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ABSTRACT. Let P()A) be an m-square complex matrix polynomial, and
1 < k < n be a positive integer. In this paper, some algebraic and geo-
metrical properties of the k-numerical range of P(\) are investigated. In
particular, the relationship between the k-numerical range of P()A) and
the k-numerical range of its companion linearization is stated. Moreover,
the k-numerical range of the basic A-factor block circulant matrix, which
is the block companion matrix of the matrix polynomial P(\) = A™I,—A,
is studied.
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1. Introduction and preliminaries

Let M, «,, be the vector space of all n x m complex matrices. For the
case n = m, M, x, is denoted by M,,; namely, the algebra of all n x n complex
matrices. Throughout the paper, k, m and n are considered as positive integers,
and k < n. Moreover, I} denotes the k x k identity matrix. The set of all n x k
isometry matrices is denoted by X xp,; i-e., Xpxr = {X € Myxp : X*X = Ii.}.
Also, the group of n x n unitary matrices is denoted by U,,; namely, U,, = {U €
M, : U*U =1I,} = X,xn- The notion of the k-numerical range of A € M,,,
which was first introduced by P. R. Halmos [10], is defined and denoted by

1
Wi(4) = {70 (X"AX) : X € K,
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where tr(.) denotes the trace. The sets Wy (A), where k € {1,2,...,n}, are
generally called higher numerical ranges of A. When k = 1, we have the clas-
sical numerical range W1(4) = W(A) := {a*Az : z € C", z*z = 1}, which
has been studied extensively; see for example [9] and [12, Chapter 1]. Motiva-
tion of our study comes from finite-dimensional quantum systems. In quantum
physics, e.g., see [3], quantum states are represented by density matrices, i.e.,
positive semidefinite matrices with trace one. If a quantum state D € M, has
rank one, i.e., D = zx* for some x € C™ with *x = 1, then D is called a pure
quantum state; otherwise, D is said to be a mixed quantum state, which can
be written as a convex combination of pure quantum states. So, for A € M,,,
we have W(A) = {tr(AD) : D € M, is a pure quantum state}. Also, by the
fact that the convex hull of the set {+P : P € M,,, P> = P = P*, tr(P) = k}
equals to the set Sy of density matrices D € M, satisfying %In — D is positive
semidefinite, we have

Wi(A) = {%tr(AP) : PeM,, P2=P =P tr(P) =k}
= {tr(AD) : D € S}.

Let A € M, have eigenvalues A1, Ao, ..., A, counting multiplicities. The set of
all k-averages of eigenvalues of A is denoted by o(®)(A); namely,

1
J(k)(A):{E()\11+>\12++)\zk) : 1§i1<i2<---<ik§n}.

Notice that if k = 1, then ¢(V)(A) = o(A), i.e., the spectrum of A. Next, we
list some properties of the k-numerical range of matrices which will be useful
in our discussion. For more details, see [0, 10,14, 15,18].

Proposition 1.1. Let A € M,,. Then the following assertions are true:

(i) Wi(A) is a compact and convez set in C;

(ii) conv (o) (A)) C Wi(A), where conv(S) denotes the conver hull of a set
S C C. The equality holds if A is normal;

(iii) {1tr(A)} = Wa(A) C Wy1(A) C--- C Wy(A) C Wi(A) = W(A);

() IfV € Xyxs, where k < s <mn, then Wy, (V*AV) C Wi(A). The equality
holds if s =n, i.e., Wy, (U*AU) = Wi (A), where U € Uy,;

(v) For any «, 8 € C, Wi(aA+ BI,) = aWi(A) + 5, and for the case k < n,
Wi(A) = {a} if and only if A = al,;

(vi) Wi(A*) = Wi(A);

(vii) For the case k < n, Wi(A) C R if and only if A is Hermitian.

