ISSN: 1017-060X (Print) ISSN: 1735-8515 (Online)

Special Issue of the

Bulletin of the

Iranian Mathematical Society

in Honor of Professor Heydar Radjavi’s 80th Birthday

Vol. 41 (2015), No. 7, pp. 133-153

Title:

A note on approximation conditions, stan-
dard triangularizability and a power set topology

Author(s):

L. Livshits

Published by Iranian Mathematical Society
http://bims.ims.ir




Bull. Iranian Math. Soc.
Vol. 41 (2015), No. 7, pp. 133-153
Online ISSN: 1735-8515

A NOTE ON APPROXIMATION CONDITIONS, STANDARD
TRIANGULARIZABILITY AND A POWER SET TOPOLOGY

L. LIVSHITS

(Communicated by Bamdad Yahaghi)

Dedicated to Professor Heydar Radjavi on his 80th birthday

ABSTRACT. The main result of this article is that for collections of entry-
wise non-negative matrices the property of possessing a standard trian-
gularization is stable under approximation. The methodology introduced
to prove this result allows us to offer quick proofs of the corresponding
results of [B. R. Yahaghi, Near triangularizability implies triangulariz-
ability, Canad. Math. Bull. 47 (2004), no. 2, 298-313], and [A. A.
Jafarian, H. Radjavi, P. Rosenthal and A. R. Sourour, Simultaneous, tri-
angularizability, near commutativity and Rota’s theorem, Trans. Amer.
Math. Soc. 347 (1995), no. 6, 2191-2199] on the approximations and
triangularizability of collections of operators and matrices. In conclusion
we introduce and explore a related topology on the power sets of metric
spaces.
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1. Basic terminology

Throughout the paper we write B(X) for the space all operators on a Banach
space (X, || ||). Here “operator” means a linear function that is Lipschitz with
respect to the norm on X. The corresponding Lipschitz constant defines the
operator norm of the operator, which is our default norm on B(X). Endowed
with the operator norm, B(X) is a Banach algebra.

For an invertible operator T' € B(X), the similarity induced by T on B(X)
is the map that sends an operator A to the operator T 1AT.

A collection C of operators in B(X) is said to be triangularizable, if there
is a maximal (with respect to inclusion) chain of closed subspaces of X each
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of which is invariant under each of the operators in C. In a finite-dimensional
setting this is equivalent to having a basis of X with respect to which the
matrices of the operators in C are all upper triangular.

A (not necessarily unital) semigroup of operators in B(X) is a collection that
is closed under composition. The smallest such semigroup containing a given
non-empty collection is said to be the semigroup generated by the collection.
This semigroup consists of all finite products of the elements of the original
collection.

2. Introduction

In their paper [1], Jafarian, Radjavi, Rosenthal and Sourour explored the
connections between triangularizability of a collection of compact operators on
a Hilbert space and the property that finite subsets of the collection are in a
certain sense close to finite commuting collections of compact normal operators.
Among other things, these authors established a version of Rota’s theorem for
traingularizable collections of compact operators.

Yahaghi, in his paper [10], demonstrated that collections of compact op-
erators on a Banach space are triangularizable whenever all finite subsets of
these collections are close to triangularizable collections. Furthermore Yahaghi
extended the results of [1] in a finite-dimensional setting by showing that a
collection of matrices is triangularizable if and only if every finite subset of it
is in a certain sense close to a triangularizable collection.

The purpose of the first part of this note is to offer a framework that uses the
existing theory of the traingularizability of operator semigroups, to illuminate
the results of [1] and [10], allowing for shorter proofs.

Thereafter we present some new results about standard triangularizability
for collections of non-negative matrices. We show that such a collection has
a standard triangularization whenever all of its finite subsets are in a certain
sense close to collections with standard triangularizations. In that way, near
standard triangularizability implies standard triangularizability.

We conclude the note with some topological considerations in an attempt to
cast the concepts of “closeness” used in the previous discussion in a topological
light.

3. A view on approximation conditions and triangularizability in
B(X).

3.1. The case of a general B(X).
(1) Given a subset T of B(X), the e-neighbourhood of T is the set

NA(T) d:ef{ AeB(X)| ||[A-T| <e forsomeT €T } = U B.(T).
TeT
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As is common, we write B.(a) instead of N ({a}), and B, instead of
B.(0).
(2) For a bounded subset T of B(X), we write
def

ITI'=sap{ T | TeT}.
Terminology 3.1. Suppose that P is a property pertaining to collections of
operators in B(X).
(1) A subset C of B(X) is close to having property P if for every ¢ > 0
there is a set G, with property P such that

CCNA(G.).

(2) A subset C of B(X) is close to having property P via similarity if for
every € > 0 there is a set G, with property P and an invertible 7. such
that

T'CT. C N.(G.).
We abbreviate this by saying that C is close to having property P v.s.

