space of Lipα(X,E)
is, in fact, the cartesian product X ×ME , with respect to the product
topology. Some more related results will be presented too. We first bring
some preliminary results and definitions. The first one, which appeared
in [1], is easy to show.

Lemma 2.3. Let X be a compact metric space and E be a Banach
algebra. Then,

Lipα(X,E) = {f : X → E : σ ◦ f ∈ Lipα(X), for all σ ∈ E∗} .

For a subalgebra A ⊆ C(X,E) we define

E∗ ◦A = {σ ◦ f : f ∈ A, σ ∈ E∗} .

Lemma 2.4. Let X be a compact metric space and E be a Banach
algebra. Then,

E∗ ◦ Lipα(X,E) = Lipα(X).
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Proof. It is easy to see that E∗◦Lipα(X,E) ⊆ Lipα(X). For the converse
inclusion let f ∈ Lipα(X). For a nonzero (fixed) vector v ∈ E define
T : C → E by T (λ) = λv. Clearly, T is a continuous linear map
and M = T (C) is a closed (one dimensional) subspace of E. Since
T−1 : M → C is a continuous linear functional, by the Hahn-Banach
theorem, there exists σ ∈ E∗ such that σ|M = T−1. Since σ ◦ T ◦ f = f
and T ◦ f ∈ Lipα(X,E), it follows that f ∈ E∗ ◦ Lipα(X,E) and hence

Lipα(X) ⊆ E∗ ◦ Lipα(X,E).

□

It is worth mentioning that, by Lemma 2.3, Lipα(X,E) is the maximal
subalgebra of C(X,E) satisfying E∗ ◦Lipα(X,E) ⊆ Lipα(X), that is, if
A is a subalgebra of C(X,E) with E∗◦A ⊆ Lipα(X), then A is contained
in Lipα(X,E). To see this, let A be such a subalgebra and let f ∈ A.
Then, for every σ ∈ E∗ we have σ ◦ f ∈ Lipα(X) and hence, by Lemma
2.3, f ∈ Lipα(X,E), which implies that A ⊆ Lipα(X,E).

Before stating the next definition, we recall the concept of tensor
product as stated in [12, §1.1].

We write B(X × Y,Z) to denote the vector space of all bilinear map-
pings from the cartesian product X×Y of vector spaces X and Y into a
vector space Z. When Z is the scalar field we denote the corresponding
space of bilinear maps simply by B(X × Y ). Now, the tensor product
X ⊗ Y of the vector spaces X and Y can be constructed as a space of
linear functionals on B(X × Y ) in the following way:
For x ∈ X and y ∈ Y we denote by x ⊗ y the linear functional on
B(X × Y ) given by evaluation at the point (x, y) ∈ X × Y . In other
words, (x⊗ y)(T ) = T (x, y), for each bilinear map T ∈ B(X × Y ).

For the vector space X let X ′ denote the algebraic dual of X, con-
sisting of all linear functionals on X. Whenever X is a topological (in
particular, normed) vector space then X∗ denotes the (topological) dual
of X, consisting of all continuous linear functionals on X.

The tensor product X⊗Y is the subspace of the algebraic dual B(X×
Y )′ spanned by the elements x⊗ y. Thus, a typical tensor in X ⊗Y has
the form u =

∑n
i=1 λixi⊗yi, where n is a natural number, λi ∈ C, xi ∈ X

and yi ∈ Y .
By [12, Proposition 1.4], for every bilinear map T : X × Y → Z there

exists a unique linear map T̃ : X ⊗ Y → Z such that

T (x, y) = T̃ (x⊗ y),
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for all x ∈ X and y ∈ Y . This fact allows us to consider tensors as
bilinear maps on X ′ × Y ′. To see this, consider the bilinear map Bx,y

on X ′ × Y ′ given by Bx,y(φ,ψ) = φ(x)ψ(y), for x ∈ X, y ∈ Y , φ ∈ X ′

and ψ ∈ Y ′. The map

(x, y) ∈ X × Y 7−→ Bx,y ∈ B(X ′ × Y ′)

is easily seen to be bilinear and so, by [12, Proposition 1.4], there is a
unique linear map from X⊗Y into B(X ′×Y ′) that maps x⊗y to Bx,y.
By [12, Proposition 1.2] this map is injective and hence one can consider
the identification

x⊗ y ∼ Bx,y ∈ B(X ′ × Y ′).