At the end of this section, we give some information about matrix polyno-
mials. Notice that matrix polynomials arise in many applications and their
spectral analysis is very important when studying linear systems of ordinary
differential equations with constant coefficients; e.g., see [7]. Suppose that

(1.1) POA) = A\ + Ay N AN+ A
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is a matrix polynomial, where A; € M,, (i = 0,1,...,m), A,, # 0 and X is a
complex variable. The numbers m and n are referred as the degree and the
order of P()\), respectively. The matrix polynomial P()\), as in (1.1), is called
a monic matriz polynomial if A,, = I,. It is said to be a selfadjoint matrix
polynomial if all the coefficients A; are Hermitian matrices. A scalar Ay € C is
an eigenvalue of P(A) if the system P(\g)z = 0 has a nonzero solution zy € C".
This solution zg is known as an eigenvector of P(\) corresponding to Ag, and
the set of all eigenvalues of P()\) is said to be the spectrum of P()\); namely,

o[P(V)] = {p € C : det(P(u)) =0},
The (classical) numerical range of P(\) is defined and denoted by
WI[PAN)]:={peC : z*P(u)x = 0 for some nonzerox € C"},

which is closed and contains o[P(A)]. The numerical range of matrix polyno-
mials plays an important role in the study of overdamped vibration systems
with finite number of degrees of freedom, and it is also related to the stability
theory; e.g., see [13] and its references. Notice that the notion of W[P()\)] is
a generalization of the classical numerical range of a matrix A € M,,; namely,
WA, — A] = W(A).

Let C € M,, and P(\) be a matrix polynomial as in (1.1). The C-numerical
range and the C-spectrum of P(\) are, respectively, defined and denoted, see [1],
by

(1.2) WelP(A)] ={peC : tr(CU*P(u)U) = 0 for some U € U, },

and

oc[PN)]={neC : Zvjagf) =0 for some permutation
j=1

(i1, yin) of {1,2,...,n}},
(k) (k)
1

where 71, ...,7, are the eigenvalues of C, and for p € C, «y"”’,...,an are
the eigenvalues of the matrix P(u) € M,. Denote by E;; € M, where i,j €
{1,2,...,n}, the matrix whose (4, j)-entry is equal to one and all the others are
equal to zero. For the case C = F1; € M, we have Wg,, [P(\)] = W[P()\)] and
05y, [P(N)] = o[P(N)]. So, We[P(M)] is a generalization of the numerical range
of P(\). In the last few years, the generalization of the numerical range of
matrix polynomials has attracted much attention and many interesting results
have been obtained; e.g., see [1-3,19] and [20]. In this paper, we continue
the study of the C-numerical range of matrix polynomials for the case C' =
%Eu + %EQQ + -4 %Ekk € M,,. For this, in Section 2, we introduce the
notion of the k-numerical range of matrix polynomials as a spacial case of the
C-numerical range of matrix polynomials, and we state all results from [I]
which hold for this set. In Section 3, we study the relationship between the
k-numerical range of a matrix polynomial and the k-numerical range of its

(1.3)
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companion linearization. In this section, the emphasis is on the study algebraic
and geometrical properties of the k-numerical range of the basic A-factor block
circulant matrix, which is the block companion matrix of the matrix polynomial
P(A) = A1, —A. In Section 4, we study the number of connected components,
the isolated points and the boundedness of the k-numerical range of matrix
polynomials.

2. k-numerical range of matrix polynomials

The our aim of this section is to introduce the notion of k-numerical range
of matrix polynomials and also is to state all results from [1] which are hold
for this notion. For this, let P(A) = A, A+ Ay i A™ L+ + AN+ Ag be a
matrix polynomial as in (1.1). By setting C' = %(EH +FEx+--+Egk) €M, in
(1.2), we denote W [P(N)] by Wi [P(N)], and we call this set as the k-numerical
range of P()\); namely,

(2.1) Wi[P(A)] ={p e C : tr(X*P(p)X) = 0 for some X € Xy xk}-

Also, in this case, we denote the C-spectrum of P()\), oc[P(A)] as in (1.3), by
a®[P()\)]; namely,
(2.2) oM [P\ = {M €C:0e a(k)(P(u))} .

