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ON /-QUASI ARMENDARIZ MODULES

E. HASHEMI

ABSTRACT. Let § be a derivation on R and S = R[z;d] be the
differential polynomial ring. A module M is called Baer (resp.
quasi-Baer) if the annihilator of every subset (resp. submodule)
of M is generated by an idempotent of R. In this note we impose
d-compatibility assumption on the module M and prove the follow-
ing results. (1) The module M is quasi-Baer (resp. p.q.-Baer) if
and only if Mz]s is quasi-Baer (resp. p.q.-Baer). (2) If Mg is
d-Armendariz, then Mg is Baer (resp. p.p) if and only if M(z]s is
Baer (resp. p.p). (3) A necessary and sufficient condition for the
trivial extension T'(R, R) to be §-quasi Armendariz is obtained.

1. Introduction

Throughout the paper R always denotes an associative ring with unity
and Mp will stand for a right R-module. Recall from [16] that R is a
Baer ring if the right annihilator of every nonempty subset of R is
generated by an idempotent. In [16] Kaplansky introduced Baer rings
to abstract various properties of von Neumann algebras and complete
x-regular rings. The class of Baer rings includes the von Neumann alge-
bras. In [9] Clark defines a ring to be quasi-Baer if the left annihilator
of every ideal is generated, as a left ideal, by an idempotent. Another
generalization of Baer rings are the p.p.-rings. A ring R is called right
(resp. left) p.p if right (resp. left) annihilator of an element of R is
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generated by an idempotent. Birkenmeier et al. in [6] introduced the
concept of principally quasi-Baer rings. A ring R is called right princi-
pally quasi-Baer (or simply right p.q.-Baer) if the right annihilator of a
principal right ideal of R is generated by an idempotent.

In 1974, Armendariz considered the behavior of a polynomial ring
over a Baer ring by obtaining the following result: Let R be a reduced
ring (i.e. R has no nonzero nilpotent elements). Then R|x] is a Baer ring
if and only if R is a Baer ring ([4], Theorem B). Armendariz provided an
example to show that the reduced condition is not superfluous. Recently,
this result has been extended in several directions by Birkenmeier-Kim-
Park [7], Han-Hirano-Kim [10], Hirano [12], Hong-Kim-Kwak [14], and
Kim-Lee [18].

From now on, we always denote the differential polynomial ring by
S := R[z;d], where § : R — R is a derivation on R. Recall that a
derivation § is an additive operator on R with the property that é(ab) =
0(a)b + ad(b) for all a,b € R. The differential polynomial ring S is
then the ring consisting of all (left) polynomials of the form > a;z*
(a; € R), where the addition is defined as usual and the multiplication
by xb = bz + 6(b) for any b € R. From this rule, an inductive argument
can be made to calculate an expression for z/a, for all j € N and a € R.

One can show with a routine computation that

2la = 2]: ( i > 67 a)x’, (1.1)

=0

Given a right R-module Mg, we can make M [z] into a right S-module
by allowing polynomials from S to act on polynomials in M|x] in the
obvious way, and applying the above “twist” whenever necessary.

For a nonempty subset X of M, put anng(X) = {a € R| Xa = 0}.

In [22], Lee-Zhou introduced Baer, quasi-Baer and p.p.-modules as
follows: (1) Mg is called Baer if, for any subset X of M, anng(X) = eR
where €2 = ¢ € R. (2) Mg is called quasi-Baer if, for any submodule
X C M, anng(X) = eR where €2 = ¢ € R. (3) Mg is called p.p. if,
for any element m € M, anng(m) = eR where ¢ = e € R. Clearly, a
ring R is Baer (resp. p.p. or quasi-Baer) if and only if Ry is Baer (resp.
p.p. or quasi-Baer) module. If R is a Baer (resp. p.p. or quasi-Baer)
ring, then for any right ideal I of R, Ir is Baer (resp. p.p. or quasi-
Baer) module. Lee-Zhou have extended various results of reduced rings
to reduced modules.
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The module Mp, is called principally quasi-Baer (or simply p.q.-Baer)
if, for any m € M, anng(mR) = eR where ¢? = e € R. It is clear that R
is a right p.q.-Baer ring if and only if Rp is a p.q.-Baer module. Every
submodule of a p.q.-Baer module is p.q.-Baer and every Baer module is
quasi-Baer.

In this note we impose d-compatibility assumption on the module Mg
and prove the following results which extend many results on rings to
modules:

(1) The module Mp is quasi-Baer (resp. p.q.-Baer) if and only if
M]z]s is quasi-Baer (resp. p.q.-Baer), where S = R[z;d]. Also we
give an example to show that é-compatibility assumption on Mg is not
superfluous.