Whenever X and Y are Banach spaces, we can replace X ′ and Y ′

by X∗ and Y ∗, respectively, in the argument above. This leads to the
canonical embedding X ⊗ Y ⊆ B(X∗ × Y ∗), where B(X∗ × Y ∗) is the
space of bounded bilinear mappings on X∗ × Y ∗. Hence, the norm on
B(X∗ × Y ∗) induces a norm on the space X ⊗ Y . This norm is called
the injective norm on X ⊗ Y and is denoted by ∥ · ∥ϵ. Thus, for every
u ∈ X ⊗ Y we have

∥u∥ϵ = sup{|
n∑

i=1

φ(xi)ψ(yi)| : φ ∈ X∗
1 , ψ ∈ Y ∗

1 },

where
∑n

i=1 xi ⊗ yi is any representation of u, and X∗
1 and Y ∗

1 are the
closed unit balls in X∗ and Y ∗, respectively. The closure of X ⊗ Y with
the injective norm is called the injective tensor product of X and Y and
is denoted by X⊗̂ϵY .

Now, let X be a compact Hausdorff space and E be a locally convex
topological vector space. Consider the bilinear mapping

T : C(X)× E → C(X,E)

given by T (f, v) = fv, for f ∈ C(X) and v ∈ E. Here, fv : X → E is the
continuous function given by (fv)(x) = f(x)v for every x ∈ X. Hence,
applying [12, Proposition 1.4], as we mentioned above, there exists a
unique linear mapping

(2.1) ϕ : C(X)⊗ E → C(X,E),

such that ϕ(f ⊗ v) = fv for every f ∈ C(X) and v ∈ E. Applying a
similar discussion as in [12, page 11] one can see that the linear mapping
ϕ in (2.1) is injective. Therefore, in the rest of this paper we use the
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(linear) identification

(2.2) f ⊗ v ∼ ϕ(f ⊗ v) = fv ∈ C(X,E),

for f ∈ C(X) and v ∈ E (see also [10]). Hence, the vector-valued
function f ⊗ v : X → E is given by

(f ⊗ v)(x) = f(x)v, (f ∈ C(X), x ∈ X, v ∈ E).

Applying the identification (2.2) one can consider C(X) ⊗ E as a sub-
space of C(X,E). Also, for a subspace A of C(X), let A⊗E denote the
subspace of C(X,E) spanned by {f ⊗ v : f ∈ A, v ∈ E}.

In order to state the vector-valued version of the Stone-Weierstrass
Theorem, we need the following definition, which is similar to that of
[10, pp. 61-63].

Definition 2.5. Let A be a subspace of C(X,E), where X is a compact
Hausdorff space and E is a locally convex topological vector space. Then,

(i) A is a polynomial algebra if (E∗ ◦A)⊗ E ⊆ A.
(ii) A is self-adjoint if E∗ ◦A is a self-adjoint subspace of C(X).
(iii) A vanishes at no points of X if for every x ∈ X there exists

g ∈ A such that g(x) ̸= 0.
(iv) A is separating if for every two distinct elements x, y ∈ X there

exists f ∈ A such that f(x) ̸= f(y).

We now state a vector-valued version of Stone-Weierstrass approxi-
mation theorem for polynomial algebras [10, Corollary 4.18].

Theorem 2.6. Let X be a compact Hausdorff space, E be a locally con-
vex topological vector space and A ⊆ C(X,E) be a self-adjoint polyno-
mial algebra. Then, A is dense in C(X,E) if and only if A is separating
and vanishes at no points of X.

Now, as a consequence of Lemma 2.4 and Theorem 2.6, we get the fol-
lowing interesting result on vector-valued Lipschitz algebras. Although,
this result has already been proved in [15], but we believe that their
proof is not correct.

