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SYSTEMS
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Abstract. In this paper, the maximal dissipative extensions of a
symmetric singular 1D discrete Hamiltonian operator with maxi-
mal deficiency indices (2, 2) (in limit-circle cases at ±∞) and
acting in the Hilbert space ℓ2Ω(Z;C2) (Z := {0,±1,±2, ...}) are
considered. We deal with two classes of dissipative operators
with separated boundary conditions both at −∞ and ∞. For
each of these cases, we establish a self-adjoint dilation of the
dissipative operator and construct the incoming and outgoing
spectral representations. Then, it becomes possible to deter-
mine the scattering function (matrix) of the dilation. Further,
a functional model of the dissipative operator and its charac-
teristic function in terms of the Weyl function of a self-adjoint
operator are constructed. Finally, we show that the system of
root vectors of the dissipative operators are complete in the
Hilbert space ℓ2Ω(Z;C2).
Keywords: Discrete Hamiltonian system, dissipative operator,
self-adjoint dilation, characteristic function, completeness of the
root vectors.
MSC(2010): Primary: 47B39; Secondary: 47B44, 47A20, 47A40,
47A45, 47B25, 47A75, 39A70.

1. Introduction

In the Hilbert space, one of the useful tools to investigate the abstract
and applied theories is the functional model theory connected with dis-
sipative or contractive operators. To construct the functional models for
dissipative (contractive) operators, one can use the well known theory
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of Sz. Nagy-Foiaş [9] which is related to the spectral decompositions for
self-adjoint (unitary) operators and Lax-Phillips scattering theory [8].
In this theory, characteristic function plays the main role by carrying
the complete information on the spectral properties of the dissipative
operator. The dissipative operator becomes the model in the incoming
spectral representation of the dilation. The characteristic function can
be factored, which gives some information about the completeness of
the system of eigenvectors and associated (or root) vectors. This theory
has been used for dissipative discrete singular Hamiltonian and Dirac
operators in [1]-[4].

In this paper, the minimal symmetric one dimensional (1D) discrete
Hamiltonian operator which acts in the Hilbert space ℓ2Ω(Z;E), where
E := C2, is considered with maximal deficiency indices (2, 2). The de-
ficiency indices (2, 2) is known as Weyl’s limit-circle cases at ±∞. The
boundary conditions at ±∞ will allow us to construct a space of bound-
ary values of minimal symmetric operator and describe all maximal
dissipative, maximal accumulative, self-adjoint and other extensions of
such a symmetric operator. Two classes of maximal dissipative opera-
tors generated with separated boundary conditions, called ‘dissipative
at −∞’ and ‘dissipative at ∞’ are investigated. In each of these cases we
construct a self-adjoint dilation and its incoming and outgoing spectral
representations. With these representations we determine the scatter-
ing function (matrix) of a dilation according to the scheme of Lax and
Phillips [8]. We also construct a functional model of the dissipative
operator and construct its characteristic function in terms of the Weyl
function of a self-adjoint operator with the help of the incoming spectral
representation. Finally, based on the results obtained regarding the the-
ory of the characteristic function we prove theorems on completeness of
the system of eigenvectors and associated vectors of dissipative discrete
Hamiltonian operators.

2. Preliminaries

We consider the one dimensional (1D) discrete Hamiltonian system
on the whole line
(2.1)

(L1u)k :=

(
−aku

(2)
k+1 + bku

(2)
k + pku

(1)
k = λ(cku

(1)
k + dku

(2)
k )

bku
(1)
k − ak−1u

(1)
k−1 + qku

(2)
k = λ(dku

(1)
k + rku

(2)
k )

)
,
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where λ is a complex spectral parameter, u(1) = {u(1)k } and u(2) = {u(2)k }
(k ∈ Z) are the sequences of complex numbers u

(1)
k and u

(2)
k , ak ̸= 0, bk ̸=

0, ak, bk, pk, qk, ck, dk, rk ∈ R := (−∞,∞) and Ωk :=

(
ck dk
dk rk

)
> 0

(k ∈ Z).
Clearly (2.1) can be regarded as a discrete analog (for ak = ±1, k ∈ Z)

of differential Hamiltonian (or Dirac-type) system given by

(2.2) J
du(t)

dt
+Q(t)u(t) = λΩ(t)u(t), t ∈ R,

where

J =

(
0 ∓1
±1 0

)
, u(t) =

(
u1(t)
u2(t)

)
,

Q(t) =

(
p(t) k(t)
k(t) q(t)

)
, Ω(t) =

(
c(t) d(t)
d(t) r(t)

)
,

Ω(t) > 0 for almost all t ∈ R, and the entries of the (2×2) matrices Q(t)
and Ω(t) are real-valued, Lebesgue measurable and locally integrable
functions on R (see, for example, [5]).

Let [u, v] denote the sequence of complex numbers with components
[u, v]k defined by

(2.2) [u, v]k = ak(u
(1)
k v̄

(2)
k+1 − u

(2)
k+1v̄

(1)
k ) (k ∈ Z)

for two arbitrary vector-valued sequences

u := {uk} :=

{
u
(1)
k

u
(2)
k

}
and v := {vk} :=

{
v
(1)
k

v
(2)
k

}
(k ∈ Z)

To introduce the Hilbert space H := ℓ2Ω(Z;E) (Ω := {Ωk}, k ∈ Z)
consisting of all the vector-valued sequences u = {uk} (k ∈ Z) with∑∞

k=−∞(Ωkuk, uk)E < +∞, we consider the inner product (u, v) =∑∞
k=−∞(Ωkuk, vk)E . Denote by L1u (respectively Lu) the vector-valued

sequence with components (L1u)k (respectively (Lu)k := Ω−1
k (L1u)k) (k ∈

Z). We consider the set Dmax consisting of all the vectors u ∈ H such
that Lu ∈ H. The maximal operator Tmax on Dmax is defined by the
equality Tmaxu = Lu.

