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ABSTRACT. For A, B € Mnm, we say that A is left matrix majorized
(resp. left matrix submajorized) by B and write A <; B (resp. A <5 B),
if A = RB for some n X n row stochastic (resp. row substochastic) matrix
R. Moreover, we define the relation ~ys on M., as follows: A ~ys B
if A <ys B <ys A. This paper characterizes all linear preservers and all
linear strong preservers of <y and ~yg from My to Mym,.
Keywords: Linear preserver, row substochastic matrix, matrix ma-
jorization.
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1. Introduction

Throughout the paper, the notation M,,, is used for the space of all n x m
real matrices. We also write M,,,, = M,, and M,,; = R". I,, is the n x n identity
matrix and P(n) will denote all n X n permutation matrices. An n x m matrix
R = [r;;] is called row stochastic (resp. row substochastic) if for all ¢, j, r;; > 0
and X7 7 is equal (resp. at most equal) to 1. For A, B € M,,,,, we say that
A is left matrix majorized (resp. left matrix submajorized) by B and write
A < B (resp. A <ys B) if A = RB for some n x n row stochastic (resp. row
substochastic) matrix R. For a given relation <, we write A ~ Bif A < B < A.
A linear operator T': M,,,, — M,,, is said to be a linear preserver of < if A < B
implies that T'(A) < T'(B) for all A, B € My,,. It is a strong preserver of <
when A < B if and only if T(A) < T'(B).

A.M. Hasani and M. Radjabalipour [7] characterized the structure of all
linear operators T: My, — My, preserving <, . In particular, they proved
that if T : M,, — M,, strongly preserves <y, then there exists a permutation
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matrix P € P(n) and an invertible matrix L € M, such that T(X) = PXL
for all X € M,,.

A. Armandnejad and A. Salemi [2] characterized the structure of all linear
preservers of <y on complex matrices. Also, M. Radjabalipour and P. Torabian
[14] characterized all preservers of <, on R™ which are not necessarily linear.

For more information about left matrix majorization and the previous work
on this subject we also refer to [3, 5, 8, 9, 10] and [13]. The structure of linear
operators that preserve other types of majorization have been derived by Ando
[1], Beasley, Lee and Y.H. Lee [4], Dahl [6], and Li and E. Poon [11]. Marshall
and Olkin’s text [12] is a standard general reference for majorization.

The present paper is organized as follows. In Section 2 we derive necessary
and sufficient conditions for a linear operator T from R"™ to R™ to preserve
<ys - In particular, we prove that the structure of linear preservers of <y, <y
and ~ys are the same for n > 3. In Section 3 we characterize a general linear
preserver T' from M,,,, to M, . In particular, we give necessary and sufficient
conditions for a linear operator T: M., — M., to strongly preserve <.

We note that necessary and sufficient conditions for 7: R™ — R™ to be a
linear preserver of <, have been derived before and the following theorems are
known.

Theorem 1.1. [7, Theorem 2.3] Let n > 3. Then T: R"” — R" is a linear
preserver of <y if and only if T has the form T(X) = aPX, for all X € R",
for some some a € R and some P € P(n).

Theorem 1.2. [7, Theorem 2.3] Let T : R* — R? be a linear operator. Then,
T is a linear preserver of <y if and only if T has the form T(X) = (al +bP)X
for all X € R?, where P is a 2 x 2 permutation matriz not equal I, and ab < 0.

The following theorem states necessary and sufficient conditions for a linear
operator T': M, — M, to be a linear preserver of <, .

Theorem 1.3. [7, Theorem 3.1] Let T: My, — Mpm be a linear operator.
Then T preserves <¢ if and only if T(X) = (al + bP)XL for all X € My,
where L € My,, P is an n X n permutation matriz, P # I, a and b are real
numbers such that ab < 0, and, if n # 2, ab = 0. Moreover, if n # 2, then
al +bP = cQ for some ¢ € R and, hence, T(X) = QXK for some K € M,,.

2. Linear preservers of <;; on R"

In what follows, [T] = [t;;] will denote the matrix representation of an
operator T: R™ — R™ with respect to the standard basis {e1, 2, ..., e,} of R™.
Also, e = X7_je; € R" and

a: = max{t;|1<i,j<n}

(2.1) b: min{t;; | 1 <i,j < n}.
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By Theorem 1.2, the matrix representation of a linear preserver of <, with
respect to the standard basis of R? is as follows:

]

for some real numbers a, b satisfying ab < 0.

All linear operators T: R — R are preservers of <5 (T(rz) <¢s T'(x) for all
x € R and for all » € [0,1]). Also, T = 0 is a linear preserver of <y, . Hence,
throughout the paper, for a linear operator 7': R — R™ we shall assume that
T #0and n > 2.

T: Mym — My, is a linear preserver of <y, if and only if o7 is a linear
preserver of <y, for all nonzero real numbers «. Hence without loss of generality
we shall assume that a > 0 and | b |< a, where a and b are as in (2.1).

Throughout the paper, for a given vector x € R”, maxz and minz denote
the maximum and minimum values of components of x, respectively. Also, we
write 3y = maxx and x,, = minx.