Theorem 2.7. Let X be a compact metric space and E be a Banach
algebra. Then Lipα(X,E) is uniformly dense in C(X,E), that is,

Lipα(X,E) = C(X,E).
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Proof. The set Lipα(X) ⊗ E consists of all finite sums of functions of
the form x 7→ f(x)v, where f ∈ Lipα(X) and v ∈ E. Clearly, for all
x, y ∈ X with x ̸= y we have

∥f(x)v − f(y)v∥
d(x, y)α

≤ ∥v∥pα(f).

Consequently, Lipα(X) ⊗ E ⊆ Lipα(X,E) and hence, by Lemma 2.4,
Lipα(X,E) is a polynomial algebra. On the other hand, Lipα(X,E)
contains the constant functions v ∈ E and so it vanishes at no points
of X. To show that Lipα(X,E) is separating, let x, y ∈ X such that
x ̸= y. For z ∈ X define g(z) = dα(z, y)v, where v is a (fixed) nonzero
vector in E. Clearly g ∈ Lipα(X,E) and g(y) = 0 ̸= g(x). By Lemma
2.4, E∗ ◦ Lipα(X,E) = Lipα(X) is self-adjoint. Hence it follows from

Theorem 2.6 that Lipα(X,E) = C(X,E). □

Remark 2.8. It is interesting to note that, by [2, Lemma 1], every f
in C(X,E) can be approximated by a sequence {gn} in C(X, E) of the
form gn =

∑n
k=1 fkvk, where fk ∈ C(X) and vk ∈ E. Since Lipα(X) is

dense in C(X), by applying partitions of unity and a method similar to
the one in [2, Lemma 1], one can see that the E-valued Lipschitz algebra
Lipα(X,E) is dense in C(X, E).

By applying Theorem 2.7 we now determine the character space of
Lipα(X,E).

Theorem 2.9. Let X be a compact metric space and E be a unital
commutative Banach algebra. Then, the character space of Lipα(X,E)
is homeomorphic to the cartesian product X ×ME in the product topol-
ogy, i.e., MLipα(X,E)

∼= X ×ME .

Proof. By applying Corollary 2.2 and Theorem 2.7, we have

MLipα(X,E)
∼=MC(X,E).

On the other hand, by [2] MC(X,E) is homeomorphic to the cartesian
product X ×ME in the product topology, and hence the result follows.

□

In particular, when E = C, we have MLipα(X)
∼= X ×MC ∼= X, which

is a known result. See for example [13, Section 2] or [4, page 64].
In [2, Lemma 2] A. Hausner proved that whenever X is a compact

Hausdorff space and E is a commutative Banach algebra, every character
ϕ on C(X,E) is of the form ϕ = ψ◦δx for some ψ ∈ME and some x ∈ X,
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where δx is the evaluation homomorphism on C(X,E) at x, defined by
δx(f) = f(x). We conclude this section by characterizing the form of
each character on Lipα(X,E).

Theorem 2.10. Let X be a compact metric space and E be a unital
commutative Banach algebra. Then, every character ϕ on Lipα(X,E)
is of the form ϕ = ψ ◦ δx for some ψ ∈ ME and some x ∈ X, where δx
is the evaluation homomorphism on Lipα(X,E) at x.

Proof. Let ϕ ∈ MLipα(X,E) and f ∈ C(X,E). By Theorem 2.7, there
exists a sequence {fn} in Lipα(X,E) such that ∥fn − f∥X → 0. By

Corollary 2.2, ∥f̂∥MLipα(X,E)
≤ ∥f∥X for every f ∈ Lipα(X,E) and so

|ϕ(fn)− ϕ(fm)| ≤ ∥fn − fm∥X → 0 (n,m→ ∞).

Thus, limn→∞ ϕ(fn) exists. If there is another sequence {gn} in
Lipα(X,E) such that ∥gn − f∥X → 0, then it is easy to see that

lim
n→∞

ϕ(gn) = lim
n→∞

ϕ(fn).