For m, k ∈ Z and k < m, we have the Green’s formula

(2.3)

m∑
j=k

[((L1u)j , vj)E − (uj , (L1v)j)E ] = [u, v]m − [u, v]k−1 .
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It is clear from the Green’s formula (2.3) that for two arbitrary vec-
tors u, v ∈ Dmax the limits [u, v]∞ = limm→∞ [u, v]m and [u, v]−∞ =
limk→−∞ [u, v]k exist and are finite. Therefore, passing to the limit as
k → −∞ and m→ ∞, we get for all u, v ∈ Dmax that

(2.4) (Tmaxu, v)− (u, Tmaxv) = [u, v]∞ − [u, v]−∞ .

Let Tmin denote the closure of the symmetric operator T ′
min defined

by T ′
minu = Tmaxu on the linear set D′

min consisting of finite vectors
u = {uk} (k ∈ Z) (i.e., vectors u = {uk} (k ∈ Z) having only finitely
many nonzero component). The minimal operator Tmin is symmetric,
and T ∗

min = Tmax.
The deficiency indices of Tmin can be calculated using the deficiency

indices for the case of half-line. Indeed, ℓ2Ω(Z;E) is the orthogonal
sum of the space ℓ2Ω(N−;E) (N− = {−1,−2,−3, ...}) and ℓ2Ω (N;E)
(N+ = {0, 1, 2, ...}), which are imbedded in the natural way in ℓ2Ω(Z;E).
Denote by T−

min (T−
max) and T+

min (T+
max) the minimal (maximal) opera-

tors generated by the expression L in the spaces ℓ2Ω(N−;E) and ℓ2Ω(N;E),
respectively, and D∓

min (D∓
max) is a domain of T∓

min (T∓
max). Then it is not

hard to see that the equality defTmin = defT−
min + defT+

min holds for

the defect number defTmin := dim{(Tmin − λI)D (Tmin)}⊥, Imλ ̸= 0, of
Tmin. This implies that the deficiency indices of Tmin has the form (k, k),
where k = 0, 1 or 2. For the deficiency indices (0, 0), the operator Tmin

is self-adjoint, that is, T ∗
min = Tmin = Tmax (see [1-7, 13-17]).

We assume that the symmetric operator Tmin has deficiency indices
(2, 2). In other words, we assume that Weyl’s limit-circle case holds
at ±∞ for the expression L or the operator Tmin (see [1-7, 13-17]).
The domain Dmin of Tmin consists of precisely those vectors u ∈ Dmax

satisfying the condition

(2.5) [u, v]∞ − [u, v]−∞ = 0, ∀v ∈ Dmax.

Let us consider the solutions of the system (2.1) θ(λ) = {θk(λ)} and
χ(λ) = {χk(λ)}(k ∈ Z) satisfying the initial conditions

θ
(1)
−1(λ) = 1, θ

(2)
0 (λ) = 0, χ

(1)
−1(λ) = 0, χ

(2)
0 (λ) = 1/a−1.

The Wronskian of the two solutions u = {uk} and v = {vk} (k ∈ Z)
of (2.1) is defined as Wk (u, v) := ak(u

(1)
k v

(2)
k+1 − u

(2)
k+1v

(1)
k ) and thus we

get Wk (u, v) = [u, v̄]k (k ∈ Z). Since the Wronskian of the two solutions
of (2.1) does not depend on k and the two solutions of this system
are linearly independent if and only if their Wronskian is nonzero, we
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get from the conditions (2.5) and the constancy of the Wronskian that
Wk (θ, χ) = 1 (k ∈ Z). Consequently, θ(λ) and χ(λ) form a fundamental
system of solutions of (2.1), and θ(λ), χ(λ) ∈ H for all λ ∈ C.

Setting σ = θ(0) and ω = χ(0), we arrive at the following equality for
arbitrary vectors u, v ∈ Dmax

(2.6) [u, v]k = [u, σ]k [v̄, ω]k − [u, ω]k [v̄, σ]k (k ∈ Z ∪ {−∞,∞}).
We can conclude that the domain Dmin of the operator Tmin consists

of the vectors u ∈ Dmax satisfying the boundary conditions ([4])

(2.7) [u, σ]−∞ = [u, ω]−∞ = [u, σ]∞ = [u, ω]∞ = 0.

It is better to recall that a linear operator T (with dense domain
D(T )) acting in some Hilbert space H is called dissipative (accumula-
tive) if Im(T f, f) ≥ 0 (Im(T f, f) ≤ 0) for all f ∈ D(T ) and maximal
dissipative (maximal accumulative) if it does not have a proper dissipa-
tive (accumulative) extension.

The following linear maps of Dmax into E will allow us to construct
the maximal dissipative (accumulative, self-adjoint) operators:

(2.8) Φ1u =

(
[u, ω]−∞
[u, σ]∞

)
, Φ2u =

(
[u, σ]−∞
[u, ω]∞

)
(u ∈ Dmax) .

Then we have the following conclusion ([4]).

Theorem 2.1. For any contraction S in E, the restriction of the oper-
ator T to the set of vectors u ∈ Dmax satisfying the boundary condition

(2.9) (S − I)Φ1u+ i (S + I)Φ2u = 0

or

(2.10) (S − I)Φ1u− i (S + I)Φ2u = 0

is, respectively, a maximal dissipative or a maximal accumulative exten-
sion of the operator Tmin. Conversely, every maximal dissipative (max-
imal accumulative) extension of Tmin is the restriction of Tmax to the
set of vectors u ∈ Dmax satisfying (2.9) ((2.10)), and the contraction S
is uniquely determined by the extension. These conditions give a self-
adjoint extension if and only if S is unitary. In the latter case, (2.9)
and (2.10) are equivalent to the condition (cosS)Φ1u− (sinS) Φ2u = 0,
where S is a self-adjoint operator (Hermitian matrix) in E.

