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ABSTRACT. In the present paper, we introduce the concept of gen-
eralized multivalued F-contraction mappings and give a fixed point
result, which is a proper generalization of some multivalued fixed
point theorems including Nadler’s.
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1. Introduction and preliminaries

The beginning of metric fixed point theory is related to the Banach’s
Contraction Principle, published in 1922. Let (X, d) be a metric space
and T': X — X be a selfmap of X. Then, T is said to be a contraction
mapping if there exists a constant L € [0,1) (called the contraction
factor of T'), such that

(1.1) d(Tz,Ty) < Ld(z,y) for all z,y € X.

Banach’s Contraction Principle says that, whenever (X,d) is com-
plete, then any contraction selfmap of X has a unique fixed point. This
fixed point result is one of the most powerful tools for many existence
and uniqueness problems arising in mathematics. Because of its impor-
tance, Banach Contraction Principle has been extended and generalized
in many ways; see, for instance [2-6,11,13,16,20,23,24,27]. Among all
these, an interesting generalization was given by Wardowski [26]. For
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the sake of completeness, we will discuss its basic lines. Let F be the
set of all functions F': (0,00) — R satisfying the following conditions:

(F1) F is strictly increasing, i.e., for all o, 5 € (0,00) such that o <
8,F(a) < F(B),

(F2) For each sequence {ay,} of positive numbers lim, oo a, = 0 if
and only if lim,, o F'(a,) = —o0

(F3) There exists k € (0, 1) such that lim,_,o+ o*F(a) = 0.

Definition 1.1 ( [26]). Let (X, d) be a metric space and T : X — X be
a mapping. Given F' € F, we say that T is F-contraction, if there exists
7> 0 such that

(1.2) =z,ye X, d(Tz,Ty) >0= 71+ F(d(Tz,Ty)) < F(d(z,y)).

Taking in (1.2) different functions F' € F, one gets a variety of F-
contractions, some of them being already known in the literature. The
following examples will certify this assertion:

Example 1 ( [26]). Let F; : (0,00) — R be given by the formula
Fi(a) = Ina. Tt is clear that F; € F. Then each self mapping T" on a
metric space (X, d) satisfying (1.2) is an Fj-contraction such that

(1.3) d(Tz,Ty) < e "d(z,y), for all z,y € X, Tx # Ty.
It is clear that for x,y € X such that Tx = Ty the inequality

d(Tz,Ty) < e "d(z,y) also holds. Therefore T' satisfies (1.1) with
L =e77, thus T is a contraction.

Example 2 ( [26]). Let F : (0,00) — R be given by the formula
Fy(a) = a+ Ina. It is clear that Fy € F. Then each self mapping 7" on
a metric space (X, d) satisfying (1.2) is an Fy-contraction such that

(1.4) Med(ﬂ”’m)*d(w’y) <e 7, foral x,y € X,Tx # Ty.
d(z,y)
We can find some different examples for the function F' belonging to
F in [26]. In addition, Wardowski concluded that every F-contraction
T is a contractive mapping, i.e.,

d(Tz,Ty) < d(x,y), for all x,y € X, Tx # Ty.

Thus, every F-contraction is a continuous mapping.

Also, Wardowski concluded that if Fy, Fy € F with Fi(a) < Fy(«) for
all « > 0 and G = Fy — F} is nondecreasing, then every Fj-contraction
T is an Fh-contraction.
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He noted that for the mappings Fi(a) = Ina and Fa(a) = o + Ina,
Fy < F5, the mapping F, — Fj is strictly increasing. Hence, it was
obtained that every Banach contraction (1.3) satisfies the contractive
condition (1.4). On the other side, Example 2.5 in [26] shows that the
mapping 7' is not an Fj-contraction (Banach contraction), but still is
an Fh-contraction. Thus, the following theorem, which was given by
Wardowski, is a proper generalization of Banach Contraction Principle.

Theorem 1.2 ( [26]). Let (X,d) be a complete metric space and let
T:X — X be an F-contraction. Then T has a unique fized point in X.

Following Wardowski, Minak et al [17] introduced the concept of a
Ciri¢ type generalized F-contraction. Let (X, d) be a metric space and
T:X — X be a mapping. Given F' € F, we say that T is a Ciri¢ type
generalized F-contraction if there exists 7 > 0 such that:

(1.5) =zyelX, dTz,Ty) >0=17+ F(d(Tz,Ty)) < F(m(z,y)),

where
1
m(z,y) = max{d(z,y), d(z, Txz), d(y, Ty), 5 [d(z, Ty) + d(y, Tx)]}.
Then the following theorem was given:

Theorem 1.3. Let (X,d) be a complete metric space and T : X — X
be a Ciri¢ type generalized F'-contraction. If T or F is continuous, then
T has a unique fixed point in X.