Hence we can define Φ on C(X,E) = Lipα(X,E) by Φ(f) = limn→∞ ϕ(fn).
It is obvious that Φ ∈ MC(X,E), and in fact, Φ is an extension of ϕ to
C(X,E). By [2, Lemma 2], there exist ψ ∈ ME and x ∈ X such that
Φ = ψ ◦ δx on C(X,E) and so ϕ = ψ ◦ δx on Lipα(X,E). □

3. Vector-valued polynomial Lipschitz algebras

Throughout this section, X is a compact set in the complex n-space
Cn and E is a unital commutative Banach algebra.

The algebra of all polynomials on X in the coordinate functions
z1, ..., zn with coefficients in C is denoted by P0(X) and its uniform
closure in C(X) is denoted by P (X). Similarly, the algebra of all poly-
nomials in the coordinate functions z1, ..., zn with coefficients in E is
denoted by P0(X,E) and its uniform closure in C(X,E) is denoted by
P (X,E). Note that P0(X,E) ⊆ Lipα(X,E). Next, we define the con-
cept of a vector-valued polynomial Lipschitz algebra.

Definition 3.1. The closed subalgebra of Lipα(X,E) generated by
P0(X,E) is called the vector-valued polynomial Lipschitz algebra and is
denoted by LipαP (X,E).

Whenever E = C, we get the ordinary polynomial Lipschitz algebra
LipαP (X), which was studied in [4] and [5].
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Theorem 3.2. The character space of LipαP (X,E) is homeomorphic to
the character space of P (X,E), that is, MLipαP (X,E)

∼=MP (X,E).

Proof. As we mentioned before, P0(X,E) ⊆ LipαP (X,E). Since the norm
of a vector-valued Lipschitz algebra is stronger than the uniform norm
on X, LipαP (X,E) ⊆ P (X,E). This implies that

LipαP (X,E) = P (X,E).

By the same argument as in Corollary 2.2, we can show that

∥f̂∥MLipα
P

(X,E)
≤ ∥f∥X ,

for every f ∈ LipαP (X,E). Hence by Theorem 2.1, the result follows. □

To determine the character space of LipαP (X,E), we apply Theorem
3.2. Hence, it is enough to identify the character space of P (X,E). We
first prove the following result, by adapting a classical discussion as in
[9, Proposition 1.5.6] (see also [11, Theorem B.2.5]).

Consider the bilinear mapping T : P (X) × E → P (X,E) given by
T (f, v) = fv for f ∈ P (X) and v ∈ E. Note that T is the same
bilinear mapping given in the previous section, leading to the inclusion
C(X)⊗ E ⊆ C(X,E). By the same method as in the previous section,
by applying [12, Proposition 1.4] to T : P (X) × E → P (X,E), we find
the unique linear mapping

(3.1) ϕ : P (X)⊗ E → P (X,E),

such that ϕ(f ⊗ v) = fv for f ∈ P (X) and v ∈ E. By [12, page 11] ϕ in
(3.1) is injective and hence we have the (linear) identification

(3.2) f ⊗ v ∼ ϕ(f ⊗ v) = fv ∈ P (X,E),

for every f ∈ P (X) and v ∈ E. Considering the identification (3.2),
the space P (X) ⊗ E may be regarded as a subspace of P (X,E). Also
note that, by [9, Proposition 1.5.1] there exists a unique multiplication
on P (X)⊗ E, given by

(3.3) (f ⊗ v)(g ⊗ w) = fg ⊗ vw,

for every f, g ∈ P (X) and v, w ∈ E, with respect to which P (X)⊗E is
an algebra. Before stating the next interesting result, we recall that the
closed unit ball of a Banach space A is denoted by A1.