In particular, if S is a diagonal matrix, the boundary conditions

(2.11) [u, ω]−∞ − β1 [u, σ]−∞ = 0
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(2.12) [u, σ]∞ − β2 [u, ω]∞ = 0

with Imβ1 ≥ 0 or β1 = ∞, and Imβ2 ≥ 0 or β2 = ∞ (Imβ1 ≤ 0 or β1 =
∞, and Imβ2 ≤ 0 or β2 = ∞) describe all maximal dissipative (maximal
accumulative) extensions of Tmin with separated boundary conditions.
The self-adjoint extensions of Tmin are obtained precisely when Imβ1 =
0 or β1 = ∞, and Imβ2 = 0 or β2 = ∞. Here for β1 = ∞ (β2 =
∞), the condition (2.11) ((2.12)) should be replaced by [u, σ]−∞ = 0
([u, ω]∞ = 0) .

3. Self-adjoint dilations of the maximal dissipative operators

Now consider the dissipative operators T−
β1β2

and T+
β1β2

generated by

(2.1) and the boundary conditions (2.11) and (2.12) which can be re-
garded as ‘dissipative at −∞’, i.e. when either Imβ1 > 0 and Imβ2 = 0
or β2 = ∞; and ‘dissipative at ∞’, when Imβ1 = 0 or β1 = ∞ and
Imβ2 > 0.

To reach our main aim, we shall construct a self-adjoint dilation of
the maximal dissipative operator T−

β1β2
in the case of ‘dissipative at −∞

(Imβ1 > 0 and Imβ2 = 0 or β2 = ∞). For this purpose, we adjoint
the spaces L2 (−∞, 0) and L2 (0,∞) to H. Hence we have formed the
orthogonal sum H = L2 (−∞, 0)⊕H⊕L2 (0,∞) called the main Hilbert
space of the dilation. In the space H, we consider the operator T−

β1β2

generated by the expression

(3.1) T⟨ϕ−, u, ϕ+⟩ = ⟨idϕ−
dξ

, L(u), i
dϕ+
dς

⟩

on the set D(T−
β1β2

) consisting of all vectors ⟨ϕ−, u, ϕ+⟩ satisfying the

conditions ϕ− ∈ W1
2 (−∞, 0), ϕ+ ∈ W1

2 (0,∞), u ∈ Dmax,

[u, ω]−∞ − β1 [u, σ]−∞ = γϕ−(0), [u, ω]−∞ − β1 [u, σ]−∞ = γϕ+(0),

(3.2) [u, σ]∞ − β2 [u, ω]∞ = 0,

where W1
2 is the Sobolev space, and γ2 := 2Imβ1, γ > 0. Then the

following result holds.

Theorem 3.1. The operator T−
β1β2

is self-adjoint in H and is a self-

adjoint dilation of the maximal dissipative operator T−
β1β2

.
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Proof. Consider the vectors f ,g ∈ D(T−
β1β2

), f = ⟨ϕ−, u, ϕ+⟩ and g =

⟨ψ−, v, ψ+⟩. Using (3.1) and integrating by parts one obtains

(T−
β1β2

f ,g)H =

∫ 0

−∞
iϕ′−ψ̄−dξ+(Tmaxu, v)H+

∫ ∞

0
iϕ′+ψ̄+dς = iϕ−(0)ψ−(0)

(3.3) − iϕ+(0)ψ+(0) + [u, v]∞ − [u, v]−∞ + (f ,T−
β1β2

)H.

Taking the boundary conditions (3.2) into account for the components
of the vectors f , g and using relation (2.6), with a direct calculation,
we see that iϕ−(0)ψ̄−(0) − iϕ+(0)ψ̄+(0) + [u, v]∞ − [u, v]−∞ = 0. This

shows that T−
β1β2

is symmetric.

For proving the self-adjointness one should prove that (T−
β1β2

)∗ ⊆
T−

β1β2
. Consider the vector g = ⟨ψ−, v, ψ+⟩ ∈ D((T−

β1β2
)∗) so that

(T−
β1β2

)∗g = g∗ = ⟨ψ∗
−, v

∗, ψ∗
+⟩ ∈ H and

(3.4) (T−
β1β2

f ,g)H = (f ,g∗)H , ∀f ∈ D(T−
β1β2

).

In (3.4), if we chose vectors with suitable components for f ∈ D(T−
β1β2

)

we can show that ψ− ∈ W1
2 (−∞, 0), ψ+ ∈ W1

2 (0,∞), v ∈ Dmax and
g∗ = Tg, where the operation T is defined by (3.1). Hence for arbitrary
f ∈ D(T−

β1β2
), (3.4) takes the form (Tf ,g)H = (f ,Tg)H . Therefore for

all f = ⟨ϕ−, u, ϕ+⟩ ∈ D(T−
β1β2

) the sum of the integrated terms in the

bilinear form (Tf ,g)H must be equal to zero:

(3.5) iϕ−(0)ψ−(0)− iϕ+(0)ψ+(0) + [u, v]∞ − [u, v]−∞ = 0.

On the other hand, using the boundary conditions (3.2) for [u, σ]−∞ and
[u, ω]−∞ we obtain that
(3.6)

[u, σ]−∞ =
i

γ
(ϕ+(0)−ϕ−(0)), [u, ω]−∞ = γϕ−(0)+

iβ1
γ

(ϕ+(0)−ϕ−(0)).

Therefore, from (3.6), we find that (3.5) is equivalent to the equality

iϕ−(0)ψ−(0)− iϕ+(0)ψ+(0) = [u, v]−∞ − [u, v]∞

=
i

γ
(ϕ+(0)− ϕ−(0)) [v, ω]−∞ − [γϕ−(0) +

iβ1
γ2

(ϕ+(0)− ϕ−(0))] [v, σ]−∞

−[u, σ]∞ [v, ω]∞ + [u, ω]∞ [v, σ]∞ =
i

γ
(ϕ+(0)− ϕ−(0)) [v, ω]−∞

−[γϕ−(0)+
iβ1
γ2

(ϕ+(0)−ϕ−(0))] [v, σ]−∞− ([v, σ]∞−β2 [v̄, ω]∞)[u, ω]∞.
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Since the values ϕ±(0) can be arbitrary complex numbers, a compari-
son of the coefficients of ϕ±(0) on the left and right of the last equal-
ity gives us that the vector g = ⟨ψ−, v, ψ+⟩ satisfies the boundary
conditions [v, ω]−∞ − β1 [v, σ]−∞ = γψ−(0), [v, ω]−∞ − β1 [v, σ]−∞ =
γψ+(0), [v, σ]∞ − β2 [v, ω]∞ = 0. Consequently, establishing the inclu-
sion (T−

β1β2
)∗ ⊆ T−

β1β2
we have proved that T−

β1β2
= (T−

β1β2
)∗.