(3) A subset C of B(X) is close to having property P in a bounded fashion
via similarity if there exists a ball B, such that for every € > 0 there
is a set G_ C B, with property P and an invertible 7. such that

T7'CT. C N.(G.).

We shall abbreviate this by saying that C is close to having property P
b.f.v.s.

(4) A subset C of B(X) is Tukey-close' to having property P (v.s., b.f.v.s.)
if every finite subset of C is close to having property P (v.s., b.f.v.s.).

To illustrate our approach, we start with the following easy proposition,
which will be eventually supplanted by Theorem 3.6.

Proposition 3.2. If C C B(X) is a collection of compact operators that is
Tukey-close v.s. to being {0}, then C is triangularizable.

In other words, if for every finite subcollection F C C and any € > 0, there
is an invertible T such that

(3.1) |T1FT|| <,
then C is triangularizable.

Our key to a proof of Proposition 3.2 is a lovely theorem of Turovskii re-
garding semigroups of compact quasinilpotent operators.?

1 This terminology is inspired by the classical and well-known ideas related to the sets
of finite character and Tukey’s Lemma. The latter is, of course, an equivalent form of the
Axiom of Choice. We shall introduce further related terminology in Section 5.

2While it was well-known that an algebra of compact quasinilpotent operators on a Banach
space is triangularizable, it was a remarkable achievement of Turovskii to have proved that
the same is true for semigroups.
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This is going to be the pattern throughout this paper: to prove triangulariz-
ability results for general collections of operators we will be “pushing off” some
triangularizability results for semigroups of operators, i.e., collections closed
under composition.

Theorem 3.3 ([8]). If a semigroup of operators on a Banach space consists
of compact quasinilpotent operators, then so does the algebra generated by this
semigroup.

Proof of Proposition 3.2. Suppose F satisfies the hypothesis. It is clear from
the submultiplicativity of the operator norm that if F satisfies inequality (3.1)
with € < 1, then ||T=1PT| < € for any finite product P of elements of C. In
particular the semigroup S generated by F satisfies the same hypothesis as F.

Since similarity on B(X) preserves the spectrum, and the spectral radius
is dominated by the operator norm, A € B(X) must be quasinilpotent if for
every € > 0 there is an invertible 7" such that ||[T1AT| <.

This shows that S is a semigroup of compact quasinilpotent operators, and
therefore S is triangularizable by Turovskii’s theorem. O

The following lemma is the key to the approach we shall take.

Key Lemma 3.4. Suppose that a given property P, pertaining to collections
of operators in B(X), passes to semigroups (resp. linear spans, algebras) and
to non-empty subsets; i.e. if a collection of operators has property P, then so
does every non-empty subcollection, as well as the semigroup (resp. subspace,
algebra) generated by that collection.

If a non-empty collection C in B(X) is Tukey-close to having property P
(v.s., b.f.v.s.), then so is the semigroup (resp. subspace, algebra) generated by
C.

Proof. We present the proof in the “b.f.v.s” case only; the proofs in the “plain”
and “v.s.” settings are similar (and are easier).

(1) If F is a finite subset of the semigroup S, generated by C, then C has a
finite subset K and some ¢ € N such that every element of F is a product of no
more than ¢ elements of K. By the hypothesis K is close to having property P
b.f.v.s. We aim to show that so is F.

There is a ball By, such that for each 0 < A < 1 there a set G, C B,, with
property P and an invertible 7} such that

(3.2) T 'KT, C NA(G,) C By,

where the second inclusion is automatic.

For 0 < e <1, let
€

(m+ 1)1
and let [[_ G be the set of the products of at most £ elements of G .

"Y:
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Note that []_, G, is a subset of B ,, as well as a non-empty subset of the
semigroup S, generated by G, so that in particular it has property P.
Y

It is an elementary fact that for operators Ay, As, As, ..., Ay and By, Bo, B3, ...

in B,:
P, A; — TIF, Bi|| < kv 'max ||A; — By|.

It follows from this and from the inclusions in (3.2) that every product of at
most ¢ elements of T;llCTw is in NV, (H<e gw). In particular

7' FT, e N ]9, |
<¢

and we are done.

(2) If F is a finite subset of the subspace L. generated by C, then C has
a finite subset K and some ¢ € N such that every element of F is a linear
combination of no more than ¢ elements of I with coefficients that do not
exceed ¢ in modulus. By the hypothesis K is close to having property P b.f.v.s.
We aim to show that so is F.

There is a ball B,, such that for each 0 < A < 1 there exist a set G, C By,
with property P, and an invertible T, such that (3.2) holds.