Theorem 3.3. The algebra P (X,E) is the injective tensor product of
P (X) and E, that is, P (X,E) = P (X)⊗̂ϵE.
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Proof. Consider the identification (linear) mapping

ϕ : P (X)⊗ E → P (X,E),

given in (3.1) and (3.2). We show that this identification map is indeed
a homomorphism. See, for example, [9, Proposition 1.5.6]. Let

u =

n∑
i=1

fi ⊗ ai, v =

m∑
j=1

gj ⊗ bj ,

be arbitrary elements in P (X)⊗ E. Then

ϕ(uv) = ϕ((
∑n

i=1 fi ⊗ ai)(
∑m

j=1 gj ⊗ bj))

= ϕ(
∑n

i=1

∑m
j=1(fi ⊗ ai)(gj ⊗ bj))

= ϕ(
∑n

i=1

∑m
j=1 figj ⊗ aibj)

=
∑n

i=1

∑m
j=1 figjaibj = (

∑n
i=1 fiai)(

∑m
j=1 gjbj)

= (
∑n

i=1 ϕ(fi ⊗ ai))(
∑m

j=1 ϕ(gj ⊗ bj))

= ϕ(
∑n

i=1 fi ⊗ ai)ϕ(
∑m

j=1 gj ⊗ bj) = ϕ(u)ϕ(v),

and hence, ϕ is a homomorphism.
Next, we show that ϕ is an isometry if we consider the injective norm

on P (X)⊗ E. For u =
∑n

i=1 fi ⊗ ai in P (X)⊗ E, we have

∥ϕ(u)∥X = sup{∥ϕ(u)(x)∥ : x ∈ X}
= sup{∥

∑n
i=1 fi(x)ai∥ : x ∈ X}

= sup{|g(
∑n

i=1 fi(x)ai)| : g ∈ E∗
1 , x ∈ X}

= sup{∥
∑n

i=1 g(ai)fi∥ : g ∈ E∗
1}

= sup{|
∑n

i=1 g(ai)λ(fi)| : g ∈ E∗
1 , λ ∈ P (X)∗1}

= ∥
∑n

i=1 fi ⊗ ai∥ϵ = ∥u∥ϵ.

Thus, ϕ : P (X)⊗E → P (X,E) is an isometry and hence the injective
norm is an algebra norm on P (X) ⊗ E. Therefore, the multiplication
P (X)⊗E given in (3.3) can be uniquely extended to P (X)⊗̂ϵE. More-
over, ϕ : P (X)⊗E → P (X,E) can be uniquely extended to an isometric
homomorphism

ϕ : P (X)⊗̂ϵE → P (X,E).

Now, it only remains to prove the surjectivity of ϕ. For this, it is
enough to show that ϕ(P (X)⊗E) is dense in P (X,E). Let f ∈ P (X,E)
and ε > 0. Then, there exists a polynomial g =

∑n
i=0 x

iai in P0(X,E)
such that ∥f − g∥X < ε. If we take pi to be the monomial function
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pi(x) = xi, then

g =

n∑
i=0

ϕ(pi ⊗ ai) = ϕ(

n∑
i=0

pi ⊗ ai),

and hence

∥f − ϕ(

n∑
i=1

pi ⊗ ai)∥X < ε.

This implies that ϕ : P (X)⊗̂ϵE → P (X,E), is an isometric isomor-
phism. □

Now, by applying the theorems above, we determine the character
space of LipαP (X,E).

Theorem 3.4. The character space of the polynomial Lipschitz alge-

bra LipαP (X,E) is homeomorphic to the cartesian product X̂ ×ME in

the product topology, that is, MLipαP (X,E)
∼= X̂ × ME , where X̂ is the

polynomial convex hull of X.

Proof. By [16, Theorem 2] or [9, Theorem 2.11.2], the character space

of the injective tensor product P (X)⊗̂ϵE is homeomorphic to X̂ ×ME ,
with the product topology. Hence, by Theorem 3.3, MP (X,E) is also

homeomorphic to X̂ ×ME . Therefore, Theorem 3.2 implies the desired

result, i.e., MLipαP (X,E)
∼= X̂ ×ME . □

We now adapt a similar method as in Theorem 3.3, to show that
LipαP (X,E) is, in fact, the injective tensor product LipαP (X)⊗̂ϵE.

In the following theorem we consider the Lipschitz algebra Lipα(X,E)
with the norm ∥f∥ = max(∥f∥X , pα(f)), which is equivalent to the
ordinary norm ∥f∥α = ∥f∥X + pα(f).