It is well known that the self-adjoint operator T−
β1β2

generates a uni-

tary group V−(r) = exp[iT−
β1β2

r] (r ∈ R) in H. Let us denote by

P : H → H and P1 : H → H the mappings acting according to
the formulae P : ⟨ϕ−, u, ϕ+⟩ → u and P1 : u → ⟨0, u, 0⟩. The fam-
ily {Yr} (r ≥ 0) of operators, where Yr = PV−(r)P1 (r ≥ 0) is a
strongly continuous semigroup of completely nonunitary contractions
on H. Let us denote the generator of this semigroup by Aβ1β2 such that
Aβ1β2u = limr→+0[(ir)

−1(Yru− u)]. The domain of Aβ1β2 consists of all
vectors for which the limit exists. It is known that the operator Aβ1β2 is

maximal dissipative. Further the operator T−
β1β2

is called the self-adjoint

dilation of Aβ1β2 [9]. We shall show that Aβ1β2 = T−
β1β2

, and this will

prove that T−
β1β2

is a self-adjoint dilation of Tβ1β2 . For the last purpose,

we shall verify the equality [9, 11]

(3.7) P(T−
β1β2

− λI)−1P1u = (T−
β1β2

− λI)−1u, u ∈ H, Imλ < 0.

Let us set (T−
β1β2

−λI)−1P1u = g = ⟨ψ−, v, ψ+⟩. This gives us (T−
β1β2

−
λI)g = P1u, and consequently T−

β1β2
v − λv = u, ψ− (ξ) = ψ−(0)e

−iλξ

and ψ+ (ς) = ψ+(0)e
−iλς . Since the vector g belongs to D(T−

β1β2
), ψ− ∈

L2 (−∞, 0) and hence ψ−(0) = 0. Consequently, v satisfies the boundary
condition [v, ω]−∞−β1 [v, σ]−∞ = 0, [v, σ]∞−β2[v, ω]∞ = 0. Therefore,

v ∈ D(T−
β1β2

), and since a point λ with Imλ < 0 cannot be an eigen-

value of a dissipative operator, it follows that v = (T−
β1β2

− λI)−1u.

It is better to remark that ψ+(0) is found from the formula ψ+(0) =
γ−1

(
[v, ω]−∞ − β1 [v, σ]−∞

)
. Then

(T−
β1β2

− λI)−1P1u

=
⟨
0, (T−

β1β2
− λI)−1u, γ−1

(
[v, ω]−∞ − β1 [v, σ]−∞

)
e−iλς

⟩
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for u ∈ H and Imλ < 0. On applying the mapping P, we obtain (3.7).
On the other side, using (3.7) one can arrive at

(T−
β1β2

− λI)−1 = P(T−
β1β2

− λI)−1P1 = −iP
∫ ∞

0
V−(r)e−iλrdrP1

= −i
∫ ∞

0
Yre

−iλrdr = (Aβ1β2 − λI)−1 , Imλ < 0,

from which it is clear that T−
β1β2

= Aβ1β2 . Theorem 3.1. is proved. □
For the case Imβ1 = 0 or β1 = 0 and Imβ2 > 0, that is dissipative at
∞, we shall construct a self-adjoint dilation of the dissipative operator
T+
β1β2

. So in the space H we consider the operator T+
β1β2

generated by

the expression (3.1) on the set D(T+
β1β2

) of vectors ⟨ϕ−, u, ϕ+⟩ satisfying
the conditions: ϕ− ∈ W1

2 (−∞, 0), ϕ+ ∈ W1
2 (0,∞), u ∈ Dmax,

[u, ω]−∞ − β1 [u, σ]−∞ = 0, [u, σ]∞ − β2 [u, ω]∞ = δϕ−(0),

(3.8) [u, σ]∞ − β2 [u, ω]∞ = δϕ+(0),

where δ2 := 2Imβ2, δ > 0.
We may prove the next result similar to Theorem 3.1.

Theorem 3.2. The operator T+
β1β2

is self-adjoint in H and is a self-

adjoint dilation on the maximal dissipative operator T+
β1β2

.

4. Scattering theory of dilations, functional model and
completeness of root vectors of dissipative operators

In order to apply the Lax-Phillips scattering theory [8] let us con-
sider the unitary group V±(r) = exp[iT±

β1β2
r] (r ∈ R) with the in-

coming and outgoing subspaces Din =
⟨
L2 (−∞, 0) , 0, 0

⟩
and Dout =⟨

0, 0,L2 (0,∞)
⟩
which satisfy the following properties

(1) V±(r)Din ⊂ Din, r ≤ 0 and V±(r)Dout ⊂ Dout, r ≥ 0;
(2)

∩
r≤0

V±(r)Din =
∩
r≥0

V±(r)Dout = {0};

(3)
∪
r≥0

V±(r)Din =
∪
r≤0

V±(r)Dout = H;

(4) Din⊥Dout.
Property (4) is obvious. To prove the property (1) for Dout (the proof

for Din is similar), we set R±
λ = (T±

β1β2
− λI)−1, for all λ with Imλ < 0
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and for any f = ⟨0, 0, ϕ+⟩ ∈ Dout we have

R±
λ f = ⟨0, 0,−ie−iλς

∫ ς

0
e−iλsϕ+(s)ds.

