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COMMON FIXED POINT THEOREMS FOR FOUR
MAPPINGS IN COMPLETE METRIC SPACES

S. SEDGHI* AND N. SHOBE

Communicated by Fraydoun Rezakhanlou

Abstract. In this paper, we prove some common fixed point the-
orems for four maps in complete metric spaces. These theorems are
versions of some known results in ordinary metric spaces.

1. Introduction and preliminaries

In the present work, we introduce a new binary operation which is
a probable modification of the definition of ordinary metric. In section
1, we give some properties about this operation metric. In section 2,
we prove two common fixed point theorems for four weakly compatible
maps in complete metric spaces. In section 3, we prove a fixed point
theorem for compatible mappings satisfying a new general contractive
type condition.

In what follows, N is the set of all natural numbers and R+ is the set
of all positive real numbers.

Let � : R+×R+ −→ R+ be a binary operation satisfyng the following
conditions:
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(i) � is associative and commutative,
(ii) � is continuous.

Five typical examples of � are:
a � b = max{a, b}, a � b = a+ b, a � b = ab, a � b = ab+ a+ b and

a � b =
ab

max{a, b, 1}
for each a, b ∈ R+.

Definition 1.1. The binary operation � is said to satisfy α-property if
there exists a positive real number α such that

a � b ≤ αmax{a, b}

for all a, b ∈ R+.

Example 1.2. (1) If a � b = a + b, for each a, b ∈ R+, then for α ≥ 2,
we have a � b ≤ αmax{a, b}.

(2) If a � b =
ab

max{a, b, 1}
, for each a, b ∈ R+, then for α ≥ 1, we

have a � b ≤ αmax{a, b}.

In 1996 Jungck [4] introduced the concept of weakly compatible map-
pings and proved some common fixed point theorems using this concept
on ordinary metric spaces. After then, many fixed point results have
been obtained using weakly compatible mappings on ordinary metric
spaces (see [1], [2], [3], [6]).

Definition 1.3. Let A and S be mappings from a metric space (X, d)
into itself. A and S are said to be weakly compatible if they commute at
their coincidence points, that is, Ax = Sx for some x ∈ X implies that
ASx = SAx.

2. Main results

Theorem 2.1. Let (X, d) be a complete metric space such that � sat-
isfies α-property with α > 0. Let A,B, S and T be self mappings of X
into itself satisfying the following conditions

(i) A(X) ⊆ T (X), B(X) ⊆ S(X) and T (X) or S(X) is a closed subset
of X,

(ii) the pairs (A,S) and (B, T ) are weakly compatible,
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(iii) for all x, y ∈ X,
d(Ax,By) ≤ k1(d(Sx, Ty) � d(Ax, Sx)) + k2(d(Sx, Ty) � d(By, Ty))

+k3(d(Sx, Ty) �
d(Sx,By) + d(Ax, Ty)

2
),

where k1, k2, k3 > 0 and 0 < α(k1 + k2 + k3) < 1.
Then, A,B, S and T have a unique common fixed point in X.

Proof. Let x0 be an arbitrary point in X. By (i), we can define in-
ductively a sequence {yn} in X such that y2n = Ax2n = Tx2n+1 and
y2n+1 = Bx2n+1 = Sx2n+2, for n = 0, 1, 2, · · · . We claim that the
sequence {yn} is a Cauchy sequence.

Using (iii), we have

d(y2n, y2n+1)
= d(Ax2n, Bx2n+1)
≤ k1(d(Sx2n, Tx2n+1) � d(Ax2n, Sx2n))

+k2(d(Sx2n, Tx2n+1) � d(Bx2n+1, Tx2n+1))

+k3(d(Sx2n, Tx2n+1) �
d(Sx2n, Bx2n+1) + d(Ax2n, Tx2n+1)

2
)

= k1(d(y2n−1, y2n) � d(y2n, y2n−1))
+k2(d(y2n−1, y2n) � d(y2n+1, y2n))

+k3(d(y2n−1, y2n) � d(y2n−1, y2n+1) + d(y2n, y2n)
2

).

Set dn = d(yn, yn+1). Using the above inequality, we get

d2n ≤ k1(d2n−1 � d2n−1) + k2(d2n−1 � d2n) + k3(d2n−1 �
d(y2n−1, y2n+1)

2
).