(2) If MR is 6-Armendariz, then Mp is Baer (resp. p.p) if and only if
M]z)g is Baer (resp. p.p).

(3) A necessary and sufficient condition for the trivial extension T'(R, R)
to be d-quasi Armendariz is obtained.

2. d0-quasi Armendariz modules and Ore extensions of
quasi-Baer modules

Definition 2.1. (Annin, [3]) Given a module Mg and a derivation 0 :
R — R, we say that Mg is §-compatible if for each m € M, r € R, we
have mr =0 = md(r) = 0.

Remark 2.2. If My is d-compatible, then so is any submodule of Mpg.

Lemma 2.3. Let Mg be a d-compatible module. Let m € M, a,b € R.
Then we have the following:

(i) if ma = 0, then mé?(a) = 0 for any positive integer j;

(ii) if mab = 0, then mad’ (b) = 0 = md’(a)b for any positive integer j;
(iii) anng(ma) C anng(md(a)).

Proof. (i) This follows from Remark 2.2.

(ii) It is enough to show that mad(b) = 0 = md(a)b. Since Mp is
d-compatible, mab = 0 implies that mad(b) = 0 and méd(ab) = md(a)b+
mad(b) = 0. Hence md(a)b = 0.
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(iii) Let mab = 0 for some b € R. Using d-compatibility, we get 0 =
mo(ab) = mad(b) + md(a)b = 0 and hence md(a)b = 0, as desired. [

Lemma 2.4. Let Mg be a d-compatible module and m(x) = mg+--- +
mia® € M[z] and r € R. Then m(x)r = 0 if and only if m;r = 0 for all
1.

Proof. Assume m(z)r = 0. An easy calculation using (1.1) shows that
m(x)r = Zf:o [Z?:i ( Z ) mj5ji(r)] z' and so

k .
Z < ‘Z > m;0? " (r) = 0 for each i < k. (2.1)
J=

Starting with i = k, Eq.(2.1) yields myr = 0. Now assume inductively
that m;r = 0 for each j > i. By d-compatibility of Mg, for j > i, we
have m;6/~i(r) = 0. Using (2.1) again, we deduce that m;r = 0, as
needed.

The converse follows from J-compatibility assumption on M. O

Following Anderson and Camillo [1], a module Mg, is called Armen-
dariz if, whenever m(z)f(x) = 0 where m(z) = Y_;_ym;z’ € M|[z] and
flz) = Z;‘:O ajz’ € R[z], we have m;a; = 0 for all 4, 5.

Definition 2.5. Given a module Mg and a derivation 6 : R — R, we say

Mpg is 6-quasi Armendariz (resp. J-Armendariz), if whenever m(x) =

Sk omirt € Mlz], f(x) = Si_obja? € Rlx;0] satisfy

m(z)R[z; 8] f(z) = 0 (resp. m(z)f(z) = 0), we have m;z! Rxlb;z = 0
0,

(resp. mizta;z? =0) fort >0,i=0,--- ,kand j =0,--- ,n.

Let R be a ring. The trivial extension of R is given by:

T(R,R) = {< 8 (7; > la,r € R}. Clearly, T(R, R) is a subring of the

ring of 2 x 2 matrices over R. The derivation § on R is extended to ¢ :

T(R,R) — T(R, R) by6(< g Z >) = ( ‘5(0a) ggzg > One can show

that 0 is a derivation on T(R, R) and T'(R, R)[x; 8] = T(R[z; ], R[z; ]).

Proposition 2.6. Let R be a §-compatible ring. If the trivial extension
T (R, R) is 6-quasi Armendariz, then R is d-quasi Armendariz.
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Proof. Let f(z) =ao+- -+ anx", g(z) =by+- -+ bpz™ € R[z;d] and
f(x)R[z;0]g(x) = 0. For each a,r € R and t > 0, we have the following
equation:

£ )

(75 5 ) (5 )

Since T'(R, R) is 5-quasi Armendariz,

a0 as’ ra’ 0 bjz? \ _ ity gl —
( 0 aixi>( 0 az' 0 0 = 0 and so a;z'ax’bjz’ = 0

for all ¢, j,t. Therefore R is é-quasi rmendariz. O

When the trivial extension T'(R, R) is d-quasi Armendariz?

