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Abstract. In the present paper, we introduce the concept of gen-
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1. Introduction and preliminaries

The beginning of metric fixed point theory is related to the Banach’s
Contraction Principle, published in 1922. Let (X, d) be a metric space
and T : X → X be a selfmap of X. Then, T is said to be a contraction
mapping if there exists a constant L ∈ [0, 1) (called the contraction
factor of T ), such that

(1.1) d(Tx, Ty) ≤ Ld(x, y) for all x, y ∈ X.

Banach’s Contraction Principle says that, whenever (X, d) is com-
plete, then any contraction selfmap of X has a unique fixed point. This
fixed point result is one of the most powerful tools for many existence
and uniqueness problems arising in mathematics. Because of its impor-
tance, Banach Contraction Principle has been extended and generalized
in many ways; see, for instance [2–6, 11, 13, 16, 20, 23, 24, 27]. Among all
these, an interesting generalization was given by Wardowski [26]. For
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the sake of completeness, we will discuss its basic lines. Let F be the
set of all functions F : (0,∞) → R satisfying the following conditions:

(F1) F is strictly increasing, i.e., for all α, β ∈ (0,∞) such that α <
β, F (α) < F (β),

(F2) For each sequence {αn} of positive numbers limn→∞ an = 0 if
and only if limn→∞ F (an) = −∞

(F3) There exists k ∈ (0, 1) such that limα→0+ αkF (α) = 0.

Definition 1.1 ( [26]). Let (X, d) be a metric space and T : X → X be
a mapping. Given F ∈ F , we say that T is F -contraction, if there exists
τ > 0 such that

(1.2) x, y ∈ X, d(Tx, Ty) > 0 ⇒ τ + F (d(Tx, Ty)) ≤ F (d(x, y)).

Taking in (1.2) different functions F ∈ F , one gets a variety of F -
contractions, some of them being already known in the literature. The
following examples will certify this assertion:

Example 1 ( [26]). Let F1 : (0,∞) → R be given by the formula
F1(α) = lnα. It is clear that F1 ∈ F . Then each self mapping T on a
metric space (X, d) satisfying (1.2) is an F1-contraction such that

(1.3) d(Tx, Ty) ≤ e−τd(x, y), for all x, y ∈ X,Tx ̸= Ty.

It is clear that for x, y ∈ X such that Tx = Ty the inequality
d(Tx, Ty) ≤ e−τd(x, y) also holds. Therefore T satisfies (1.1) with
L = e−τ , thus T is a contraction.

Example 2 ( [26]). Let F2 : (0,∞) → R be given by the formula
F2(α) = α+ lnα. It is clear that F2 ∈ F . Then each self mapping T on
a metric space (X, d) satisfying (1.2) is an F2-contraction such that

(1.4)
d(Tx, Ty)

d(x, y)
ed(Tx,Ty)−d(x,y) ≤ e−τ , for all x, y ∈ X,Tx ̸= Ty.

We can find some different examples for the function F belonging to
F in [26]. In addition, Wardowski concluded that every F -contraction
T is a contractive mapping, i.e.,

d(Tx, Ty) < d(x, y), for all x, y ∈ X,Tx ̸= Ty.

Thus, every F -contraction is a continuous mapping.
Also, Wardowski concluded that if F1, F2 ∈ F with F1(α) ≤ F2(α) for

all α > 0 and G = F2 − F1 is nondecreasing, then every F1-contraction
T is an F2-contraction.
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He noted that for the mappings F1(α) = lnα and F2(α) = α + lnα,
F1 < F2, the mapping F2 − F1 is strictly increasing. Hence, it was
obtained that every Banach contraction (1.3) satisfies the contractive
condition (1.4). On the other side, Example 2.5 in [26] shows that the
mapping T is not an F1-contraction (Banach contraction), but still is
an F2-contraction. Thus, the following theorem, which was given by
Wardowski, is a proper generalization of Banach Contraction Principle.