Hence,

d2n ≤ k1αd2n−1 + k2αmax{d2n−1, d2n}+ k3αmax{d2n−1,
d2n−1 + d2n

2
}.

If d2n > d2n−1, we obtain

d2n ≤ k1αd2n + k2αd2n + k3αd2n < d2n,

which is a contradiction. Hence d2n ≤ d2n−1. Similarly it is easy to see
that d2n+1 ≤ d2n. Therefore, dn ≤ dn−1, for n = 1, 2, · · · .

Using the above inequality we get

dn ≤ α(k1 + k2 + k3)dn−1 = kdn−1,
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where α(k1 + k2 + k3) = k < 1. So

dn ≤ kdn−1 ≤ k2dn−2 ≤ · · · ≤ knd0.

That is,

d(yn, yn+1) ≤ knd(y0, y1) −→ 0 as n→∞.

If m > n then

d(yn, ym) ≤ d(yn, yn+1) + d(yn+1, yn+2) + · · ·+ d(ym−1, ym)
≤ knd(y0, y1) + kn+1d(y0, y1) · · ·+ km−1d(y0, y1)

=
kn

1− k
d(y0, y1) −→ 0

as n,m → ∞. It follows that the sequence {yn} is a Cauchy sequence
and by the completeness of X, {yn} converges to y ∈ X. Therefore,

lim
n→∞

yn = lim
n→∞

Ax2n = lim
n→∞

Bx2n+1 = lim
n→∞

Sx2n+2 = lim
n→∞

Tx2n+1 = y.

Assume that T (X) is a closed subset of X. Then there exists v ∈ X
such that Tv = y.

If Bv 6= y then by using (iii), we obtain

d(Ax2n, Bv) ≤ k1(d(Sx2n, T v) � d(Ax2n, Sx2n))
+k2(d(Sx2n, T v) � d(Bv, Tv))

+k3(d(Sx2n, T v) �
d(Sx2n, Bv) + d(Ax2n, T v)

2
).

As n→∞, we get

d(y,Bv) ≤ k1(d(y, Tv) � d(y, y)) + k2(d(y, Tv) � d(Bv, Tv))

+k3(d(y, Tv) �
d(y,Bv) + d(y, Tv)

2
)

≤ k1αmax{d(y, Tv), 0}+ k2αmax{0, d(Bv, y)}

+k3αmax{0, d(y,Bv) + 0
2

}

< d(y,Bv).

It follows that Bv = y = Tv. Since B and T are weakly compatible, we
have BTv = TBv and so By = Ty.
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If y 6= By, by (iii), we get

lim
n→∞

d(Ax2n, By) ≤ lim
n→∞

[k1(d(Sx2n, T y) � d(Ax2n, Sx2n))

+k2(d(Sx2n, T y) � d(By, Ty))

+k3(d(Sx2n, T y) �
d(Sx2n, By) + d(Ax2n, T y)

2
)].

Hence,

d(y,By) ≤ k1(d(y, Ty) � d(y, y)) + k2(d(y, Ty) � d(By, Ty))

+k3(d(y, Ty) �
d(y,By) + d(y, Ty)

2
)

≤ k1αmax{d(y, Ty), d(y, y)}+ k2αmax{d(y, Ty), d(By, Ty)

+k3αmax{d(y, Ty), d(y,By) + d(y, Ty)
2

}

< d(y,By),

and so By = y.
Since B(X) ⊆ S(X), there exists w ∈ X such that Sw = y.
If Aw 6= y, by (iii), we have

d(Aw,By) ≤ k1(d(Sw, Ty) � d(Aw,Sw)) + k2(d(Sw, Ty) � d(By, Ty))

+k3(d(Sw, Ty) �
d(Sw,By) + d(Aw, Ty)

2
),

and it follows that

d(Aw, y) ≤ k1(d(Sw, y) � d(Aw,Sw)) + k2(d(Sw, y) � d(y, y))

+k3(d(Sw, y) �
d(Sw, y) + d(Aw, y)

2
)

≤ k1αmax{d(Sw, y), d(Aw,Sw)}+ k2αmax{d(Sw, y), d(y, y)}

+k3αmax{d(Sw, y), d(Sw, y) + d(Aw, y)
2

}

< d(Aw, y).