This gives that R±
λ f ∈ Dout. Hence for g⊥Dout, we find

0 =
(
R±

λ f ,g
)
H

= −i
∫ ∞

0
e−iλr

(
V±(r)f ,g

)
H
dλ, Imλ < 0,

which implies that (V±(r)f ,g)H = 0 for all r ≥ 0. Hence V±(r)Dout ⊂
Dout for r ≥ 0, and thus property (1) has been proved.

To prove the property (2) for Dout (the proof for Din is similar), we
consider the linear mappings P+ : H → L2 (0,∞) and P+

1 : L2 (0,∞) →
Dout defined by P+ : ⟨ϕ−, u, ϕ+⟩ → ϕ+ and P+

1 : ϕ → ⟨0, 0, ϕ⟩, re-
spectively. It is better to note that the semigroup of isometries Zr =
P+V−(r)P+

1 , r ≥ 0 is a one-sided shift in L2 (0,∞) . Indeed, the gen-
erator of the semigroup of the one-sided shift Xr in L2 (0,∞) is the
differential operator i( d

dς ) with boundary condition ϕ(0) = 0. Besides,
the generator A of the semigroup of isometries Zr, r ≥ 0, is the operator

Aϕ = P+T−
β1β2

P+
1 f = P+T−

β1β2
⟨0, 0, ϕ⟩ = P+⟨0, 0, idϕ

dς
⟩ = i

dϕ

dς
,

where ϕ ∈ W1
2 (0,∞) and ϕ(0) = 0. Since a semigroup is uniquely deter-

mined by its generator, it follows that Zr = Xr, and hence∩
r≥0

V−(r)Dout = ⟨0, 0,
∩
r≥0

XrL2 (0,∞)⟩ = {0},

which proves (the proof for V+(r) is similar) the property (2).
We should remind that a maximal dissipative operator S (with do-

main D(S)) acting in a Hilbert space H is called totally nonself-adjoint
(or pure) if there are no nonzero subspaces M ⊆ D(S) of H such that
S induces a self-adjoint operator in M.

Lemma 4.1. The operator T±
β1β2

is totally nonself-adjoint (pure).

Proof. Let H ′ ⊂ H be a nontrivial subspace in which T−
β1β2

induces a

self-adjoint operator T ′ with domain D(T ′) = H ′∩D(T−
β1β2

) in a H ′ ⊂ H

(the proof for T+
β1β2

is similar). For z ∈ D(T ′) one can conclude that

z ∈ D(T ′∗) and [z, ω]−∞ − β1 [z, σ]−∞ = 0, [z, ω]−∞ − β1 [z, σ]−∞ = 0,
[z, σ]∞ − β2 [z, ω]∞ = 0. From this, we have [z, σ]−∞ = 0, where z(λ) is

the eigenvector of the operator T−
β1β2

that lies in H ′ and thus it is also an
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eigenvector of T ′. From the boundary condition [z, ω]−∞−β1 [z, σ]−∞ =
0, we obtain [z, ω]−∞ = 0 and z(λ) = 0. Since all solutions of (2.1) are

from ℓ2Ω(Z;E), it is obtained that the resolventRλ(T
−
β1β2

) of the operator

Tβ1β2 is a Hilbert-Schmidt operator and hence the spectrum of T−
β1β2

is

purely discrete. Hence, by the theorem on expansion in eigenvectors of
the self-adjoint operator T ′, we have H ′ = {0}, i.e. the operator T−

β1β2

is pure. This proves the lemma. □
According to the Lax-Phillips scattering theory, one can define the

scattering matrix with the help of spectral representations. Using this
construction, we will also prove property (3) of the incoming and out-
going subspaces.

Consider the spaces

H±
− =

∪
r≥0

V±(r)Din, H
±
+ =

∪
r≤0

V±(r)Dout.

Lemma 4.2. The equality H±
− +H±

+ = H holds.

Proof. One can see that the subspace H′
± = H⊖

(
H±

− +H±
+

)
is invariant

relative to the group {V±(r)}. Further we can consider the space H′
±

as H′
± =

⟨
0,H ′

±, 0
⟩
, where H ′

± is a subspace in H. Hence, if the sub-
space H′

± (and hence also H ′
±) were nontrivial, then the unitary group

{V±(r)}, restricted to this subspace, would be a unitary part of the
group {V±(r)}, and hence the restriction T±′

β1β2
of T±

β1β2
to H ′

± would be

a self-adjoint operator in H ′
±. We know that the operator T±

β1β2
is com-

pletely nonself-adjoint. Hence it follows that H ′
± = {0}, i.e. H′

± = {0}.
The lemma is proved. □

Consider the solutions φ(λ) and ψ(λ) of the system (2.1) satisfying
the conditions

(4.1) [φ, σ]−∞ = −1, [φ, ω]−∞ = 0, [ψ, σ]−∞ = 0, [ψ, ω]−∞ = 1.

According to the Weyl’s analysis, the function M∞β2(λ) of the self-

adjoint operator T−
∞β2

called the Weyl function is parametrized from the

condition [ψ +M∞β2φ, σ]∞ −β2 [ψ +M∞β2φ, ω]∞ = 0 as

(4.2) M∞β2(λ) = −
[ψ, σ]∞ − β2 [ψ, ω]∞
[φ, σ]∞ − β2 [φ, ω]∞

.

(4.2) shows that M∞β2(λ) is a meromorphic function on the complex
plane C with a countable number of poles on the real axis, and these
poles coincide with the eigenvalues of the self-adjoint operator T∞β2 .
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Further M∞β2(λ) has the following properties: ImλImM∞β2(λ) > 0 for

Imλ ̸= 0 and M∞β2(λ̄) =M∞β2(λ) for complex λ with the exception of
the real poles of M∞β2(λ).

Let us adopt the following notation ϑ(λ) = ψ(λ) +M∞β2(λ)φ(λ) and
consider the function

(4.3) Θ−
β1β2

(λ) =
M∞β2(λ)− β1

M∞β2(λ)− β1
,

and the vector

𝟋−
λ (ξ, ς) = ⟨e−iλξ, (M∞β2(λ)− β1)

−1γϑ(λ),Θ−
β1β2

(λ)e−iλς⟩.