Concerning the multivalued versions of the preceding results, note
that, in Altun et al [1], an extension of this type is considered for The-
orem 1.2. It is our main aim in this work to establish a multivalued
version of Theorem 1.3 as well. First we recall some useful properties
of multivalued mappings. Using the concept of the Hausdorff metric,
Nadler [19] introduced the notion of multivalued contraction mapping
and proved a multivalued version of the well known Banach contraction
principle. Let (X, d) be a metric space. Denote by P(X) the family of
all nonempty subsets of X, CB(X) the family of all nonempty, closed
and bounded subsets of X and K(X) the family of all nonempty com-
pact subsets of X. It is well known that, H : CB(X) x CB(X) — R is
defined by, for every A, B € CB(X),

H(A, B) = max ¢ sup D(z, B),sup D(y, A)
€A yeB



Generalized multivalued F'-contractions 1472

is a metric on C'B(X), which is called Hausdorff metric induced by d,
where D(z, B) = inf {d(z,y) :y € B}. Let T': X — C'B(X) be a map,
then T is called multivalued contraction if for all z,y € X there exists
L €[0,1) such that

H(Tz,Ty) < Ld(z,y).
Then Nadler [19] proved that every multivalued contraction mapping on
a complete metric space has a fixed point.

Inspired by his result, various fixed point results concerning mul-
tivalued contractions appeared in the last decades; see, for instance,
[7-9,12,14,15]. Concerning these, the following problem was formulated
by Reich [22]. Let (X,d) be a complete metric space. Suppose that
T : X — CB(X) satisfies

H(Tz,Ty) < a(d(z,y))d(z,y),
for all x,y € X, x # y, where « : (0,00) — [0, 1) fulfills
lim sup a(s) <1, Vt € (0,00).
s—tt
Does T have a fixed point? A first partial affirmative answer to this was
already given by Reich [21], in the case of T': X — K(X). A second
partial answer to the same was obtained by Mizoguchi and Takahashi
[18], for functions a : (0,00) — [0, 1) taken so as
lim sup a(s) <1, Vt € [0,00).
s—tt
For a simple proof of this, we refer to Suzuki [25]; in addition, he showed
that the result in question is a real generalization of Nadler’s in [25].
Further aspects may be found in Du [10].

Also multivalued F-contractions by combining the ideas of Wardowski
and Nadler was introduced in [1] and a fixed point result for these type
mappings on complete metric space was given as:

Definition 1.4. Let (X,d) be a metric space and T : X — CB(X) be
a mapping. Then T is said to be a multivalued F-contraction if F' € F
and there exists T > 0 such that

(1.6) z,ye X, HTz,Ty) >0= 7+ F(H(Tz,Ty)) < F(d(z,y)).

By considering F(a) = Ina, we can say that every multivalued contrac-
tion is also a multivalued F'-contraction.

Theorem 1.5. Let (X,d) be a complete metric space and T : X —
K(X) be a multivalued F-contraction, then T has a fixed point in X.
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Remark 1.6. Note that in Theorem 1.5, Tx is compact for all z € X.
Thus, we can present the following problem: Let (X,d) be a complete
metric space and T : X — CB(X) be a multivalued F-contraction.
Does T have a fixed point? By adding a condition on F', we can give a
partial answer to this problem as follows:

Theorem 1.7. Let (X,d) be a complete metric space and T : X —
CB(X) be a multivalued F-contraction. Suppose that, F also satisfies
(F4) F(inf A) = inf F(A) for all A C (0,00) with inf A > 0.
Then T has a fixed point.

Remark 1.8. Note that if F' is continuous and satisfies (F1), then it
satisfies (F4).

2. Main result

Definition 2.1. Let (X, d) be a metric space and T : X — CB(X) be a
mapping. Then T is said to be a generalized multivalued F'-contraction
if F' € F and there exists 7 > 0 such that

(2.1) z,ye X, HTz,Ty)>0=7+ F(H(Tz,Ty)) < F(M(z,y)),

where

| =

M (z,y) = max {d(x,y), D(z,Tz), D(y,Ty), = [D(x, Ty) + D(y,T:L‘)]} )

Our main result is as follows:

Theorem 2.2. Let (X,d) be a complete metric space and T : X —
K(X) be a generalized multivalued F-contraction. If T or F is contin-
uous, then T has a fixed point in X.

Proof. Let xg € X. As Tx is nonempty for all x € X, we can choose
x1 € Txg. If 1 € Tz, then x1 is a fixed point of T" and so the proof is
completed. Let 1 ¢ Tx1. Then D(x1,Tx1) > 0 since Tx; is closed. On
the other hand, from D(z1,Tz1) < H(Tzp,Tx1) and (F1), we obtain

F(D(xl,Txl)) § F(H(T$0,TIL’1)).
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From (2.1), we can write that
F(D(x1,Tx1)) < F(H(Txo,Tx1)) < F(M(x0,21)) — T
d(:l?o,l‘l),D(CC(],Tl‘o),D(l‘l,Tafl), }> _

= F(max{ + [D(z, Tx1) + D(21, Tx0)]

< F(max{d(xg,xl),;D(SUO,TQUI)}) -7
1
< F(max{d(xg,xl),Q[d(mo,xl)JrD(m,Tm)]}) -7
< F(max{d(zo,x1), D(x1,Tx1)}) — T
(2.2) = F(d(zo,71)) — 7.