We also define the joint k-numerical range of P(A) as the joint k-numerical
range of its coefficients, i.e.,

‘]Wk[P()\)] = Wk(AOa Ala R Am)
1 1
= {(ktr(X*AgX), cee ktr(X*AmX)) X e ank} .
It is clear that:
Wi[P(N)] ={neC : 0€ Wi(P(n))}
={ueC : apu™+---+ap+a=0,
(ao, at,... ,am) S Wk(Ao, Aq, ..., Am)} .
Moreover, if P(A) = A, — A, where A € M,,, then Wy[P(\)] = Wi (A) and
o®[P(N)] = o® (A). The sets Wi[P(\)], where k € {1,2,...,n}, are generally
called the higher numerical ranges of P()\). Now we are ready to state all
results from [1] which hold for the k-numerical range of matrix polynomials.
Recall that these results follow from this fact that the matrix C' in [1] equals

to £(E11 + B + -+ + Ejy) € M.
In the following theorem, we state some basic properties.

Theorem 2.1. [I, Theorem 2.3] Let P(\) be a matriz polynomial as in (1.1).
Then the following assertions are true:
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(i) Wi[P(\)] is a closed set in C which contains o™ [P(\)];

(i) Wi[P(A+ a)] = Wi[P(A)] — «, where a € C;

(iii) WilaP(N)] = Wi[P()\)], where o € C is nonzero;

(iv) If Q\) = AmP(A71) i= Ag\™ + AN+ Ay A+ Ay, then

Wk[Q<A>1\{0}={£ L p e WilP(V), p# 0}

(v) If all the powers of X in P(\) are even (or all of them are odd), then
Wi [P(N)] is symmetric with respect to the origin;

(vi) If P()A) is a selfadjoint matriz polynomial, or if all Ag, A1,..., A, are
real matrices, then Wi [P(\)] is symmetric with respect to the real azis.

In the following theorem, some geometrical properties are stated.

Theorem 2.2. Let P(\) be a matriz polynomial as in (1.1). Then the following
assertions are true:

(i) [1, Theorem 2.4] If 0 ¢ Wi (A,,), then Wi[P(N)] is bounded;

(i) [1, Theorem 2.7] If u € OW,[P(X\)], then 0 € OWy(P(u));

(i) [1, Theorem 3.5]

Wi[PN)]={peC:anpu™+---+ap+a =0,

(ag,a1,...,am) € conv (Wi (Ag, A1,..., An))}
() [1, Theorem 8.1(ii)] Wi[P(N)] = UWi[D(XN)], where the union is taken
over all diagonal matriz polynomials D(N) of degree m and order n such
that JWi[D(X)] € JWi[P(N)];
(v) [1, Corollary 3.2] If (0,0,...,0) € JWi[P(N)], then Wi[P(\)] = C;
(vi) [1, Theorem 3.4] If amp™ + --- + a1y + ag = 0, where p € C and
(g, a1, ..., am) € Int(JWi[P(N)]), then p € Int(W[P(N)]). Here, Int(S) de-
notes the set of all interior points of S C C.

For the final result from [1], we recall that the k-numerical radius of A € M,
is

re(A) = max |z|.
z€Wy(A)

Theorem 2.3. Let P(\) = A N+ Ay A AL b Ay N+ Ay, as in (1.1),
be a monic matriz polynomial (i.e., A,, = I,). Then:
(1) [1, Theorem 2.9] Wi[P(A)] C{z € C : p<|z| <1+ q}, where

dist (0, Wi (Ap))
— dq— A)):
Bt (0, Wi(Ag)) + maxr o, ri(Ap) 4 47 oS, A

(i) [1, Theorem 2.10] If u ¢ Wi[P()\)], then
WilPW] (W= €C : |z —pl<pu} =0,

p
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dist (0, Wy (P (1))
dist(0, Wi (P()))+ ¢ maxj=1,2,....m >jy 5i(FPD (1))’
in which, for a matriz X € M,,, s1(X) > s2(X) > -+ > 5,(X) are the sigular
values of X.

where p,, =

3. k-Numerical range of basic A-factor block circulant matrices

Consider a matrix polynomial P(\) = A, A\ + A A™ L4+ AN+ Ay
as in (1.1), in which m > 2. The companion linearization of P(\) is defined,

e.g., see [7], as the following linear pencil L(\) of order mn:
I, O 0 0
0o I, O 0
L) = A
0 0o I, 0
o o0 - 0 A,
3.1) 0 I, 0 0 0
0 0 I, O 0
o o 0 I, 0
0 0 o --- 0 I,
—Ay —Ay e e e —Ap