The vector 𝟋−
λ (ξ, ς) satisfies the equation T𝟋 = λ𝟋 and the boundary

conditions (3.2) for real λ, but it does not belong to the space H for real
λ.

Let us define the transformation Ψ− : f → f̃−(λ) as (Ψ−f)(λ) :=

f̃−(λ) :=
1√
2π
(f ,𝟋−

λ )H on the vector f = ⟨ϕ−, u, ϕ+⟩ in which ϕ−, ϕ+ are

smooth compactly supported functions, and u = {uk}(k ∈ Z) is a finite
sequence.

Lemma 4.3. The transformation Ψ− maps H− isometrically onto
L2(R). For all vectors f ,g ∈ H−

− the Parseval equality and the inver-
sion formula hold:

(f ,g)H = (f̃−, g̃−)L2 =

∫ ∞

−∞
f̃−(λ)g̃−(λ)dλ, f =

1√
2π

∫ ∞

−∞
f̃−(λ)𝟋−

λ dλ,

where f̃−(λ) = (Ψ−f)(λ) and g̃−(λ) = (Ψ−g)(λ).

Proof. For the vectors f = ⟨ϕ−, 0, 0⟩, g = ⟨ψ−, 0, 0⟩ ∈ Din, we have

f̃−(λ) :=
1√
2π

(f ,𝟋−
λ )H =

1√
2π

∫ 0

−∞
ϕ−(ξ)e

iλξdξ ∈ H2
−.

Using the Parseval equality for Fourier integrals, we get that

(f ,g)H =

∫ 0

−∞
ϕ−(ξ)ψ−(ξ)dξ =

∫ ∞

−∞
f̃−(λ)g̃−(λ)dλ = (Ψ−f ,Ψ−g)L2.

We should note thatH2
± denotes the Hardy classes in L2(R) that consists

of the functions analytically extendable to the upper and lower half-
planes, respectively.

Now consider the dense set H′
− in H−

− consisting of vectors f ∈ H′
−

such that f = V−(r)f0 where f0 = ⟨ϕ−, 0, 0⟩, ϕ− ∈ C∞
0 (−∞, 0). In this

case, if f ,g ∈ H′
−, then for r > rf and r > rg, where r = rf is a
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non-negative number (depending on f ), we have V−(−r)f ,V−(−r)g ∈
Din and, moreover, the first components of these vectors belong to
C∞
0 (−∞, 0). Since the operators V−(r) (r ∈ R) are unitary and the

equality Ψ−V−(r)f = (V−(r)f ,𝟋−
λ )H = eiλr(f ,𝟋−

λ )H = eiλrΨ−f holds,
we have

(f ,g)H = (V−(−r)f ,V−(−r)g)H = (Ψ−V−(−r)f ,Ψ−V−(−r)g)L2

(4.4) = (e−iλrΨ−f , e
−iλrΨ−g)L2 = (Ψ−f ,Ψ−g)L2 .

Taking closure in (4.4), we obtain the Parseval equality for the whole
space H−

−. If all integrals in it are understood as limits in the mean
of integrals over finite intervals, then the inversion formula follows from
the Parseval equality. Finally we have,

Ψ−H
−
− =

∪
r≥0

Ψ−V−(r)Din =
∪
r≥0

e−iλrH2
− = L2(R),

i.e. Ψ− maps H−
− onto the whole of L2(R). The lemma is proved. □

Consider the vector

𝟋+
λ (ξ, ς) = ⟨Θ−

β1β2
(λ)e−iλξ, (M∞β2(λ)− β1)

−1γθ(λ), e−iλς⟩,

which do not belong to the space H for real λ, but satisfies the equation
T𝟋 = λ𝟋 (λ ∈ R) and the boundary conditions (3.2).

We define the transformation Ψ+ : f → f̃+(λ) as (Ψ+f)(λ) := f̃+(λ) :=
1√
2π
(f ,𝟋+

λ )H, where f = ⟨ϕ−, u, ϕ+⟩, and ϕ−, ϕ+ are compactly sup-

ported smooth functions, and u = {uk} (k ∈ Z) is a finite sequence. The
proof of the next result is analogous to that of Lemma 4.3.

Lemma 4.4. The transformation Ψ+ maps H−
+ isometrically onto

L2(R) and for all vectors f ,g ∈ H−
+, the Parseval equality and the in-

version formula hold as follows:

(f ,g)H = (f̃+, g̃+)L2 =

∫ ∞

−∞
f̃+(λ)g̃+(λ)dλ, f =

1√
2π

∫ ∞

−∞
f̃+(λ)𝟋+

λ dλ,

where f̃+(λ) = (Ψ+f)(λ) and g̃+(λ) = (Ψ+g)(λ).

From (4.3) one can see that the function Θ−
β1β2

satisfies
∣∣∣Θ−

β1β2
(λ)
∣∣∣ = 1

for all λ ∈ R. Hence we have

(4.5) 𝟋−
λ = Θ−

β1β2
(λ)𝟋+

λ (λ ∈ R).
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Further, from Lemmas 4.3 and 4.4 we obtain that H−
− = H−

+ and to-

gether with Lemma 4.2 we have H = H−
− = H−

+. This proves the prop-
erty (3) for V−(r).

Thus, Ψ− is the incoming spectral representation for the group {V−(r)}.
Because the transformation Ψ− maps isometrically onto L2(R) with the
subspace Din mapped onto H2

− and the operators V−(r) passing into the

operators of multiplication by eiλr. Similarly Ψ+ is the outgoing spectral
representation for {V−(r)}. It follows from (4.5) that the passage from
the Ψ+-representation of an vector f ∈ H to its Ψ−-representation is re-

alized by multiplication by the function Θ−
β1β2

: f̃−(λ) = Θ−
β1β2

(λ)f̃+(λ).