For 0 <e <1, let
€

Y= 5
02
and let £_,G_ be the set of the linear combinations of at most ¢ elements of G
with coefficients that do not exceed ¢ in modulus. It is clear that
'ggg gw C Bz,
and being a non-empty subset of ACGW , the set £_,G_ has property P.
Since for any «; of modulus at most r and operators A; and B;:

k k
1Y 0idi =) iBi|| <k max || A; — By

i=1 i=1
every linear combination of at most ¢ elements of Tv_llCTW with coefficients

that do not exceed £ in modulus, is in N, (EG ) In particular
Yy

TOUFT, N (£, )

and we are done.

(3) Since the algebra generated by C is the subspace generated by the semi-
group generated by C, the claim about algebras follows immediately from the
already verified claims about semigroups and linear spans. |
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Observation 3.5.

(1) It is easy to see that if in addition to the hypothesis of Key Lemma 3.4
property P is maintained by a collection after the identity is adjoint to
it, then the result of our Key Lemma still holds if one replaces words
“semigroup” and “algebra” in it by “unital semigroup” and “unital
algebra”.

(2) If in giving the definitions of Terminology 3.1 one insists that the
(bounded) similarities come from a particular collection thereof (as
opposed to being unrestricted), the validity of Key Lemma 3.4 is not
affected.

In [1] Jafarian, Radjavi, Rosenthal and Sourour proved the following strength
ening of Proposition 3.2, which is stated here in our terminology.

Theorem 3.6 ([1]). If a collection C of compact operators in B(X) is Tukey-
close b.f.v.s. to being a commuting collection, then C is triangularizable.

The key to our quick proof is the following result of Radjavi, Rosenthal and

Shulman.?

Theorem 3.7 ([7]). A semigroup S of compact operators in B(X) is triangu-
larizable if and only if [A, B] Y AB-BA is quasinilpotent for every A, B € S.

Proof of Theorem 3.6. Let the property P be that of being a commuting col-
lection. It is obvious that P passes to semigroups and non-empty subsets. By
Key Lemma 3.4, the semigroup S, is Tukey-close b.f.v.s. to being a commuting
collection.

Suppose that A, B € S, are given. Then there is a ball B, such that for
every n € N there is a commuting pair C| , D, of the operators in 5, and an
invertible T such that

HTJIATn - Cn” < b

T, BT, — D, || < &
Since sequences (C,) and (D,,) are bounded, so are sequences (T, *AT,) and
(Tn_ 1BTn)7 which allows us to conclude that

Tn_l[A’ B}Tn - [C’ﬂa Dn] — 0;

i.e. that

T, '[A, BT, — 0,
(since [Cy, D] = 0). Since the spectral radius is dominated by operator norm,

[A, B] is quasinilpotent, and so an application of Theorem 3.7 completes the
proof. O

3A corresponding result for algebras of operators was proved by Katavolos and Radjavi
ten years earlier in [3].
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Example 3.8. The following example in [1] shows that Theorem 3.6 fails even
in finite dimensions if “b.f.v.s.” is replaced by just “v.s.” in the hypothesis.

€ 1 €
Let A1 =(34), A2 =(98),and T. = (§9), C; = (8 6) and Cy = 0. Then
we have the following inequality for the operator norm:
I AT, — G| <

which shows that {A;, Ao} is Tukey-close v.s. to being a commuting collection,
but it is clear that {4, A5} is not triangularizable, since A; and As share no
eigenvectors.

On the other hand there is still a pleasant result of Yahaghi in the plain (i.e.
non- “b.f./v.s.”) approximation case.

Theorem 3.9 ([10]). If a collection C of compact operators in B(X) is Tukey-
close to being a triangularizable collection, then C is triangularizable.

Proof. Here is a quick proof. Let the property P be that of being a triangu-
larizable collection. It is obvious that P passes to semigroups and non-empty
subsets. By Key Lemma 3.4, the semigroup S, is Tukey-close to being a trian-
gularizable collection. Suppose that A, B € S, are given.

Just as in the proof of Theorem 3.6 we conclude that there are sequences
(Cy) and (D,,) such that

e C, and D,, are simultaneously triangularizable for each n;
o |[A-C,| — 0,
e |B—D,|| — 0.

Since it is clear that (C),) and (D,,) must be bounded, it follows that
[Cn, D] — [A, B],

so that [A, B] is a limit of quasinilpotents, and being compact, is itself a
quasinilpotent by the continuity of spectral radius on the compact operators.
The proof is now complete by Theorem 3.7. ]

We have not yet been able to answer the following question, which we pose
here for the benefit of the reader.

Question 3.10. Does the conclusion of Yahaghi’s theorem 3.9 remain valid if
one replaces “Tukey-close” by “Tukey-close b.f.v.s.” in the hypothesis?

3.2. In a finite dimensional setting. As we had mentioned in the introduc-
tion, Yahaghi extended Theorem 3.6 to the following result in a finite dimen-
sional case.

Theorem 3.11 ([10]). If a collection C C M., (C) is Tukey-close b.f.v.s to being
a triangularizable collection, then C is triangularizable.
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To give a quick proof of Theorem 3.11 we *

Radjavi and Rosenthal.