By [7, page 186], there are unimodular matrix polynomials E(\) and F(X) of
order mn such that E(A)L(A\)F(\) = <Pé)\) I 0

n(m—1)
of P(A) is an eigenvalue of L(X\) with the same multiplicity, and vice versa.
Hence, for any positive integer 1 < k < mn,

> . So, every eigenvalue

o MIP(N)] = oLV,

Proposition 3.1. Let P(\), as in (1.1), be a matriz polynomial such that all
the powers of \ are even (or all of them are odd). Moreover, let L(X), as in
(3.1), be the companion linearization of P(\), and 1 < k < mn be a positive
integer. Then Wi[L(\)] is symmetric with respect to the origin.

Proof. Without loss of generality, we assume that all the powers of \ are even.
Now, let p € Wi[L(A)] be given. Then there exists a

X = : . : S anxka
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where z;; € C", such that tr(X*L(p)X) = 0. By setting

Yir Y12 0 Ytk
Y21 Y22 0 Yok
Y = . . : S anxka
Ym1i Ym2 ° Ymk
i for 7 odd
where y;; = i o z © we have Y*Y = X*X = I, and
—x;; for ¢ even
tr (Y*L(—p)Y) = —tr (X*L(p)X) = 0.
So, —u € Wi[L(A)], and hence the proof is complete. O
In the following theorem, which is a generalization of [17, Proposition 2.4],

we state the relationship between the k-numerical range of P(\) and the k-
numerical range of its companion linearization L(\).

Theorem 3.2. Let 1 < k <n be a positive integer, and P(X\), as in (1.1), be
a matriz polynomial with the companion linearization L(\) as in (3.1). Then

Wi[P(N)]U{0} C Wi [L(N)].

Proof. For any u € C and X € X, «x, we consider the following matrix:

I,
Y= 1 M| X e M
VI p2 + p+ -+ p2m2 mnxk
P,
Then we have Y*Y = X*X = I}, and
* ’um—l i
Y*L{w)Y XP(WX. (%)

TP e P

Now, let u € Wi[P(A\)] U {0} be given. We will show that p € Wi [L(X)]. If
= 0, then by selecting any X € X, «x, the relation (x) shows that Y € X, xk
and tr (Y*L(0)Y) = 0. So, 0 € Wi[L(N)].

If p € Wi [P(A)], then by (2.1), there exists a X € X« such that tr (X*P(u)X)
= 0. Therefore, the relation (x) shows that Y € X, xx and tr (Y*L(p)Y) = 0.
Hence, p € Wi[L(N)]. O

Corollary 3.3. If Wi[L(A\)] is bounded, then Wi [P(\)] is also bounded.

The converse statement in Corollary 3.3 is not true, as is illustrated in the
following example.
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Example 3.4. Let P()\) = ILbA2—I,\. So, by (2.1), we have W5 [P()\)] = {0,1},

which is bounded. The companion linearization of P(\) is L(A) = S1A — So,

where S; = <12 0 > € My and Sy = (0 I2> € My. By setting X =
0 —I I, 0

(6’1 63) € Mo, where e; € C* is the ith standard vector, we have X € Xyxo

and tr(X*S;X) = 0 = tr(X*SeX). So, (0,0) € JW[L()A)], and hence, by

Theorem 2.2(v), Wa[L(A)] = C, which is unbounded.

For the remainder of this section, we study some algebraic and geometrical
properties of the k-numerical range of the companion linearization of the matrix
polynomial P(X) = A"I, — A, where m > 2 and A € M,. By (3.1), the
companion linearization of P(\) is L(A) = AL, — 4, where

0 I, 0 - 0
0 0 I, -~ 0
(3.2) Ma=|: @ o o | €My,
00 - 0 I,
A0 -~ 0 0

The matrix T4, as in (3.2), is called the basic A-factor block circulant ma-
triz. These matrices have important applications in vibration analysis and
differential equations. For more information, see [4,5] and their references.