Lax and Phillips showed that [8] the scattering function (matrix) of
the group {V−(r)} with respect to the subspaces Din and Dout is the
coefficient by which the Ψ−-representation of a vector f ∈ H must be

multiplied in order to get the corresponding Ψ+-representation: f̃+(λ) =

Θ−
β1β2

(λ)f̃−(λ). According to [8], we have now proved the following re-

sult.

Theorem 4.5. The function Θ
−
β1β2

is the scattering function (matrix)

of the unitary group {V−(r)} (of the self-adjoint operator T−
β1β2

).

It is known that the subspace K = H2
+⊖ΘH2

+ is a nontrivial subspace
of the Hilbert space H2

+, where Θ is an arbitrary inner function ([9,
10]) on the upper half-plane. In the subspace K, let us consider the
semigroup of the operators Zr (r ≥ 0) acting according to the formula
Zru = P[eiλru], u := u(λ) ∈ K, where P is the orthogonal projection
from H2

+ onto K. Let A denote the generator of the semigroup {Zr} :
Au = limr→+0[(ir)

−1(Zru−u)]. The operator A is a dissipative operator
acting in K and having domain D(A) which consists of all functions
u ∈ K for which that the limit exists. The operator A is called a
model dissipative operator. It is better to note that this model dissipative
operator, which is associated with the names of Lax and Phillips [8], is
a special case of a more general model dissipative operator constructed
by Sz.-Nagy and Foiaş [9]. It will be shown that Θ is the characteristic
function of the operator A.

Let us consider the space H = Din⊕M⊕Dout, where M = ⟨0,H, 0⟩.
It was shown that with the help of the unitary transformation Ψ− the
following mappings

H → L2(R), f → f̃−(λ) = (Ψ−f)(λ), Din → H2
−,Dout → Θ−

β1β2
H2

+,
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(4.6)

M → H2
+ ⊖Θ−

β1β2
H2

+, V−(r)f → (Ψ−V−(r)Ψ−1
− f̃−)(λ) = eiλr f̃−(λ),

hold. These mappings (4.6) allow us to know that our operator T−
β1β2

is

unitary equivalent to the model dissipative operator with characteristic
function Θ−

β1β2
.On the other hand it is well known that the characteristic

functions of unitary equivalent dissipative operators coincide [9, 11, 12].
Hence we have proved the following theorem.

Theorem 4.6. The characteristic function of the dissipative operator
T−
β1β2

coincides with the function Θ−
β1β2

defined by (4.3).

Consider the solutions ϕ(λ) and χ(λ) of (2.1) satisfying the conditions

[ϕ, σ]−∞ =
1√

1 + β21
, [ϕ, ω]−∞ = − β1√

1 + β21
,

[χ, σ]−∞ =
β1√
1 + β21

, [χ, ω]−∞ =
1√

1 + β21
.

Let Mβ1∞ be the Weyl function of the self-adjoint operator Tβ1∞,
which is obtained in terms of the Wronskians of the solutions as follows

Mβ1∞(λ) = −
[χ, ω]∞
[ϕ, ω]∞

.

Let us adopt the following notation:

K(λ) :=
[φ, σ]∞
[ψ, ω]∞

, M(λ) :=Mβ1∞(λ),

(4.7) Θ+(λ) := Θ+
β1β2

(λ) :=
M(λ)K(λ)− β2

M(λ)K(λ)− β2
.

Consider the vector

Υ−
λ (ξ, ς) = ⟨e−iλξ, γM(λ)[(M(λ)K(λ)−β2)[χ, ω]∞]−1ϕ(λ),Θ+(λ)e−iλς⟩.

Note that the vector Υ−
λ (ξ, ς) does not belong to the H for λ ∈ R. How-

ever, Υ−
λ satisfies the equation TΥ−

λ = λΥ−
λ (λ ∈ R) and the boundary

conditions (3.8).

Using the vector Υ−
λ , we define the transformation Φ− : f → f̃−(λ) as

(Φ−f)(λ) := f̃−(λ) :=
1√
2π
(f ,Υ−

λ )H, where f = ⟨ϕ−, u, ϕ+⟩, ϕ−, ϕ+ are

smooth compactly supported functions, and u = {uk} (k ∈ Z) is a finite
sequence. The proof of the next result is similar to that of Lemma 4.2.
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Lemma 4.7. The transformation Φ− maps H+
− isometrically onto L2(R).

For all vectors f ,g ∈ H+
− the Parseval equality and the inversion formula

hold:

(f ,g)H = (f̃−, g̃−)L2 =

∫ ∞

−∞
f̃−(λ)g̃−(λ)dλ, f =

1√
2π

∫ ∞

−∞
f̃−(λ)Υ

−
λ dλ,

where f̃−(λ) = (Φ−f)(λ) and g̃−(λ) = (Φ−g)(λ).

Now let

Υ+
λ (ξ, ς) = ⟨Θ+(λ)e−iλξ, γM(λ)[(M(λ)K(λ)−β2)[χ, ω]∞]−1ϕ(λ), e−iλς⟩.

It is clear that the vector Υ+
λ (ξ, ς) does not belong to H for λ ∈ R. How-

ever, Υ+
λ satisfies the equation TΥ+

λ = λΥ+
λ (λ ∈ R) and the boundary

conditions (3.8).
With the help of the vector Υ+

λ (ξ, ς), we define the transformation

Φ+ : f → f̃+(λ) on vectors f = ⟨ϕ−, u, ϕ+⟩, in which ϕ−, ϕ+ are com-
pactly supported smooth functions, and u = {uk} (k ∈ Z) is a finite

sequence by setting (Φ+f)(λ) := f̃+(λ) :=
1√
2π
(f ,Υ+

λ )H.

Lemma 4.8. The transformation Φ+ maps H+
+ isometrically onto L2(R)

and for all vectors f ,g ∈ H+
+, the Parseval equality and the inversion

formula hold:

(f ,g)H = (f̃+, g̃+)L2 =

∫ ∞

−∞
f̃+(λ)g̃+(λ)dλ, f =

1√
2π

∫ ∞

−∞
f̃+(λ)Υ

+
λ dλ,

where f̃+(λ) = (Φ+f)(λ) and g̃+(λ) = (Φ+g)(λ).