Theorem 2.7. Let R be a §-compatible ring such that
(i) R is d-quasi Armendariz;
(i) if £ (2)Rlz:6)g(x) = 0, then f(x)Rlz;6) N Rlwsdlg(x) = 0.

Then the trivial extension T(R, R) is 0-quasi Armendariz.

Proof. Suppose that a(z)T'(R, R)F(x) = 0, where

o ap To ar 71 L An  Tn n
a(m)_<0 ao)+(0 al)w-i- —i—(o an)m and

[ bo so b1 s1 m Sm .5
B(x)—< 0 bo >+< 0 b > ( >x € T(R, R)|z;d).
Let f(z) =ap+ a1z + -+ + apa™, r(x) ro+r1x+ <+ rpah,
g(x):b0+b1:c+~~+bmx and 5( ) =s0+s1x+- -+ supa™ ER[yc;é].
For each ( g Z )w € T(R R)[z; 0], it follows that

0
_( f(@) r(z)
o=( ) (% ) (%) )
_ ( f(x)aztg(x) f(z)az’ S( ) f(@)r SU g(z ) r(x)az'g(x) )
0 f(x)aztg(x)
f(x)azlg(z) = 0 and f(z)azx's(z) + f(x)ratg(z) + r(x)azlg(z) = 0.
Since az! is an arbitrary element of R[z;d], f(z)R[z;d8]g(x) = 0. But
R is d-quasi Armendariz and hence ai:J:ZR:Jctbjxj = 0 for all ¢, j,¢. Since
f(x)[ax! S( )4r(z)atg(x)]+r(x)axtlg(x) = 0, f(z)[az’s(x)+r(x)atg(z)] =
—[r(z)az'lg(z) € f(x)R[z; 8] N Rlz;d]g(x), so

. Hence
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f(@)azts(z) + r(x)xtg(z)] = [r(x)azt]g(x) = 0. Since az' is an arbi-
trary element of R[z;d], 7(z)R[z;d]g(x) = 0. Then rz'Ratbjzl = 0
for all 4,j,t, since R is d-quasi Armendariz. Thus f(z)[azs(x)] =
~[f@)r(z)alg(z) € f(r)Rla:d] O Rla:olg(a) = 0. So f(a) Rl o]s(z) =
0 and a;z'Ra'sjz? = 0 for all 4,7,¢, since R is d-quasi Armendariz.
Therefore

ai i\ @ T ¢ bj sj L
0 a; 0 a 0 bj
( aix’cmtbjx] aixlrxtbjmj + aixlrajtbﬂﬂ + Tixlaxtbjxj

> = Oforalli,j

0 aixia:vtbja:j
and each ( 3 2 ) 2t € T(R, R). Therefore the trivial extension T(R, R)
is 0-quasi Armendariz. d

Theorem 2.8. Let Mg be a §-compatible and §-quasi Armendariz mod-
ule. Then Mg satisfies the ascending chain condition on annihilator of
submodules if and only if so does M|x]g.

Proof. Assume that Mp satisfies the ascending chain condition on
annihilator of submodules. Let I; C Iy C I3--- be a chain of annihilator
of submodules of M [z]s. Then there exist submodules K; of M[z]g such
that anng(K;) = I; and K1 O Ko O K3 D --- for all i > 1. Let M; =
{all coefficients of elements of K;}. Since M is d-quasi Armendariz, M;
is submodule of M for all ¢ > 1. Clearly M; O M;y; for all ¢ > 1.
Thus anng(M;) C anng(Mz) C anng(Msz) C ---. Since Mp satisfies
the ascending chain condition on annihilator of submodules, there exists
n > 1 such that anng(M;) = anng(M,,) for all ¢ > n. We show that
anng(K;) = anng(K,) for all i > n. Let f(z) = ap + a1z + -+ +
ama™ € anng(K;). Then M;a; =0 for j =0,--- ,m, since M is §-quasi
Armendariz. Thus M,a; = 0 for j = 0,--- ,m and so K, f(z) = 0 by
Lemma 2.4. Therefore anng(K;) = anng(K,,) for all i > n and M|z|g
satisfies the ascending chain condition on annihilator of submodules.
Now assume M [z]|g satisfies the ascending chain condition on anni-
hilator of submodules. Let J; C Jy C J3--- be a chain of annihilator
of submodules of Mp. Then there exist submodules M; of M such that
anng (M;) = J; and
My D My D M3 D --- for alli > 1. Hence M;[z] is a submodule of M [x]
and M;[x] D M;i1[z] and anng(M;[z]) C anng(M;1[x]) for all 4 > 1.
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Since Mg|[z] satisfies the ascending chain condition on annihilator of sub-
modules, there exists n > 1 such that anng(M;[z]) = anng(M,[z]) for
all i > n. Since M is §-quasi Armendariz, by a similar argument as used
in the previous paragraph, one can show that anng(M;) = anng(M,)
for all i > n. O

Theorem 2.9. Let Mp be a §-compatible module. Then Mg is quasi-
Baer (resp. p.q.-Baer) if and only if M[z|s is quasi-Baer (resp. p.q.-
Baer). In this case Mg is d-quasi Armendariz.