The following theorem shows that Wy, (I14) is invariant under some rotations.

Theorem 3.5. Let A € M,, 1 < k < mn be a positive integer, and w be an
mth root of unity (i.e., w™ =1). Then

ka(HA) = Wk(HA).

Consequently, if m is even, then Wi(Il4) is symmetric with respect to the
origin.

Proof. Since w™ = 1, there exists a § € R such that w = €. Let u € Wy (Il4)
be arbitrary. Then, there exists a X € X,,,xx such that p = %tr (XA X).
Consider Y = Uy X, where

Uy = diag (1, ellm=10 7eie) ® 1.

So, we have Y*Y = X*X = I, and Y*II,Y = e ¥ X*II4X. Therefore,
e O = e 2t (X*IIxX) = £tr (Y*IIAY) € Wi(Il4), and hence, W;,(I14) C
€W (I14). By changing 6 by —0, we see that Wy (I14) C Wy (ILs). So, the
set equality holds.

If m is even, then by setting w = —1 in the first case, we have that u €
Wi (I14) if and only if —p € Wy (I14). So, the second assertion also holds, and
hence, the proof is complete. O
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Using Theorem 3.2, we state the following result. Recall that for any set

SCC, V/S:={ueC : uymecs}.

Theorem 3.6. Let 1 < k < n be a positive integer, A € M,, and 114 be the
basic A-factor block circulant matriz as in (3.2). Then

conv ( ’{/W) = conv ( /Wi (A) U {O}) C Wi(IIa).

Proof. Consider the matrix polynomial P(\) = A"™I, — A. The companion
linearization of P(A) is L(A) = A, — 4. So, by Theorem 3.2, we have:

VWi (A)u{0} = Wi[P(N)] U {0}
C Wi [L(N)]
= Wi (Il4).

Now, since m > 2, conv ( /Wi (A) U {0}) = conv ( kv Wk(A)), and hence,
the result follows from the above inclusion and the fact that Wy (II4) is convex
(Proposition 1.1(%)). O

The set equality in Theorem 3.6 does not hold in general, which is illustrated
in the following example. We use a Matlab program from Li, which is available
at hitp : //peoplewm.edu/ ~ cklizz/mathlib.html, for plotting all shapes in
this section.

-1 0

0 1
{Ltr(A)} = {0} and so, conv ( : WQ(A)) — {0}. Since A is unitary, by [2, The-
orem 3.3], IT4 is also a unitary matrix. Hence by Proposition 1.1(7), we have
W5(I14) = conv (0P (I14)). By setting P(X) = A3I; — A, the companion lin-
earization of P(\) is L(\) = Alg — I14, and hence, we have o(I14) = o[L(\)] =
g[P\N)] = {o(A) = {1,e!F 1T, —1,¢'5, 65}, So, 0P (I4) = {0,£1(1 +
5), 251+ € %), £4(e'F + €F), £1(e'F + €7 ), £1 (-1 + €'3), £5(-1 +
)}. Hence,

Example 3.7. Let A = < > € My, k=2andm = 3. We have W(A) =

e
e's
2
e's

Wy(II4) = conv (0(2)(A))

= El(1 4o
= conv ({ 5( +e
#{0}7

which is shown in Figure 1.

|
SN~—

H-

| =

—

<‘D»--

W)
+
CD»—-

@iy

S—
H-
|
—

|
—
+
<.D>—-

wl ~

N~—
—
N——

In the following example, we characterize the k-numerical range of II 4, for
the case A = I,,.
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2-numerical range

imaginary axis
=)

15 i i I L i
15 -1 -05 a 05 1 15

real axis

FIGURE 1. Wy(1I4)

Example 3.8. Let m > 2 be a positive integer, and II; € M,,,, be the matrix
as in (3.2). It is clear that the eigenvalues of II;, , counting multiplicities, are

2 2 —1 —1
1L, Lw, . ..,w,w’ o w w0 T
—— ——
n—times n—times n—times n—times

where w = ¢?% . So, o®) (111, ) equals to all points of the following form:

1
(3.3) E(TO + rw+ 79w + -+ T 1Wm—1),

where 0 < rg,71,...,7m_1 < k are positive integers and rq+r1+- - -+7r,_1 = k.
Since Iy, is unitary, by Proposition 1.1(iz), we have

Wi.(Ily,) = conv(c™(I1y, )).
Now, we consider the following cases:
case 1: If 1 < k < n, then {1,w,w?,...,w™ 1} C ¢®)(II;,) and so,

Wi (I, ) = Conv(a(k)(HIn)) = conv({L,w,... ,wm—1}>.

case 2: If k=tn+1, where 1 <t <mand 0 <[ <n—1 are integer numbers,
then by considering all the points of the form

1
Pa =7 (nw™ + nw® + -+ + N + lw* ),
where a = (a1, g, ..., az41) is a (t+1)-permutation of {0, 1,...,n—1}, we have
conv <a(k)(H1)> =conv ({pa : a=(ar,q0,...,q141) IS a

(t + 1) — permutation of {0,1,...,n—1}}).
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For example, if m = 4 and n = 2, we see, as in Figure 2, that

Wi(Ilp,) = Wa(Ilz,) = conv({1,i, -1, —i}),

_ 241 20+1 20—1 1—2 —2t—1 —4—2 2—1
WS(HD)_COHV <{ 3 ) 3 ) 3 ) 3 ) 3 ’ 3 ) 3 ’

1—-2¢
3 )
. 1+1 i —-1—-1 1-—1i
W4(HI2)_COHV ({ 2 727 2 9 2 })a

1+2i 2411 -1 2—-11-21 —-1+2i
Ws(Ils,) = e =
5( 12) COHV({ 5 ) 5 7575 5 ’ 5 ) 5 ’

—24¢ -1-21 —2—4
5 5 7 5

— comy 142 241 2—1 1—-2i —14+21 —2+i
- 5 75’5’ 5 ' 5 ' 5 '

—15—21'7 —25—2'}) ’
i =om ({355 3).
22D,

Wa(IL,) = {Ftr(Tln, )} = {0,

I I

wol
]|

—
—_

’

30—
N = Wl

W11z = conv  {

and

At the end of this section, we find a circular disk which contains W (II14).
Then, using this disk, we obtain an upper bound for 74(IT4) and we show that
this bound is sharp.

Theorem 3.9. Let 1 < k < mn be a positive integer, A € M, and 114 be the
basic A-factor block circulant matriz as in (3.2). Then

Wi(lla) S {p e C: |p| <1+ [|A—- L},
where ||.|| is the spectral matriz norm (i.e., the matriz norm subordinate to the
Euclidian vector norm).
Proof. Let p € Wi (I14) be given. Then there exists a X € Xnxk such that
_ 1 * y :
p = 3tr (X*IIAX). By setting

T11 r1z2 v L1k

T21 €Tz T2k
X = . . . Eanka

Tml Tm2 °° Tmk
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k=l and k=2

imaginary axis
o

imaginary axis
o

35 K] 05 0
real ais

k=4

05

imaginary axis

0
real axis

k=5

imaginary axis
°

real axis

kT

imaginary axis

imaginary axis
°

0150

real axis

real axis

FIGURE 2. Wy, (Il1,), for k=1,2,3,4,56,7

where z;; € C", we have:

w= %tr (X*TIAX)

x|

—_

i

k m—1

Z Z TijT(i+1)j

=1 i=1

k. m

Z Z LT (i) +

=1 i=1

k
.
+) wh Ay
=1

k
T (A= In)w1; |
1

j=

where x(p,41); := 215 for all 1 < j < k. Since X*X = I,

im

j=1i=1

|| <

x| =

k
I35 I iy |+ D @y A= In [l

j=1

40
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k. m
1 1
K (ZZ S Uil + 7|12 + K A= T ||>

=1+ [A-1I |,
and hence the result holds. O

Corollary 3.10. Let 1 < k < mn be a positive integer, A € M,, and 14 be
the basic A-factor block circulant matriz as in (3.2). Then

re(Ila) <1+ |A-1, | .
Moreover, for the case 1 < k <n, the estimate is sharp.