‘push off” the following result of

Theorem 3.12 ( [5]). A unital algebra A of operators on a finite-dimensional
space (over a field of characteristic other than 2) is triangularizable if and only
if

trace(AB — BA)? =0
for all A,B € A.

Proof of Theorem 3.11. Let the property P be that of being a triangularizable
collection. It is obvious that P passes to algebras and non-empty subsets, and
is maintained when the identity matrix is adjoined to a collection. By Observa-
tion 3.5, the unital algebra A, is Tukey-close b.f.v.s to being triangularizable.
Suppose that A, B € A, are given.

We proceed just as in the proof of Theorem 3.6 to conclude that there is a
sequence (T,) of invertibles and bounded sequences (Cy,) and (D,,) such that

e C, and D,, are simultaneously triangularizable for each n;

o T LAT, — Cy|| — 0,

o |T,1BT,, — D,| — 0.
Since sequences (C,) and (D,,) are bounded, so are sequences (T, *AT,) and
(Tn_ 1BTn)7 which allows us to conclude that

1T A, BIPT,, — [Co, Dl — 0,
and so by the continuity of trace:
trace(T,;*[A, B)*T,,) — trace([C,, Dy)?)| — 0.
Since trace([Cy,, D,]?) = 0 and
trace(T; *[A, B]*T,) = trace([A, B]?),

the desired conclusion follows by Lemma 3.12.
O

4. Approximation Conditions And Standard Triangularizability

The idea behind our Key Lemma 3.4 does not just lead to new ways of
proving known results. In this section of the paper we use a similar approach
to show that a collection of (entry-wise) non-negative matrices has a stan-
dard triangularization if and only if it can be approximated reasonably well by
collections that have standard triangularizations.

A collection of non-negative matrices is said to have a standard triangu-
larization, if after a simultaneous application of a similarity generated by a
permutation matrix, all matrices in the collection become upper triangular.
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Not all non-negative matrices have a standard triangularization individually.
The following result characterizes those that do, and yields the fact that the set
of such matrices is closed, which we prove below, for the sake of completeness.

Theorem 4.1 (Theorem 5.1.7 in [6]). A non-negative matriz has a standard
triangularization if and only if it becomes nilpotent upon replacement of its
diagonal entries by zeros.

Corollary 4.2. The set of non-negative matrices in M, that possess a standard
triangularization is closed.

Proof. We offer two proofs: the first one uses our methodology, while the second
one does not.

(First proof.) Obviously since norm convergence in M, entails entry-wise
convergence, the set of non-negative matrices is closed. Furthermore, since the
spectral radius is continuous on M,,, the set of nilpotent matrices is closed.

For a matrix A € M, let D(A) stand for the diagonal matrix whose diagonal
coincides with that of A. We call D(A) the diagonal compression of A. Note
that D : M,, — M, is a continuous map.

Suppose that (4,,) is a sequence of non-negative n X n matrices, each of
which has a standard triangularization, and that A, — B. Then B is non-
negative, and

D(A,) — D(B),
so that
A, —D(4,) — B —D(B).
By Theorem 4.1 each A,, —D(A,) is nilpotent, and hence so is B — D(B). One
more application of Theorem 4.1 completes the proof.

(Second proof.) There are n! permutation matrices in M,,. Given a conver-
gent sequence (4,,) of non-negative n X n matrices, each of which has a stan-
dard triangularization T}, = P, A, Py, where P,, is a permutation matrix, we
can pass to a subsequence (A,,, ) such that (P,,,) is a constant sequence (P).
Clearly that (7,,,) is convergent. Since the limit of (T},,) is a non-negative
upper triangular matrix 7', the limit of (A,,,), and thus of (4,,), is PTP~1,
and so is a non-negative matrix possessing a standard triangularization. O

Our “push-off” result in the present context is the following.

Theorem 4.3 (Lemma 5.1.3 in [0]). A semigroup of non-negative matrices
has a standard triangularization if and only if the diagonal compression D is
multiplicative on the semigroup.

Observation 4.4. As we have noted in Observation 3.5, our Key Lemma
3.4 will remain valid if we were to require that the similarities involved in
the definitions given within Terminology 3.1 be induced by the invertible non-
negative matrices 7" with non-negative inverses. The matrix of each such T
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is a product of a permutation matrix and an invertible non-negative diagonal
matrix, and such T generate the only similarities that leave the whole cone of
the non-negative matrices invariant. For the rest of this section we shall deal
with this scenario exclusively.

Our most substantial new result is the following.

Theorem 4.5. If C C M, is a collection of non-negative matrices which is
Tukey-close b.f.v.s.* to being a non-negative collection with a standard trian-
gularization, then C has a standard triangularization.