The following important lemmas are easy consequences of the definitions of
<5 and ~yp; .

Lemma 2.1. Let z,y € R". If x <5 y then the following assertions are true.
(a) z; € Conv({y1,...,yn U{0}), for alli (1 <i<mn).

(b) If ym > 0, then z,, > 0.

(¢) If ypr <0, then xpr < 0.

(d) If ym <0 and yps > 0, then ym < xpm < zy < yar-

Lemma 2.2. Let x,y be nonzero vectors in R™. If © ~ys vy, then exactly one
of the following occurs:

(a) x,y are entrywise nonnegative and xpr = yar.

(b) x,y are entrywise nonpositive and Ty, = Y.

(¢) Tm = ym <0 and xpr = yur > 0.

Furthermore, if v,y € R™ and at least one of the conditions (a), (b) and (c)
holds, then x ~ys y.

Theorem 2.3 presents some necessary conditions for a nonzero operator
T: R"™ — R", n > 2, to be a linear preserver of ~y; .

Theorem 2.3. Let T: R™ — R™ be a nonzero linear preserver of ~ys, and
assume that n > 2, and a and b are as in (2.1). Then the following assertions
are true
(a) Foreachje€{1,2,...,n}, maxT(e;) = a. In particular, every column
of [T] contains at least one entry equal to a.
(b) maxT(e) = a; moreover, if a row of [T] contains an entry equal to a,

then all other nonnegative entries of that row are zero.
(¢) b=0.
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Proof. (a). Without loss of generality, we can assume that t1; = a and
a > 0. t1; = a implies that maxT(e;) = a. Let j € {1,2,...,n} be fixed.
Since e; ~¢s e1 and T preserves ~yg, hence T'(e;) ~ys T'(e1). By Lemma 2.2,
max T'(ej) = maxT'(e;) = a. Since j € {1,2,...,n} is arbitrary, max T'(e;) = a,
for all j (1 < j < n), therefore, every column of [T'] has at least one entry equal
to a.

(b). By Lemma 2.2, ¥c ye; ~ys €1, for all J C {1,...,n} and hence X, ;T (e;)
~y¢s T'(e1). Lemma 2.2 implies that max 3 e ;T (e;) = a, forall J C {1,2,...,n}.
Therefore, for all J C {1,...,n}, max Xjcst;; = a where the maximum is taken
over i (1 < i < n). Thus, if a row of [T] contains an entry equal to a, then all
nonnegative entries of that row are zero. In particular, max7T(e) = a.

(c). From (a), it follows that every column of [T] has at least one entry equal
to a. Also, (b) implies that every row of [T] has at most one entry equal
to a. Since [T] is n x n, every row of [T] has exactly one entry equal to a.
Hence by (b), all other nonnegative entries of rows of [T'] must be zero. There-
fore b < 0. If b < 0, without loss of generality, we may write t;; = b. So,
maxT(e;) =a > 0and minT(e;) =b < 0. Let k € {1,...,n} be fixed, since
e1 ~ys e and T preserves ~yg, then T(e1) ~ys T(ex). Hence by Lemma 2.2,
maxT'(er) = maxT'(e;) = a and minT'(e;) = minT'(e;) = b. Since k is arbi-
trary, each column of [T] has at least one entry equal to b. Let J C {1,...,n}.
Since Xjcyej ~us €1, LjesT(€ej) ~es T'(e1), by Lemma 2.2, min 3¢ ;T(e;) = b,
for all J C {1,...,n}. Thus, if a row of [T] has one entry equal to b, then all
its other nonpositive entries of it must be zero. Thus, at most one entry of
each row of [T] equals to b. Since [T] is n x n, each row of [T] has one entry
equal to b and other nonpositive entries are zero. But one entry of each row
of [T] is equal to a, which is a contradiction, hence b = 0. O

Theorem 2.4. IfT is such that T'(z) = aPx, for all x € R™, for a real number
a and a permutation matriz P € P(n), the operator T: R® - R™ n > 2 isa
linear preserver of <ys -

Proof. Let x € R™ and R be a row substochastic matrix in M,,. Since PR = R'P
for some row substochastic matrix R', T(Rz) = aPRx = R'aPx = R'(T(z)).
Therefore, T is a linear preserver of <y . O

The following theorem follows from Theorem 2.2 and Theorem 2.4.

Theorem 2.5. Let n > 2 and T: R™ — R" be a linear operator. Then the
following assertions are equivalent:
(a) T preserves <ys,

(b) T preserves ~ys,
(¢) T(x)=aPx, for allz € R™ and a € R.

Theorem 1.1 and Theorem 2.2 imply the following corollary.



81 Khalooei

Corollary 2.6. Let n > 3. Then T: R™ — R" is a linear preserver of <, if
and only if T is a linear preserver of <ys .

The following example shows that, the Corollary 2.6 is not true for n = 2.

Example 2.7. The linear operator whose matrix representation is

2 -1
[T] - |: —1 2 :| 9
is a linear preserver of <; but not a linear preserver of <y .