Theorem 1.2 ( [26]). Let (X, d) be a complete metric space and let
T : X → X be an F -contraction. Then T has a unique fixed point in X.

Following Wardowski, Mınak et al [17] introduced the concept of a

Ćirić type generalized F -contraction. Let (X, d) be a metric space and

T : X → X be a mapping. Given F ∈ F , we say that T is a Ćirić type
generalized F -contraction if there exists τ > 0 such that:

(1.5) x, y ∈ X, d(Tx, Ty) > 0 ⇒ τ + F (d(Tx, Ty)) ≤ F (m(x, y)),

where

m(x, y) = max{d(x, y), d(x, Tx), d(y, Ty), 1
2
[d(x, Ty) + d(y, Tx)]}.

Then the following theorem was given:

Theorem 1.3. Let (X, d) be a complete metric space and T : X → X

be a Ćirić type generalized F -contraction. If T or F is continuous, then
T has a unique fixed point in X.

Concerning the multivalued versions of the preceding results, note
that, in Altun et al [1], an extension of this type is considered for The-
orem 1.2. It is our main aim in this work to establish a multivalued
version of Theorem 1.3 as well. First we recall some useful properties
of multivalued mappings. Using the concept of the Hausdorff metric,
Nadler [19] introduced the notion of multivalued contraction mapping
and proved a multivalued version of the well known Banach contraction
principle. Let (X, d) be a metric space. Denote by P (X) the family of
all nonempty subsets of X, CB(X) the family of all nonempty, closed
and bounded subsets of X and K(X) the family of all nonempty com-
pact subsets of X. It is well known that, H : CB(X)× CB(X) → R is
defined by, for every A,B ∈ CB(X),

H(A,B) = max

{
sup
x∈A

D(x,B), sup
y∈B

D(y,A)

}
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is a metric on CB(X), which is called Hausdorff metric induced by d,
where D(x,B) = inf {d(x, y) : y ∈ B}. Let T : X → CB(X) be a map,
then T is called multivalued contraction if for all x, y ∈ X there exists
L ∈ [0, 1) such that

H(Tx, Ty) ≤ Ld(x, y).

Then Nadler [19] proved that every multivalued contraction mapping on
a complete metric space has a fixed point.

Inspired by his result, various fixed point results concerning mul-
tivalued contractions appeared in the last decades; see, for instance,
[7–9,12,14,15]. Concerning these, the following problem was formulated
by Reich [22]. Let (X, d) be a complete metric space. Suppose that
T : X → CB(X) satisfies

H(Tx, Ty) ≤ α(d(x, y))d(x, y),

for all x, y ∈ X, x ̸= y, where α : (0,∞) → [0, 1) fulfills

lim sup
s→t+

α(s) < 1, ∀t ∈ (0,∞).

Does T have a fixed point? A first partial affirmative answer to this was
already given by Reich [21], in the case of T : X → K(X). A second
partial answer to the same was obtained by Mizoguchi and Takahashi
[18], for functions α : (0,∞) → [0, 1) taken so as

lim sup
s→t+

α(s) < 1, ∀t ∈ [0,∞) .

For a simple proof of this, we refer to Suzuki [25]; in addition, he showed
that the result in question is a real generalization of Nadler’s in [25].
Further aspects may be found in Du [10].

Also multivalued F -contractions by combining the ideas of Wardowski
and Nadler was introduced in [1] and a fixed point result for these type
mappings on complete metric space was given as:

Definition 1.4. Let (X, d) be a metric space and T : X → CB(X) be
a mapping. Then T is said to be a multivalued F -contraction if F ∈ F
and there exists τ > 0 such that

(1.6) x, y ∈ X, H(Tx, Ty) > 0 ⇒ τ + F (H(Tx, Ty)) ≤ F (d(x, y)).

By considering F (α) = lnα, we can say that every multivalued contrac-
tion is also a multivalued F -contraction.