Proof. Let the property P be that of having a standard triangularization.
Clearly P passes to semigroups and non-empty subsets. Hence we can invoke
our Key Lemma and assume without loss of generality that C is a semigroup.

It is also obvious that this property P is invariant under an application of a
similarity generated by a permutation matrix. Since a permutation matrix is
an isometry with respect to the operator norm, for any permutation P:

P7'D7'CDP C N, (G) <= D™ 'CD C N, (PGP™').

Thus we can assume that C is Tukey-close b.f.v.s. to being a collection with a
standard triangularization, via the similarities induced by the set of the non-
negative invertible diagonal matrices.

Suppose that A, B € C are given. We proceed just as in the proof of Theorem
3.6 to conclude that there is a sequence (T3,) of non-negative invertible diagonal
matrices and bounded sequences (C,,) and (D,,) of non-negative matrices such
that

e C, and D,, have a common standard triangularization for each n;
o T LAT, — Cy|| — 0,
o |T,/'BT,, — D,|| — 0.
In particular, since
D(T,, ' AT,) = D(A),
and a similar statement holds for B, we conclude that
D(Cn) — D(A),

and
D(Dy) — D(B),
as the linear map D is contractive with respect to the operator norm.
Since sequences (C,,) and (D,,) are bounded, so are sequences (T, 'AT,)
and (Tn_lBTn). Thus
| T *ABT,, — C,,D,|| — 0,
from where
D(C,.D,) — D(AB).

41n the sense described in Observation 4.4.
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Yet
by Theorem 4.3, since we have assumed that C, and D, have a common
standard triangularization for each n, and in particular so does the semigroup
they generate.

Since sequences (D(C,,)) and (D(D,,)) are convergent,

so that
D(AB) = D(A)D(B),
and the proof is complete by Theorem 4.3.
|

Note that Example 3.8 shows that we cannot drop “b.f.” from the hypothesis
of Theorem 4.5. On the other hand, we can drop “b.f.v.s.” and arrive at a
valid theorem (an analogue of Theorem 3.9).

Theorem 4.6. If C C M, is a collection of non-negative matrices which is
Tukey-close to being a non-negative collection with a standard triangularization,
then C has a standard triangularization.

Proof. Again, we offer two proofs: the first one uses our methodology, while
the second one does not.
(First proof.) Let the property P be that of having a standard triangular-
ization, so that P clearly passes to semigroups and non-empty subsets. Hence
we can invoke our Key Lemma and assume without loss of generality that C is
a semigroup.
Suppose that A, B € C. As before we can conclude that there are sequences
(Cy) and (D,,) such that
e C, and D,, have a common standard triangularization for each n;
o |[A-C,| — 0,
e |B—D,|| — 0.

Since it is clear that (C},) and (D,,) must be bounded, it follows that

D(AB) = D(A)D(B),

just as it did in the proof of Theorem 4.5, and so the proof is complete by
Theorem 4.3.

(Second proof.) Select a finite basis T C C for the span {C}. It is sufficient to
show that the elements of T have a common standard triangularization. By the
hypothesis T is close to being a collection with a standard triangularization;
for every € > 0 there is a permutation matrix P. and a set G, of matrices such
that P:lgE P_is a set of upper-triangular matrices and

T CNA(G.).
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Since the set of n x n permutation matrices is finite, there is an increasing
sequence [ng] of natural numbers and a permutation matrix P such that for
every k € N: PilgL P is a set of upper-triangular matrices. Note that

ny

PTIYPC PN (g . ) P=N_.1 (P191P> ;

ny "k

"k

which shows that the modulus of every sub-diagonal entry of every matrix in

P~1TP is at most ni Thus all matrices in P~!YP are upper-triangular, and
k

this completes the proof. O

5. Some Topological Considerations

In studying the concepts of “closeness” involved in the previous sections we
had become curious as to whether there might be a way to place these in a true
topological setting. While the answer in general is in the negative (see Example
5.17 below), in the process of enquiry we were led to consider a corresponding
natural type of topology on power sets of metric spaces.

Notation 5.1. Given a subset 7 of a metric space (M, 1), the e-neighbourho-
od of T is the set
def

NA(T)={ AeM| p(A,T)<e, forsomeT €T }= U B.(T).
TeT

As is common, we write B.(a) instead of N.({a}).

Notation 5.2. When f is a function and A is a subset of its domain, we shall
write f[A] for { f(z) | x € A }, with the understanding that f[] = 0.

Definition 5.3. Suppose that S is a unital collection of functions on the power
set P(M) of a metric space (M, p), where the term “unital” refers to the fact
that S contains the identity function id, ,,,.

We define @ : P(P(M)) — P(P(M)) by:

D) KcM|Ve>0 I(f,T)eSxQ suchthat f[K]C N (T)}.

In other words, ®,(f2) is the collection of those subsets of M, which can be
mapped by (functions in) S into arbitrarily-small-e-neighbourhoods of sets in
Q.