Proof. Assume My is quasi-Baer. First we shall prove that Mg is §-
quasi Armendariz. Suppose that (mg + myz + ... + mz®)S(by + bz +
. + bpa™) =0, with m; € M, b; € R. Then

(mo + maz + ... + mpz®)R(bg + b1z + ... + bpa™) = 0. (2.2)

Thus miRb, = 0 and b, € anng(miR). Then myzFRatb,z™ = 0,
by Lemma 2.3. Since Mp is qusi-Baer, there exists ez =e € R
such that anng(mipR) = exR and so b, = epb,. Replacing R by
Rej, in Eq.(2.2) and using Lemma 2.3, we obtain (mg + miz + ... +
mp_12* ") Rey(bg 4+ b1z + ... + bpz™) = 0. Hence my_1Rb, = 0 and b, €
anng(mg_1R). Then my_12* ' Ratb,2™ = 0, by Lemma 2.3. Hence
b, € anng(miR) N anng(mg_1R). Since Mg is Oqusi-Baer, there exists
f? = f € R such that anng(miR) = fR and so b, = fb,. If we put
ex—1 = emf, then ex_1b, = b, and ex_1 € anng (myR) N anng(mg_1 R).
Next, replacing R by Rey_1 in Eq.(2.2), and using Lemma 2.3, we obtain
(mo 4+ miz + ... + mp_o2* ) Rej_1 (b + b1z + ... + byz™) = 0. Hence we
have b,, € anng(my_sR) and so my_sx*2Ratb, 2™ = 0, by Lemma 2.3.
Continuing this process, we get m;z*Rxtb,z" = 0fori =0, --- , k. Using
induction on k + n, we obtain mixintbj:z:j = 0 for all ¢, j,t. Therefore
MpF, is d-quasi Armendariz. Let J be a S-submodule of M([z]|. Let N =
{m € M|m is a leding coefficient of some non-zero element of J} U {0}.
Clearly, N is a submodule of M. Since Mg is quasi-Baer, there exists
e? = e € R such that anng(N) = eR. Hence eS C anng(J) by Lemma
2.3. Let f(z) =by+ bz + ...+ bya™ € anng(J). Then Nb; = 0 for each
Jj =0,---,n since Mg is 6-quasi Armendariz. Hence b; = eb; for each
j=0,--- ,nand f(z) = ef(zx) € eS. Thus anng(J) = eS and M|z]g is
quasi-Baer.

Assume that M|z]g is quasi-Baer and I is a submodule of M. Then
I[z] is a submodule of M[z]. Since M|z] is quasi-Baer, there exists an
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idempotent e(z) = eg + -+ - + e,x™ € S such that anng(I[x]) = e(z)S.
Hence Iey = 0 and egR C anng([). Let t € anng (). Then I[z]t = 0 by
Lemma 2.4. Hence t = e(x)t and so t = egt € egR. Thus anng (1) = ey R
and Mp is quasi-Baer. O

Corollary 2.10. Let R be a §-compatible ring. Then R is quasi-Baer
(resp. right p.q.-Baer) if and only if R[x;d] is quasi-Baer (resp. right
p.q.-Baer).

The following example shows that d-compatibility condition on Rg in
Corollary 2.10 is not superfluous.

Example 2.11. [4, Example 11] There is a ring R and a derivation &
of R such that R[z;d] is a Baer (hence quasi-Baer) ring, but R is not
quasi-Baer. In fact let R =Zs[t]/(t?) with the derivation § such that
5(t) = 1 where t = t + (¢2) in R and Zs[t] is the polynomial ring over
the field Zg of two elements. Consider the Ore extension R|x;d]. If we
set e11 = tx,e1n = f,e91 = tx? + x, and egy = 1+ tx in R[z;d], then
they form a system of matrix units in R[x;d]. Now the centralizer of
these matrix units in R[z;d] is Zs[z?]. Therefore R[z;d] & Ms(Zz[z?))
= My (Za)]y], where Ma(Zs)[y] is the polynomial ring over Ma(Zsa). So
the ring R[x;d] is a Baer ring, but R is not quasi-Baer.