Theorem 3.5. Let X ⊆ Cn be a compact set and E be a unital com-
mutative Banach algebra. Then, the algebra LipαP (X,E) is the injective

tensor product of LipαP (X) and E, that is, LipαP (X,E) = LipαP (X)⊗̂ϵE.

Proof. It is enough to show that the identification (linear) map

ϕ : LipαP (X)⊗ E → LipαP (X,E)

is an isometry if we consider the injective norm on LipαP (X) ⊗ E. Let
u =

∑n
i=1 fi ⊗ ai be an element of LipαP (X)⊗ E. Then,
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∥ϕ(u)∥α = ∥
∑n

i=1 fiai∥α = max(∥
∑n

i=1 fiai∥X , pα(
∑n

i=1 fiai))

= max(supx∈X ∥
∑n

i=1 fi(x)ai∥, supx,y∈X
x ̸=y

∥
∑n

i=1 fi(x)ai−
∑n

i=1 fi(y)ai∥
d(x,y)α )

= max(sup{|
∑n

i=1 fi(x)g(ai)| : x ∈ X, g ∈ E∗
1},

sup{ |
∑n

i=1 fi(x)g(ai)−
∑n

i=1 fi(y)g(ai)|
d(x,y)α : x, y ∈ X,x ̸= y, g ∈ E∗

1})

= max ( sup{∥
∑n

i=1 fig(ai)∥X :g ∈ E∗
1}, sup{pα(

∑n
i=1 fig(ai)):g ∈ E∗

1})
= sup{max(∥

∑n
i=1 fig(ai)∥X , pα(

∑n
i=1 fig(ai))) : g ∈ E∗

1}
= sup{∥

∑n
i=1 fig(ai)∥α : g ∈ E∗

1}
= sup{|

∑n
i=1 λ(fi)g(ai)| : g ∈ E∗

1 , λ ∈ LipαP (X)∗1} = ∥u∥ϵ.
Therefore, the map ϕ is an isometry and hence, it can be uniquely ex-
tended to an isometric homomorphism ϕ : LipαP (X)⊗̂ϵE → LipαP (X,E).
For this, we show that ϕ(LipαP (X) ⊗ E) is dense in LipαP (X,E). The
rest of the assertions are immediate. Let f ∈ LipαP (X,E) and ϵ > 0.
Then, there exists a polynomial g =

∑n
i=0 x

iai in P0(X,E) such that
∥f−g∥α < ϵ. If we take pi to be the monomial function pi(x) = xi, then
g =

∑n
i=0 ϕ(pi ⊗ ai) = ϕ(

∑n
i=0 pi ⊗ ai) and so

∥f − ϕ(
n∑

i=1

pi ⊗ ai)∥α < ϵ.

Therefore, ϕ : LipαP (X)⊗̂ϵE → LipαP (X,E) is an isometric isomorphism.
□

As an application of the theorem above we get the following result,
which was already proved in Theorem 3.4 by another method.

Corollary 3.6. The character space of the polynomial Lipschitz algebra

LipαP (X,E) is homeomorphic to the cartesian product X̂ ×ME , with

the product topology, that is, MLipαP (X,E)
∼= X̂ ×ME , where X̂ is the

polynomial convex hull of X.

Proof. By [16, Theorem 2], the character space of the injective tensor

product LipαP (X)⊗̂ϵE is homeomorphic to X̂ ×ME with the product
topology. Hence by Theorem 3.5, MLipαP (X,E) is also homeomorphic to

X̂ ×ME . □
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It is interesting to note that the character spaces of the Lipschitz alge-
bras Lipα(X,E) and LipαP (X,E) do not change, up to homeomorphism,
if we equip them with the equivalent norm ∥f∥ = max(∥f∥X , pα(f)).

Remark 3.7. One may think that with the same method as in the proof
of LipαP (X,E) = LipαP (X)⊗̂ϵE, we can show that

Lipα(X,E) = Lipα(X)⊗̂ϵE.