Using (4.7), one can see that the function Θ+
β1β2

(λ) satisfies
∣∣∣Θ+

β1β2
(λ)
∣∣∣ =

1 for λ ∈ R. Therefore we get that

(4.8) Υ−
λ = Θ

+
β1β2

(λ)Υ+
λ , λ ∈ R.

From Lemmas 4.7 and 4.8, we have H+
− = H+

+ and therefore together

with Lemma 4.2. we obtain that H = H+
− = H+

+. From the formula
(4.8), it follows that passage from the F−-representation of a vector

f ∈ H to its Φ+-representation is accomplished as follows: f̃+(λ) =

Θ
+
β1β2

(λ)f̃−(λ). According to [8] we have now proved the next assertion.

Theorem 4.9. The function Θ
+
β1β2

is the scattering function (matrix)

of the unitary group {V+(r)} (of the self-adjoint operator T+
β1β2

).
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Unitary transformation F− gives the following mappings

H → L2(R), f → f̃−(λ) = (Φ−f)(λ), Din → H2
−, Dout → Θ+

β1β2
H2

+,

(4.9)

M → H2
+ ⊖Θ+

β1β2
H2

+, V+(r)f → (Φ−V+(r)Φ−1
− f̃−)(λ) = eiλr f̃−(λ).

Hence from (4.9), we arrive at the result that the operator T+
β1β2

is

unitary equivalent to the model dissipative operator with characteristic
function Θ+

β1β2
. We have thus proved the following theorem.

Theorem 4.10. The characteristic function of the maximal dissipative
operator T+

β1β2
coincides with the function Θ+

β1β2
defined by (4.7).

Characteristic function of a dissipative operator T±
β1β2

carries com-

plete information about the spectral properties of the dissipative op-
erator [9-12]. This can be done by showing the absence of a singular
factor s±(λ) of the characteristic function Θ±

β1β2
in the factorization

Θ±
β1β2

(λ) = s±(λ)B±(λ), where B±(λ) is a Blaschke product. This

proves the completeness of the system of eigenvectors and associated
vectors (or root vectors) of the dissipative operators T±

β1β2
.

Let S denote the linear operator in the Hilbert space H with the
domain D(S). The complex number λ0 is called an eigenvalue of the
operator S if there exists a nonzero element u0 ∈ D(S) such that
Su0 = λ0u0. Such element u0 is called the eigenvector of the opera-
tor S corresponding to the eigenvalue λ0. The elements u1, u2, ..., uk are
called the associated vectors of the eigenvector u0 if they belong to D(S)
and Suj = λ0uj + uj−1, j = 1, 2, ..., k. The element u ∈ D(S), u ̸= 0 is
called a root vector of the operator S corresponding to the eigenvalue
λ0, if all powers of S are defined on this element and (S − λ0I)

nu = 0
for some integer n. The set of all root vectors of S corresponding to the
same eigenvalue λ0 with the vector u = 0 forms a linear set Nλ0 and
is called the root lineal. The dimension of the lineal Nλ0 is called the
algebraic multiplicity of the eigenvalue λ0. The root lineal Nλ0 coincides
with the linear span of all eigenvectors and associated vectors of S cor-
responding to the eigenvalue λ0. Consequently, the completeness of the
system of all eigenvectors and associated vectors of S is equivalent to
the completeness of the system of all root vectors of this operator.

Theorem 4.11. For all values of β1 with Imβ1 > 0, except possibly
for a single value β1 = β01 , and for fixed β2 (Imβ2 = 0 or β2 = 0), the
characteristic function Θ−

β1β2
of the maximal dissipative operator T−

β1β2
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is a Blaschke product and the spectrum of T−
β1β2

is purely discrete, and

belongs to the open upper half plane. The operator T−
β1β2

(β1 ̸= β01) has

a countable number of isolated eigenvalues with finite multiplicity and
limit points at infinity, and the system of eigenvectors and associated
(or root) vectors of this operator is complete in the space ℓ2Ω(Z;E).

Proof. From (4.3), it is clear that Θ−
β1β2

is an inner function in the upper

half-plane and it is meromorphic in the whole λ-plane. Thus, it can be
factored in the form

(4.10) Θ−
β1β2

(λ) = eiλcBβ1β2(λ), c = c (β1) > 0,

where Bβ1β2(λ) is a Blaschke product. Using (4.10) one obtains that

(4.11) |Θβ1β2(λ)| ≤ e−c(β1)Imλ, Imλ ≥ 0.

On the other hand expressing M∞β2(λ) in terms of Θ−
β1β2

(λ), we find

from (4.3) that

(4.12) M∞β2(λ) =
β1Θ

−
β1β2

(λ)− β1

Θ−
β1β2

(λ)− 1
.

Now if c (β1) > 0 for a given value β1 (Imβ1 > 0), then (4.11) implies
that limr→+∞Θ−

β1β2
(ir) = 0, and then (4.12) gives us that

limr→+∞M∞β2(ir) = β1. c(β1) can be nonzero at not more then a single
point β1 = β01 (and, further, β01 = limr→+∞M∞β2(ir)) becauseM∞β2(λ)
does not depend on β1. Therefore the proof is completed. □

The proof of the next result is analogous to that of Theorem 4.11.

Theorem 4.12. For all values of β2 with Imβ2 > 0, except possibly for
a single value β2 = β02 , and for fixed β1 (Imβ1 = 0 or β1 = ∞), the
characteristic function Θ+

β1β2
of the maximal dissipative operator T+

β1β2

is a Blaschke product and the spectrum of T+
β1β2

is purely discrete, and

belongs to the open upper half-plane. The operator T+
β1β2

(β2 ̸= β02) has

a countable number of isolated eigenvalues with finite multiplicity and
limit points at infinity, and the system of eigenvectors and associated
(or root) vectors of this operators is complete in the space ℓ2Ω(Z;E).
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