Theorem 1.5. Let (X, d) be a complete metric space and T : X →
K(X) be a multivalued F -contraction, then T has a fixed point in X.
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Remark 1.6. Note that in Theorem 1.5, Tx is compact for all x ∈ X.
Thus, we can present the following problem: Let (X, d) be a complete
metric space and T : X → CB(X) be a multivalued F -contraction.
Does T have a fixed point? By adding a condition on F , we can give a
partial answer to this problem as follows:

Theorem 1.7. Let (X, d) be a complete metric space and T : X →
CB(X) be a multivalued F -contraction. Suppose that, F also satisfies

(F4) F (inf A) = inf F (A) for all A ⊂ (0,∞) with inf A > 0.
Then T has a fixed point.

Remark 1.8. Note that if F is continuous and satisfies (F1), then it
satisfies (F4).

2. Main result

Definition 2.1. Let (X, d) be a metric space and T : X → CB(X) be a
mapping. Then T is said to be a generalized multivalued F -contraction
if F ∈ F and there exists τ > 0 such that

(2.1) x, y ∈ X, H(Tx, Ty) > 0 ⇒ τ + F (H(Tx, Ty)) ≤ F (M(x, y)),

where

M(x, y) = max

{
d(x, y), D(x, Tx), D(y, Ty),

1

2
[D(x, Ty) +D(y, Tx)]

}
.

Our main result is as follows:

Theorem 2.2. Let (X, d) be a complete metric space and T : X →
K(X) be a generalized multivalued F -contraction. If T or F is contin-
uous, then T has a fixed point in X.

Proof. Let x0 ∈ X. As Tx is nonempty for all x ∈ X, we can choose
x1 ∈ Tx0. If x1 ∈ Tx1, then x1 is a fixed point of T and so the proof is
completed. Let x1 /∈ Tx1. Then D(x1, Tx1) > 0 since Tx1 is closed. On
the other hand, from D(x1, Tx1) ≤ H(Tx0, Tx1) and (F1), we obtain

F (D(x1, Tx1)) ≤ F (H(Tx0, Tx1)).
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From (2.1), we can write that

F (D(x1, Tx1)) ≤ F (H(Tx0, Tx1)) ≤ F (M(x0, x1))− τ

= F (max

{
d(x0, x1), D(x0, Tx0), D(x1, Tx1),

1
2 [D(x0, Tx1) +D(x1, Tx0)]

}
)− τ

≤ F (max

{
d(x0, x1),

1

2
D(x0, Tx1)

}
)− τ

≤ F (max

{
d(x0, x1),

1

2
[d(x0, x1) +D(x1, Tx1)]

}
)− τ

≤ F (max {d(x0, x1), D(x1, Tx1)})− τ

= F (d(x0, x1))− τ.(2.2)

Since Tx1 is compact, we obtain that x2 ∈ Tx1 such that d(x1, x2) =
D(x1, Tx1). Then, from (2.2)

F (d(x1, x2)) ≤ F (H(Tx0, Tx1)) ≤ F (d(x1, x0))− τ.

If we continue recursively, then we obtain a sequence {xn} in X such
that xn+1 ∈ Txn and

(2.3) F (d(xn, xn+1)) ≤ F (d(xn, xn−1))− τ

for all n ∈ N. If there exists n0 ∈ N for which xn0 ∈ Txn0 , then xn0 is
a fixed point of T and so the proof is completed. Thus, suppose that
for every n ∈ N, xn /∈ Txn. Denote an = d(xn, xn+1), for n = 0, 1, 2, · · · .
Then, an > 0 for all n and, using (2.3), the following holds:

(2.4) F (an) ≤ F (an−1)− τ ≤ F (an−2)− 2τ ≤ · · · ≤ F (a0)− nτ.

From (2.4), we get limn→∞ F (an) = −∞. Thus, from (F2), we have

lim
n→∞

an = 0.

From (F3) there exists k ∈ (0, 1) such that

lim
n→∞

aknF (an) = 0.

By (2.4), the following holds for all n ∈ N

(2.5) aknF (an)− aknF (a0) ≤ −aknnτ ≤ 0.