We shall refer to ®,(Q) as the thickening of Q) via S. In the case § =
{id, v }» We omit an explicit reference to S.

One reason for our terminology is that 2 C ®.(£2), and

Ked, ()= PK)CP, ().
Observation 5.4. If we write

() E{KCM|3(f,T)eSxQ suchthat f[K]CN.(T)},
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then
() C P (Q), whenever € < e,
and
s () = ﬂ ¢, ()= ﬂ o, (),
€>0 neN
for any positive sequence (a,) convergent to zero.

Let us connect these new concepts to those we have discussed in previous
sections.

Observation 5.5. Suppose that P is a property pertaining to collections of
operators in (B(X),| ), and let us write
Q, L' 2 B(X)| 2 has property P },
and ot
QO ={ ZCB,| Z has property P },
where n € N, and B,, is the open ball of || ||-radius n, centered at the origin in
B(X). Obviously
0, =]

neN
Each of the following is now clear.

(1) A subset C of B(X) is close to having property P if and only if it
belongs to the thickening of €2,,.

(2) A subset C of B(X) is close to having property P similarity-wise if
and only if C belongs to the thickening of 2, via the group of the
similarities induced by the invertible operators in B(X).

(3) A subset C of B(X) is close to having property P in a bounded fashion
similarity-wise if and only if it belongs to the thickening of some Q7

via the group of the similarities induced by the invertible operators in
B(X).

Observation 5.6. Every unital collection S of functions on M ingiuces a unital
collection S of functions on P(M), if for each f € S we define f : P(M) —
P(M) by

2 def

f(K) = fIK].
In order to simplify the notation in such a case we shall write @, rather
than @, and rely on the context to keep the concepts straight.

Terminology 5.7. A function F' : P(Z) — P(Z2) is said be a topological
closure operation on Z if there is a topology 7 on Z such that for each U C Z:
F(U) is the T-closure of U.

Theorem 5.8. IfS is a unital uniformly equicontinuous semigroup of functions
on a metric space (M, 1), then @ is a topological closure operation on P(M).
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Proof. Tt is well-known (see for example Theorem 3.7 in [9]) that to settle the
claim it is enough to demonstrate that & : P(P(M)) — P(P(M)) satisfies
the following criteria:
1: d_(0) = 0;
2: QC D (D)
3: D ((I)s (Q)) =P, (Q)v
o, (QUD) =2, (Q)UD (D).

It is not difficult to show that the following is an equivalent set of criteria:
15 0,(0) = 0
2 O C P (Q);
3T CP () = D,(T") C D ()

4’: o _(QUT) Cc 2, (QUD, (D).
The claims in 1’ and 2" are obviously true.
The next easiest claim to verify is that of 4. Suppose that K € ®,(QUT).
Then for each n € N there exist f, € S and T), € QUT such that

1K C N, (T,).

Since each 7' is an element of either Q2 or I', without any loss of generality, we

can assume that there is a subsequence (%) of (%) such that
k

T, < Q, forall keN.
It follows that

1
Ke (e, () =2,(Q),
keEN
and thus the claim of 4’ holds true under our hypotheses.

Finally, let us verify the condition 3’. Suppose that I' C ®,(Q2) and K €
®,(I'). We shall demonstrate that for every e > 0: K € @ _(Q), which is
enough for our purposes by Observation 5.4.

Suppose that a positive € is given. Then by the uniform equicontinuity of &
there is a positive ¢ such that for all f € S:

) < 6 = u(f (), f(w) < .
From this it follows that for any subset L of M and any f € S:

(5.) £V, (D)] € N, (£1L)).
Since K € <I>i (T), there is some f € S and T € T, such that
FIK] C N,(T).

Since T € T' C (), there exist g € S and U € Q such that
oIT] € N, (V).
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Then

Thus

g™ [N, (gIW])]
N ACAG)
AU

This shows that
(g0 NIK] C N, (U),
which, since gof € S, demonstrates that K € <I>; (), and the proof is complete.
|

A trivial application of Theorem 5.8 to the subject of our Section 3 is that
the concept of “being close to having property P” is that of a topological
closure. (As we shall see soon, the same is true for “being Tukey-close to having
property P”.) Indeed, one simply takes {id, ,,} to be the unital uniformly
equicontinuous semigroup in Theorem 5.8.

Unfortunately, it turns out that the uniformly equicontinuous semigroups
of similarities on M, are rather limited, and so Theorem 5.8 does not offer
any additional insight into the concepts of “being close to having property P
b.f./v.s.” even in finite dimensions. We will demonstrate in Example 5.17 that
when P is the property of being traingularizable, already in M (C) “being close
to having property P b.f./v.s.” does not correspond to a topological closure.

Terminology 5.9. The similarity v on M, is said to be a unitary similarity
if there exists a unitary U € M, such that

V(A) = U* AU.