Corollary 2.12. [7, Corollary 2.8] Let R be a ring. Then R is quasi-
Baer (resp. right p.q.-Baer) if and only if R[z] is quasi-Baer (resp. right
p.q.-Baer).

According to Lee-Zhou [22], a module My, is called reduced if for any
m € M and any a € R, ma = 0 implies mR N Ma = 0. It is clear that
R is a reduced ring if an only if Ry is reduced. If Mg is reduced, then
Mg is p.p. if and only if Mg is p.q.-Baer.

Lemma 2.13. The following are equivalent for a module Mp.
(i) Mg is reduced and &-compatible;
(ii) The following conditions hold. For any m € M and a € R,
(a) ma = 0 implies mRa = 0,
(b) ma = 0 implies md(a) =0,
(c) ma® = 0 implies ma = 0.
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Proof. The proof is straightforward. O

McCoy [23,Theorem 2| proved that if R is a commutative ring, then
whenever g(x) is a zero-divisor in R[x] there exists a nonzero ¢ € R such
that cg(z) = 0. We shall extend this result as follows.

Proposition 2.14. Let M be a reduced and d-compatible module. If
m(z) is a torsion element in Mz] (i.e. m(x)h(z) = 0 for some 0 #
h(z) € Rlx;d]), then there exists a non-zero element ¢ of R such that
m(x)e = 0.

Proof. Let m(z) = Y7 om;z’ and h(x) = > im0 hjz? and m(z)h(z) =
0. Then
mphs = 0. (2.4)

Note that for a reduced module M, for any m € M and any a € R,
ma = 0 implies mRa = 0 and ma® = 0 implies ma = 0 by Lemma
2.13. By (2.4) m,Rhs = 0 and m,,6? (hs) = 0 for each j > 0. Hence the
coefficient of 2"~ in m(x)h(z) = 0 is

Mmphs_1+ mp_1hs = 0. (25)

Multiplying Eq. (2.5) by hs from the right-hand side and using the hy-
pothesis we obtain m,,_1hs = 0. Hence m,,_1 Rhs = 0 and m,,_16? (hs) =
0 for each j > 0. Thus the coefficient of 2”752 in m(x)h(x) = 0 is

Mphs—o + Mp_1hs—1 + mp_shs = 0. (2.6)

Multiplying Eq. (2.6) by hs from the right-hand side and using the
hypothesis, we obtain m,_shs = 0. Continuing this process, we may
prove mjhs = 0 for each j. Since h(z) # 0 we may assume hy # 0. Then
m(z)hs = 0 by Lemma 2.4. O

Proposition 2.15. Let Mg be a reduced and 6-compatible module. Then
Mg is 0-Armendariz.

Proof. Let m(x) = mqg + --- +mya® € M[z], f(x) =ap+ -+ aa" €
R[z; 6] and m(x)f(x) = 0. Hence myRay, = 0. Thus the coefficient of
k=1 in equation m(z) f(z) = 0 is mpa,_1 +mg_1a, = 0. Multiplying
this equation from the right-hand side by a,, we obtain mk,lafl = 0.

Hence my_1a, = 0 by Lemma 2.13. Therefore mya,—1 = 0, and so
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mkmkan,lxn_l = mk_lack_lanx" = 0 by Lemma 2.3. Continuing this
process, we can prove m;x‘a;x’ = 0 for each 4, j. ]

Theorem 2.16. Let Mg be a §-compatible module and S = Rx;d|. If
Mpg is 6-Armendariz, then Mg is Baer (resp. p.p) if and only if M[z]g
is Baer (resp. p.p).

Proof. The proof is similar to that of Theorem 2.9. ]

Corollary 2.17. Let Mp be a reduced and &-compatible module and
S = R[x;0]. Then Mg is Baer (resp. p.p) if and only if M[x]s is Baer
(resp. p.p).

Proof. This follows from Proposition 2.14 and Theorem 2.16. O

Corollary 2.18. Let R be a reduced ring and S = R[z;d]. Then R is
Baer (resp. p.p) if and only if S is Baer (resp. p.p).

Proof. By using Corollary 2.17, it remains to show that R is §-compatible.
Let ab = 0. Then 6(ab) = d(a)b+ ad(b) = 0. Multiplying this equation
by b from the right-hand side, we obtain §(a)b? = 0 and so §(a)b =0 =
ad(b), since R is reduced. O
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