Since Tx; is compact, we obtain that xo € Tx; such that d(xi,x2) =
D(x1,Tx1). Then, from (2.2)

F(d(xl,.%'g)) S F(H(Tx(), Txl)) S F(d(acl, x())) —T.

If we continue recursively, then we obtain a sequence {z,} in X such
that z,4+1 € Tz, and

(2.3) F(d(zp, tnt1)) < F(d(zp, xn-1)) — T

for all n € N. If there exists ng € N for which z,, € Txy,,, then z,, is
a fixed point of T" and so the proof is completed. Thus, suppose that
for every n € N, x,, ¢ Tx,. Denote a,, = d(zp, Tp+1), for n =0,1,2,---.
Then, a,, > 0 for all n and, using (2.3), the following holds:

(24)  F(ap) < Flap—1) — 7 < F(ap—2) —27 < --- < F(ap) — nt.
From (2.4), we get lim,,_,~ F(a,) = —co. Thus, from (F2), we have
Jim o =0
From (F3) there exists k € (0,1) such that
7}1—{20 ak F(a,) = 0.
By (2.4), the following holds for all n € N
(2.5) a®F(an) — a® F(ap) < —afnr <0.
Letting n — oo in (2.5), we obtain that

(2.6) lim naf = 0.

n—o0
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From (2.6), there exits n; € N such that na® < 1 for all n > n;. So we
have

1
for all n > n;. In order to show that {z,} is a Cauchy sequence consider
m,n € N such that m > n > n;. Using the triangle inequality for the
metric and from (2.7), we have

d(.%'n, xm) S d(xn; xn—&—l) + d(xn-‘rla xn+2) +---+ d(wm—h xm)
Gn +apt1+ -+ am—1

m—1

AN
\'M
S

1
< D aw

i=n
o0
By the convergence of the series ) ﬂ%’ we get d(xn,z,) — 0 as
=1

i=
n — oo. This yields that {z,} is a Cauchy sequence in (X,d). Since
(X,d) is a complete metric space, the sequence {z,} converges to some
point z € X, that is, lim,_,o , = 2.

If T' is continuous, then we have Tz,, — Tz and

D(xy,,Tz) < H(Txy,,Tz),

so D(z,Tz) =0 and z € T=.

Now, suppose F' is continuous. In this case, we claim that z € Tz.
Assume the contrary, that is, z ¢ T'z. In this case, there exist an ny € N
and a subsequence {z,, } of {x,} such that D(x,,+1,T%) > 0 for all
ng > ng. (Otherwise, there exists n; € N such that x,, € Tz for all
n > n1, which implies that z € T'z. This is a contradiction, since z ¢ T'z).
Since D(xp,+1,T%) > 0 for all ny > ng, then we have

T+ F(D(zp,41,172)) T+ F(H(Txy,,Tz))

F(M(zn,, 2))

F(max{d(xp,,2),d(zn,, Tn,+1), D(2,Tz),
1

5 [D(xnk ) TZ) + d(za :Enk+1)]})

ININ TN
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Taking the limit as & — oo and using the continuity of F' we have
7+ F(D(z,Tz)) < F(D(z,Tz)), which is a contradiction. Thus, we get

z € Tz = Tz. This completes the proof. O

In the light of the Example 2.5 of [26], we can give the following
example. This example shows that T is a generalized multivalued F-
contraction but it is not generalized multivalued contraction.

Example 3. Let X = {z,, = "(";1) :n € N}andd(z,y) = |z —y|,z,y €

X. Then (X, d) is a complete metric space. Define the mapping 7' : X —
K(X) by the:

{z1} , T =
Tx =
{fL‘l,.’EQ,"‘ ,J,'n_l} , L= Tnp
We claim that 7" is a multivalued F-contraction with respect to F(a)) =
a+Ina and 7 = 1. To see this, we consider the following cases.
First, observe that
m,n €N, HTzp,Try,) >0 (m>2andn=1)or (m>n>1).

Case 1. For m > 2 and n = 1, we have

H(Tom T21) 1T To)-Mena) - Tmol =71 o —a,
Mz, 1) Tm — 21
m2 —m—2 -1

—m —m
= e M<ceM<e
m2+m — 2

Case 2. For m > n > 1, we have

H(Twm, T%0) H(TopTe)-M@man) _ Sm=1=%Tn-1 o, 12, 1—zn+a,
M (zp,, xy) T — Tn
m+n—1 __ _ _
= — —  "Mcerm el
m+n+1

This shows that T is a generalized multivalued F-contraction, therefore,
all conditions of Theorem 2.2 are satisfied and so T has a fixed point in
X.
On the other hand, since
1—1

H(Txz, T _
lim —( Zn, T21) — Jim Lo

=1
n—oo M (zp,x1) n—oo T, — 1 ’

then T is not a generalized multivalued contraction.
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