Proof. The first assertion follows directly from Theorem 3.9.
To show, for the case 1 < k < n, that the estimate is sharp, we consider A = I,,.
Then, by Example 3.8, we have:

Wk(HA) = conv ( Ky Wk(In)> = conv ({1,w,w2, o 7Wm—l}) ’

where w = e?. So, r(I4) = 1 =1+ || A — I, ||, and hence, the proof is
complete. O

4. Additional results

In this section, we are going to continue the study of the k-numerical range
of matrix polynomials. By (2.1) and Proposition 1.1((éi7) and (iv)), we have
the following result.

Proposition 4.1. Let P(\) be a matrix polynomial as in (1.1). Then:
(i) 1 € C : tr(Ap)u™ + -+ tr(Ay ) + tr(Ag) = 0} = Wy [P(V)

C.
C Wi [P(N)]
= W[P(V)];
(i) If V€ X,xs, where k < s < n, then Wk[V* (MNV] € Wi[P(N)]. The
equality holds if s =n, i.e., Wi [U*P ( YWU] = Wi[P(N)], where U € U,.
It is known, e.g., see [13, Example 1], that W;[P(\)] is not necessarily con-

nected. Now, we are going to study the number of connected components of
Wi [P(M\)]. For this, we need the following lemma.

Lemma 4.2. The set X, xx is a path-connected set in M, x .

Proof. Let XY € &« be given. Then there exists a unitary matrix U € U,
such that Y = UX. Since U,, is path-connected [11, Lemma in p. 266], there
exists a continuous curve f : [0,1] — U,, such that f(0) = I,, and f(1) =U
We know that the function g : U,, — X, xr with g(V) = VX is continuous,



Higher numerical ranges of matrix polynomials 42

and so, the function ¢ := go f : [0,1] — A}, xx is a continuous curve such that
»(0) = X and ¢(1) =Y. Hence, the result holds. O

Theorem 4.3. Let P(\) be a matriz polynomial as in (1.1). If 0 ¢ Wi(Anm),
then Wi[P(\)] has no more than m connected components.

Proof. Let [ be the minimum of the number of distinct roots of equations
tr(X*P(A)X) = 0 over all X € X, . Since 0 ¢ Wi(A,,), the integer number
[ belongs to {1,2,...,m}. Moreover, there exists a Xy € X,,xx such that the
equation tr(x§P(A)Xo) = 0 has solution A1, Mg, ..., Ay, in which exactly [ roots
are distinct. Now, let X € &), «, be arbitrary. By Lemma 4.2, there exists
a continuous curve s : [0,1] — X,k such that s(0) = Xy and s(1) = X.
Since 0 ¢ Wi(Ay,), tr(s(t)*Ams(t)) # 0 for all ¢ € [0,1]. So, the solutions
A1(t), Aa(t), ..., A (t) of the equation tr(s(t)*P(M\)s(t)) = 0 are continuous
function of t. Thus the zeros of equation tr(X*P(A\)X) = tr(s(1)*P(A)s(1)) =0,
are connected to those of the equation tr(XiP(A)Xg) = tr(s(0)*P(A\)s(0)) =
0 by continuous curves in Wi[P()\)], and hence, the zeros of the equation
tr(X*P(A)X) = 0 must lie in the connected components containing the zeros of
the equation tr(X§P(A)Xo) = 0. So, Wi [P(A)] has no more than ! connected
components. Hence, the result holds. O

In the following theorem, which is a direct extension of [16, Theorem 2.1 and
its Corollary], we study the isolated points of the k-numerical range of matrix
polynomials.

Theorem 4.4. Let k < mn and P(\), as in (1.1), be a matriz polynomial such
that 0 € Wi(Anm). If M, Ae, ..., As are isolated points of Wi [P(M\)], then

(i) P(A\;)=0 forj=1,2,...,s;

(ii) P(A) = (A= X1)" (A= X2)2--- (A= Xs)"=Py(N), where

Wi[Po(A)] = Wi[P(MI\ {A1; Az o5 Ash

Conversely, by the factorization in (ii) for P()\), the scalars \i,...,\s are
isolated points of Wi[P(X)].