Theorem 5.10. A semigroup C of similarities on M, is uniformly equicontin-
wous on M, if and only if there exists a similarity u on M, such that p~'oCop
is a semigroup of unitary similarities.

Proof. We demonstrate the forward implication only, and leave the reverse
implication as an easy exercise for the reader. Our proof follows the path of
the proof of Lemma 3.1.6 in [0], and is presented here for completeness and for
the convenience of the reader.

A semigroup C of similarities on M, is generated by a sub-semigroup S
of GL,, and such an S can be assumed to be closed under multiplication by
non-zero scalars.
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A family of (bounded) operators on a normed space is uniformly equicontin-
uous if and only if it is operator-norm-bounded. Thus C is uniformly equicon-
tinuous on M, exactly when the set

LT~z res )

is bounded.
Assuming this is the case, foreach T € S: { |T-™| - ||T™||| me N }is a
bounded set. On the other hand,

177} = max { [A]™ | A€ o(T) } =max{ |A| | A€ a(T) }",
and similarly

1
min{ [A| | A€ o(T) }"’

|7 = max { [a]™ | a € o(T™) } =

from where we see that the sequence

<max{ | A€ a(T) })m
min{ |\ | A e o(T) }

is bounded, and so it must be that
max{ |Al | A€o(T) } =min{ |\ | A€o(T) }.

Hence it must be that the spectrum of each element 7" of S lies on a circle of
positive radius p(T), i.e. the spectral radius of T'.

Thus
p(T) = 3/Tdet(T)],

and therefore p is multiplicative on S, i.e.,

p(AB) = p(A)p(B), forall A ,BeS.

In particular,

def

S=RT6={tA|t>0, Ac&},

}1818 E 1S tlle SEIIllgIC up
{ T
)C (1 )

Clearly & generates the same semigroup C of similarities on M, as does S.
Furthermore,
(5.2)

{01 - | Tee }={ N7~ - 17| | T €8 } =abounded set,

res ).

and the spectrum of every element of G belongs to the unit circle. It follows
that the spectrum of the inverse of each element of & belongs to the unit circle,
and therefore the norm of the inverse of each element of & is at least 1, and
so it follows from (5.2) that & is bounded. By the continuity of the spectrum,
every matrix in the norm-closure & has its spectrum on the unit circle as well.
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In particular, for each T' € & the sequence | 7™]| is bounded, and so the
same must be true for every Jordan block in the canonical Jordan form of T,
which, since the spectrum of T" belongs to the unit circle, can only happen if
each Jordan block of T is 1 x 1. This shows that every T in & is similar to a
unitary matrix.

Our next step is to show that the compact semigroup & is a group. To verify
the claim we must show that & contains the inverse of each of its elements.
Given T = S~'US € &, where U is a unitary matrix, by the classical Dirichlet’s
Simultaneous Approximation Theorem, sequence (U m)(x:1 has a subsequence

m=

m.\ O
(U ’) that converges to the identity matrix. Thus

j=1
m . o0
(1) — 5,
j=1
which shows that
m. —1 o0
(T ’ ) T
j=2
and since & is closed, we have T~! € &, as claimed.

Since it is well known (see for example Theorem 3.1.5 in [6]) that in GL,
every bounded group is simultaneously similar to a group of unitary matrices,
we conclude that for some S € GL,, S~16S is a sub-semigroup of a group
57188 of unitary matrices.

The desired conclusion follows using the similarity

[(A) = ST1AS.
O

Notation 5.11. Let us denote by {M} _ the set of all finite subsets of M, and
in general, for I' C P(M), let ', denote the collection of all finite subsets of
the elements of I'. Clearly I' N {M}? is the collection of all finite sets in I'.

Definition 5.12. Given a unital collection S of functions on the power set
P(M) of a metric space (M, ), let us define a function ¥, : P(P(M)) —

P(P(M)) by:

WS(Q)d:ef{ Q{)7KCM\ {K}, Cc®,(Q) }, ggig

We shall refer to ¥_(Q2) as the Tukey thickening of 2 via S, and note
that when € is not empty, ¥, () contains a subset K of M exactly when the
thickening of € via S contains all finite subsets of K.

The reference to Tukey should be self-explanatory now, since it is clear that
for any 0 # Q C P(M), U(Q) is a set of finite character, and in particular,
by Tukey’s Lemma, contains a maximal element with respect to inclusion.
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If we continue with the notation and terminology introduced in Observation
5.5, we see that a subset C of B(X) is Tukey-close to having property P (v.s,
b.f.v.s) if and only if it belongs to the Tukey thickening of Q0 via {id
(resp. the group of (bounded) similarities and Q7).

P(M)}

Observation 5.13. We offer the following observations, the proofs of which
are left as an exercise for the reader.