However, we could not succeed in proving this last equality by applying
the same method, and to the best of our knowledge, it has not been
proved yet.

We conclude this section by characterizing the form of each character
on LipαP (X,E).

Theorem 3.8. Every character ϕ on LipαP (X,E) turns out to be of the

form ϕ = ψ ◦ δx, for some ψ ∈ ME and some x ∈ X̂, where δx is the
evaluation homomorphism on LipαP (X,E) at x.

Proof. Since LipαP (X,E) = P (X,E), for every f ∈ P (X,E) there exists
a sequence {fn} ⊆ LipαP (X,E) such that ∥fn − f∥X → 0. As we men-

tioned before, ∥f̂∥MLipα
P

(X,E)
≤ ∥f∥X for every f ∈ LipαP (X,E). Hence,

for every ϕ ∈MLipαP (X,E) we have

|ϕ(fn)− ϕ(fm)| ≤ ∥fn − fm∥X → 0,

as n,m → ∞ and hence limn→∞ ϕ(fn) exists. Similar to the proof of
Theorem 2.1, we can show that if there exists another sequence {gn} in
LipαP (X,E) such that ∥gn−f∥X → 0, then limn→∞ ϕ(gn)=limn→∞ ϕ(fn)
and hence we can define Φ on P (X,E) by Φ(f) = limn→∞ ϕ(fn). It is
easy to see that Φ ∈ MP (X,E) and, in fact, Φ is the extension of ϕ to
P (X,E). We now show that Φ is a character on

{e} ⊗ P (X) = {e⊗ f ∈ P (X,E) : f ∈ P (X)} ,

where e is the unit element of E and, moreover, Φ is, in fact, a character
on E ⊆ P (X,E). Since Φ ∈MP (X,E), it is enough to show that ϕ is not
identically zero on {e} ⊗ P (X). If Φ is identically zero on {e} ⊗ P (X)
or E, then Φ(vg) = Φ(eg)Φ(v) = 0, for all g ∈ P (X) and v ∈ E. Since
P0(X,E) = P0(X)⊗ E, linear combinations of functions of the type vg
(g ∈ P0(X) and v ∈ E) are dense in P (X,E), and so Φ is identically zero
on P (X,E), which is a contradiction. It is easy to see that {e} ⊗ P (X)
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is isometrically isomorphic to P (X). Hence, there exists x ∈ X̂ such
that

Φ(e⊗ g) = δx(g) (g ∈ P (X)).

If ψ is the restriction of Φ to E, then ψ is a character on E. Therefore,
for every G =

∑m
j=1 gj ⊗ aj ∈ P0(X)⊗ E, we have

Φ(G) =
∑m

j=1Φ(egj)Φ(aj) =
∑m

j=1 gj(x)ψ(aj)

= ψ
(∑m

j=1 ajgj(x)
)
= ψ ◦ δx

(∑m
j=1 ajgj

)
= ψ ◦ δx

(∑m
j=1 gj ⊗ aj

)
= ψ ◦ δx(G),

which implies that Φ = ψ ◦ δx on P0(X)⊗E = P0(X,E). Consequently,
by the continuity of Φ : P (X,E) → C, we get Φ = ψ ◦ δx on P (X,E)
and since ϕ = Φ|LipαP (X,E), it follows that ϕ = ψ ◦ δx on LipαP (X,E). □

Remark 3.9. Let (X, d) be a compact metric space and E be a unital
commutative Banach algebra. Then, for every 0 < α < 1, the little
vector-valued Lipschitz algebra ℓipα(X,E) is defined as a subalgebra of
Lipα(X,E), consisting of those elements f such that

lim
d(x,y)→0

∥f(x)− f(y)∥
d(x, y)α

= 0.

The little vector-valued polynomial Lipschitz algebra ℓipαP (X,E) is de-
fined in a similar way. It is worth mentioning that all of the results in
Sections 2 and 3, except Lemma 2.3, are also valid for little vector-valued
(polynomial) Lipschitz algebras. We also note that

ℓipαP (X,E) = LipαP (X,E),

for every α, 0 < α < 1.
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