Proof. Without lost of generality, we assume that s = 1. We know that A\ €
Wi [P(N\)]. Hence there exists a X € &), such that tr(X*P(A;)X)

= 0. Since 0 ¢ Wy (A,,), in the same manner as in the proof of Theorem 4.3, for
every Y € X, «x, the roots of the equation tr(Y*P(A\)Y) = 0 are connected to
those of the equation tr(X*P(\)X) = 0 by continuous curves in Wy [P())]. Now,
by the fact that A\; is an isolated point of Wj[P())], we have tr(Y*P(A1)Y) = 0.
Since Y € X, xx is arbitrary, Proposition 1.1(v) shows that P(A;) = 0. So, we
have P(A) = (A — A1) P1(\), where Pi()\) is an n x n matrix polynomial of
degree m—1. If Ay € Wy[P1(N)], then A; is an isolated point of Wi [P ()], and
hence by the first case, there exists a matrix polynomial Py(\) of degree m — 2
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such that P;(\) = (A — A1) P2(A). In this way, we can find a positive integer ¢,
such that

(4.1) P(A) = (A= )" Py(N),

where Py(A) is an n x n matrix polynomial of degree m—t; and Ay ¢ Wi [Py(A)].
Hence, the result in (i4) also holds. Conversely, if the factorization in (4.1)
holds and Ay ¢ Wy[Py(A)], then P(A;) = 0 and )\; is an isolated point of
Wi [P(N)] = Wi[Po(A)] U {A1}. So, the proof is complete. O

The result in Theorem 4.4 dose not hold for the case k = n, as is illustrated
in the following example.

Example 4.5. Consider the following quadratic matrix polynomial:

1 0 0 1 1 1
P\ = (0 0) A2+ (1 0) A+ (0 71) :
Then, by Theorem 4.1(i), W2[P(A)] = {0}. So, 0 is an isolated point of

Wa[P(A)]. But P(0) = (é _11) £0.

At the end of this section, we study the boundedness of the k-numerical range
of matrix polynomials. We recall, e.g., see Theorem 2.2(4), that if 0 ¢ Wy (4,,),
then W}, [P(\)] is bounded. For the converse, we state the following proposition.

Proposition 4.6. Let P(\), as in (1.1), be a matriz polynomial with the
reversal Q(\) = A"P(A™Y).  Then Wi[P(\)] is unbounded if and only if
0 € Wi(Ap) and 0 is not an isolated point of Wi [Q(N)].

Proof. For the implication (<), since 0 € Wy(A,,), Relation (2.1) implies
that 0 € W[Q(\)]. Moreover, since 0 is not an isolated point of Wi [Q(M)],
there exists a sequence {p:}:2; C Wi[Q(N)] \ {0} such that converges to 0.
So, by Theorem 2.1(iv), the sequence {I%}g’il, which is unbounded, lies in
Wi [P(N\)], and hence, Wi[P(\)] is unbounded. Using Theorem 2.2(7) and the
same manner as in the proof of (<), the proof of (=) is easy to verify. So, the
proof is complete. O

In Proposition 4.6, we proved that if 0 € Wy (A,,) and 0 is not an isolated
point of Wi[A™P(A~1)], then Wi[P(\)] is unbounded. But, we think that
the condition “0 is not an isolated point of Wj[A™P(A~1)]” can be removed.
Hence, we state the following conjecture.

Conjecture 4.7. Let k < n, and P()\) be a matrix polynomial as in (1.1). If
0 € Wi(An), then Wi [P(X)] is unbounded.

The following example shows that the result in Conjecture 4.7 does not hold
for the case k = n.
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Example 4.8. Let P(\) = Ap,\™ + - + A1 A + Ap, as in (1.1), be a matrix
polynomial such that tr(A,,) = 0 and tr(A;) # 0 for some ¢ € {0,1,...,m—1}.
Thus, 0 € {0} = W,,(A.,). Moreover, by Proposition 4.1(i), we have

Wo [P ={peC : tr(Am_1)p™ "+ +tr(A))p+ tr(Ag) = 0},

which has at most m — 1 elements, and hence is bounded. So, the result in
Conjecture 4.7 does not hold for the case k = n.
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