(1) ©,(0) =0 =W (0);

(2) QC P,(Q) C T (Q); (the inclusions may be strict);

(3) KG\IJ () = P(K) C ¥ ()

(4) If each element of 2 is a subset of an element of I', then & (2) C ®,(I)
and () C ¢ _(T);

(5) \I’S(Qg) M} = Q) N{M} = ,(Q) N{M} = &,(Q2;) N
M} C @S(Qg) C O,(Q) C U (Q) =T (Q,); (the inclusions may
be strict).

Theorem 5.14. If ®_ is a topological closure operation on the power set
P(M), then so is ¥,.
Proof. At this point we only need to verify the following claims:
37: T CU_(Q) = U () C T (Q);
4”: U (QUT) Cc ¥ (QuT ().
[3”]: From the Observation 5.13 we know that
Frco,(Q) = I',Ccv,(Q)
— T, ¥ (@Qn{M} =2,(Q)N{M},
— I', Cco,(Q),
and
U () C ¥ (Q) <= ¥ (I';) C Y (Q).
Hence it is sufficient to demonstrate that
' Cco,(Q) = ¥ (I,) C U (D).
To this end, suppose that I'. € ®,(€2), and that K € ¥ (I';). Then
{K}s C P (Ps) C g ((I)s (Q)) =g (),
and therefore
K ev_(Q),

as required.

[47]: Suppose that K € ¥ (Q2UI'). We aim to show that K € U (Q)UP(T).
If K € ¥ (T'), we are done; so suppose that K has a finite subset P, such that
P, & ®_(T). Then P, € &_(N), because

{K}g - (I)S(QUF) = (I>S(Q) U(I)s(r)'
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We claim that in such a case {K}, C ®4(Q); ie. K € U (Q).
Suppose that P is a finite subset of K. Then P U P, is also a finite subset
of K, and therefore

PUP, €d (Q)UD(T).
If it were the case that PU P, € ®_(I'), then every subset of PU P,, including
P,, would be an element of & (I"), by Observation 5.13. Since P, ¢ &, (I"), we
conclude that PUP, € ®,(Q), and thus every subset of PU P,, including P, is

an element of ®,(£2). This completes the proof of the claim and of the whole
theorem. 0

As we have mentioned at the start of this section, the concepts of “closeness”
used in the preceding sections do not in general correspond to a closure with
respect to a topology on P(P(M,,)). We will demonstrate this in Example 5.17
below, but first we state two results that will aid us in that task.

In [1] it has been shown that if C C M, is Tukey-close v.s. to being diagonal,
then it is Tukey-close b.f.v.s. to being diagonal as well. With this observation
in hand the following result becomes an immediate corollary to Theorem 3.6.

Corollary 5.15 ([1]). If C C M, is Tukey-close v.s. to being diagonal, then C
is triangularizable.

Corollary 5.15 is in fact an “if and only if” result, due to the following
theorem of Perron, a proof of which can be found in [6] (Theorem 1.6.2).

Theorem 5.16 ([1]). Let U the the algebra of all strictly upper-triangular
matrices in M,,. The operator norm of the similarity transformation A —
Ta_lATa induced on U by a diagonal matriz T, = diag(a,a?,...,a™) can be
made as small as desired via a judicious choice of a positive c.

In particular, for every € > 0 there is some a > 0 such that
IT1AT, — D(A)] < €| A]
for all upper-triangular A € M, .

It is pleasant to observe that a strong converse to the second claim of Perron’s
theorem holds true. If for every subset {A1, Aa, As,..., Ay} of C C M, and
every € > 0 there exists an invertible matrix 7" such that

IT7Y AT — D(A)| < el| Al
then C is triangularizable.

Indeed, in such a case { H—QH ’ 0£A€eC } is Tukey-close v.s. to being

diagonal, and so is triangularizable by Corollary 5.15.
In particular, a bounded family C C M, is Tukey-close v.s. to being diagonal
if and only if C (is triangularizable and) is close v.s. to being diagonal.
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Example 5.17. Consider the metric space (Mz(C), || ||), and let S be the group
of all similarities on Mz(C). Let us demonstrate that ¥, (and consequently ®,)
is not a topological closure operation. It shall be sufficient to demonstrate that

Vs (Vs ({{0}})) # Ws ({{0}})-

We shall accomplish this by showing that

{6 2]} v omn waom.

To this end, let us first argue that U, ({{0}}) is the collection of all triangular-
izable sets of nilpotent matrices.

By Corollary 5.15, every set in U, ({{0}}) is triangularizable, and by an
observation we had made in the proof of Proposition 3.2, every set in ¥, ({{0}})
consists of nilpotents. This shows the inclusion in one direction. The reverse

inclusion is a consequence of Perron’s theorem (Theorem 5.16).

Now, let C. = {[g 8} } Then clearly C. € U ({{0}}), for every positive

€
€, and

This shows that

Since [(1) _01] is not nilpotent,

{B —01” ¢ ¥s({{0}}).
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