3. Linear Preservers of <,, on M,,,

For each i (1 < i < m), define the linear operators F;: R® — M,,, by
Ei(z) = ze! for all x € R™ and E': M,,, — R" by E‘(X) = Xe; for all
X € My, where {e1,...,en} denotes the standard basis for R™ [7].

Lemma 3.1. Let T: M,,, — My, be a linear preserver of <ys . Then the
linear operators T;; = EJ oT o E; preserve <y, for alli,j =1,2,...,m.

Proof. Let © € R™ and R be a row substochastic matrix in M,. Rr <y =
implies that E;(Rx) <5 E;(x). Since T is a linear preserver of <5, for ev-
ery i (1 < i < m), T(E;(Rx)) <¢s T(E;(z)). Therefore EI(T(E;(Rx))) <s
EV(T(E;(x))), for all 4,5 =1,2,...,m. O

Theorem 3.2. Let T: My,,, — My, be a linear operator. If T preserves ~ys,
then T(X) = PXA, for all X € My, for some A € M, and some n X n
permutation matrixz P.

Proof. For each X = [11,%2,...,Zm] € Mpm, it is easily seen that
T(X) = T([J?l,l‘g, ce ,ij]) = [EﬁlTil(mi)v ey EZ’;lTlm(xz)}

It follows from Lemma 3.1 that every 7;; is a linear preserver of ~y, . Hence,
by Theorem 2.4, T;;(z) = a;; P;;x for some permutation matrices P;; and some
real numbers a;;, where ¢, = 1,2,...,m. Since T # 0, a;; # 0, for some
i,7 (1 <4,7 <m). Without loss of generality, let i = j =1 and P = Py;.

We claim that P;; = P, for all 4,5 = 1,2,...,m. Let r,s € {1,...,m},
@, B be scalars and (X); denote the i*" column of the matrix X € M,,,. Fix
ke {l,...,n} and define X,Y € M,,, by (X), = ae, (Y), = aek, (X)s = Be,
(Y)s = Ber and (X); = (V); =0, if ¢ # r, i # s. X ~ys Y implies that
T(X) ~s T(Y), and hence,

[(T(X))r7 (T(X))s] ~es [(T(Y))ra (T(Y))a]
Therefore,

[aar're + 50157‘67 QQrs€ + /Ba.sse] ~is [aarrp'rrek + ﬂasrpsrek, aarsprsek + ﬁasspssek]~
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If ayrars # 0, we prove that P.. = P.s. Let « = 1 and § = 0. We have
e = RP, e = RP,sep, for some row substochastic matrix R. Since R has at
most one column equal to e and k is arbitrary, P, = Pys.

Now, suppose a,.as- # 0. We prove that P,.. = Ps,.. Let «, 8 be such that
(aarr)(Basyr) > 0. We know that

Qapre + 5a5r6 ~is aarrprrek + 5asrpsrek

If P, # Py, then aa,, + Bas, € Conv({aay,, Sas} U {0}), which is a contra-
diction. Therefore, P,., = Ps,.
Now suppose that a,.ass # 0, but a,.s = as- = 0. Thus,

[aarr67 ﬁasse] ~is [aarrPr'rek:a ﬁaSSPSSek]'

Let « = 8 =1. Then e = RP,,e; = RPsse. Since k is arbitrary and R has at
most one column equal to e, we get P,.. = Ps,.
We conclude that P;; = P for all ¢, j € {1,...,m}. Therefore,

T(X) = [E;’;laﬂPﬂXi, ey Z?;lalmpszl]
= P[Zg’;laﬂXi, ey E;’;laimXi]
PXA

where A = [a;;].
O

Theorem 3.3. Let T': My, — My, be a linear operator. Then the following
assertions are equivalent:
(a) T preserves <ys,
(b) T preserves ~ys,
(¢) T(X) = PXA, for all X € Myy, some A € M,,, and some n X n
permutation matrix P.

Proof. By Theorem 3.2, it is sufficient to prove that (c¢) implies (a). Let T(X) =
PXA and R be a row substochastic matrix. Since PR = R’P for some row
substochastic matrix R/, T(RX) = PRXA = R'PXA = R'(T(X)). Hence
T(RX) <¢s T(X). O

Corollary 3.4. A linear operator T : My, — My, strongly preserves the
magorization relation <5 if and only if there exists P € P(n) and an invertible
matriz L in M, such that T(X) = PXL for all X € My,,.

Proof. By Theorem 3.2, there exists P € P(n), L € M,, and a nonzero real
number a such that T(X) = aPXL for all X € M,,,;,. Choose X € M, such
that XL = 0. Thus, T(X) = aPXL = 0 <¢; 0 = T(0) and therefore, X <y, 0.
Hence, X = 0 which implies that L is invertible. Replacing L by a~'L yields
T(X) = PXL for all X € My, for some P € P(n) and an invertible matrix
LeM,.
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Let T(X) <¢s T(Y) for X,Y € Mpy,. Then PXL = RPY L for some row

substochastic matrix R. Since L is invertible PX = RPY, then X = RY and
hence X <y Y. O

(1]
(2]
(3]
(4]

(5]
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