Letting n → ∞ in (2.5), we obtain that

(2.6) lim
n→∞

nakn = 0.
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From (2.6), there exits n1 ∈ N such that nakn ≤ 1 for all n ≥ n1. So we
have

(2.7) an ≤ 1

n1/k
.

for all n ≥ n1. In order to show that {xn} is a Cauchy sequence consider
m,n ∈ N such that m > n ≥ n1. Using the triangle inequality for the
metric and from (2.7), we have

d(xn, xm) ≤ d(xn, xn+1) + d(xn+1, xn+2) + · · ·+ d(xm−1, xm)

= an + an+1 + · · ·+ am−1

=
m−1∑
i=n

ai

≤
∞∑
i=n

ai

≤
∞∑
i=n

1

i1/k
.

By the convergence of the series
∞∑
i=1

1
i1/k

, we get d(xn, xm) → 0 as

n → ∞. This yields that {xn} is a Cauchy sequence in (X, d). Since
(X, d) is a complete metric space, the sequence {xn} converges to some
point z ∈ X, that is, limn→∞ xn = z.

If T is continuous, then we have Txn → Tz and

D(xn, T z) ≤ H(Txn, T z),

so D(z, Tz) = 0 and z ∈ Tz.
Now, suppose F is continuous. In this case, we claim that z ∈ Tz.

Assume the contrary, that is, z /∈ Tz. In this case, there exist an n0 ∈ N
and a subsequence {xnk

} of {xn} such that D(xnk+1, T z) > 0 for all
nk ≥ n0. (Otherwise, there exists n1 ∈ N such that xn ∈ Tz for all
n ≥ n1, which implies that z ∈ Tz. This is a contradiction, since z /∈ Tz).
Since D(xnk+1, T z) > 0 for all nk ≥ n0, then we have

τ + F (D(xnk+1, T z)) ≤ τ + F (H(Txnk
, T z))

≤ F (M(xnk
, z))

≤ F (max{d(xnk
, z), d(xnk

, xnk+1), D(z, Tz),

1

2
[D(xnk

, T z) + d(z, xnk+1)]}).
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Taking the limit as k → ∞ and using the continuity of F we have
τ + F (D(z, Tz)) ≤ F (D(z, Tz)), which is a contradiction. Thus, we get
z ∈ Tz = Tz. This completes the proof. □

In the light of the Example 2.5 of [26], we can give the following
example. This example shows that T is a generalized multivalued F -
contraction but it is not generalized multivalued contraction.

Example 3. LetX = {xn = n(n+1)
2 : n ∈ N} and d(x, y) = |x− y| , x, y ∈

X. Then (X, d) is a complete metric space. Define the mapping T : X →
K(X) by the:

Tx =

 {x1} , x = x1

{x1, x2, · · · , xn−1} , x = xn

.

We claim that T is a multivalued F -contraction with respect to F (α) =
α+ lnα and τ = 1. To see this, we consider the following cases.

First, observe that

m,n ∈ N, H(Txm, Txn) > 0 ⇔ (m > 2 and n = 1) or (m > n > 1) .

Case 1. For m > 2 and n = 1, we have

H(Txm, Tx1)

M(xm, x1)
eH(Txm,Tx1)−M(xm,x1) =

xm−1 − x1
xm − x1

exm−1−xm

=
m2 −m− 2

m2 +m− 2
e−m < e−m < e−1.

Case 2. For m > n > 1, we have

H(Txm, Txn)

M(xm, xn)
eH(Txm,Txn)−M(xm,xn) =

xm−1 − xn−1

xm − xn
exm−1−xn−1−xm+xn

=
m+ n− 1

m+ n+ 1
en−m < en−m ≤ e−1.

This shows that T is a generalized multivalued F -contraction, therefore,
all conditions of Theorem 2.2 are satisfied and so T has a fixed point in
X.

On the other hand, since

lim
n→∞

H(Txn, Tx1)

M(xn, x1)
= lim

n→∞

xn−1 − 1

xn − 1
= 1,

then T is not a generalized multivalued contraction.
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