This implies that Aw = y and hence Aw = Sw = y. Since A and S are
weakly compatible, ASw = SAw and so Ay = Sy.
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If Ay 6= y then by (iii), we get

d(Ay, y) = d(Ay,By)
≤ k1(d(Sy, Ty) � d(Ay, Sy)) + k2d(Sy, Ty) � d(By, Ty))

+k3(d(Sy, Ty) �
d(Sy,By) + d(Ay, Ty)

2
)

= k1(d(Sy, y) � d(Ay, Sy)) + k2(d(Sy, y) � d(y, y))

+k3(d(Sy, y) �
d(Sy, y) + d(Ay, y)

2
)

≤ k1αmax{d(Sy, y), d(Ay, Sy)}+ k2αmax{d(Sy, y), d(y, y)}

+k3αmax{d(Sy, y), d(Sy, y) + d(Ay, y)
2

}

< d(Ay, y),

and so Ay = y. Thus, Ay = Sy = By = Ty = y, that is, y is a common
fixed point for A,B, S and T .

The proof is similar when S(X) is assumed to be a closed subset of
X.

The uniqueness of y follows from (iii). �

Corollary 2.2. Let (X, d) be a complete metric space. Let A,B, S and
T be self mappings of X into itself satisfying the following conditions

(i) A(X) ⊆ T (X), B(X) ⊆ S(X) and T (X) or S(X) is a closed subset
of X,

(ii) the pairs (A,S) and (B, T ) are weakly compatible,
(iii) for all x, y ∈ X,

d(Ax,By) ≤ k1(d(Sx, Ty) + d(Ax, Sx)) + k2(d(Sx, Ty) + d(By, Ty))

+k3(d(Sx, Ty) +
d(Sx,By) + d(Ax, Ty)

2
),

where k1, k2, k3 > 0 and 0 < k1 + k2 + k3 <
1
2 .

Then A,B, S and T have a unique common fixed point in X.

Proof. Define a � b = a+ b for each a, b ∈ R+. Then for α ≥ 2, we have
a � b ≤ αmax{a, b}. Putting α = 2, we get 0 < α(k1 + k2 + k3) < 1, and
hence all conditions of Theorem 2.1 hold. Therefore A,B, S and T have
a unique common fixed point in X. �
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3. A further generalization of a contraction principle

In what follows we deal with the class Ψ of all functions ψ : [0,∞)6 −→
R with the following properties:

(1) (ψ1): ψ(u, v, v, u, u + v, 0) ≤ 0 or ψ(u, v, u, v, 0, u + v) ≤ 0 for
every v > 0 implies that u < v and v = 0 implies that u = 0;

(2) (ψ2): ψ is non-increasing in variables t5 and t6;
(3) (ψ3): ψ(u, u, 0, 0, u, u) ≤ 0 implies that u = 0;
(4) (ψ4): ψ is continuous in each coordinate variable.

Examples of ψ are
ψ(t1, t2, t3, t4, t5, t6) = t1 − pmax{t2, t3, t4, 1

2 t5,
1
2 t6}, 0 < p < 1;

and
ψ(t1, t2, t3, t4, t5, t6) =

∫ t1
0 φ(s)ds − hmax{

∫ ti
0 φ(s)ds}, i = 2, 3, 4,

where 0 < h < 1 and φ : R+ −→ R+ is a Lebesgue integrable map-
ping which is summable non-negative and such that∫ ε

0
φ(t)dt > 0 for each ε > 0.

Theorem 3.1. Let (X, d) be a metric space and f, g, S, T : X −→ X be
mappings such that

(i) f(X) ⊆ T (X), g(X) ⊆ S(X), and E = {d(fx, Sx)| x ∈ X} is a
closed subset of [0,∞),

(ii) the pairs (f, S) and (g, T ) are weakly compatible,

(iii) ψ
(
d(fx, gy), d(Sx, Ty), d(Sx, fx),
d(gy, Ty), d(Sx, gy), d(Ty, fx)

)
≤ 0,

for all x, y ∈ X and ψ ∈ Ψ.
Then f, g, S and T have a unique fixed point in X.

Proof. Since E is nonempty and a lower bounded subset of [0,∞),
putting α = inf E, we have α ∈ E = E. That is, there exists u ∈ X
such that α = d(fu, Su). Since fu ∈ f(X) ⊆ T (X), there exists v ∈ X
such that fu = Tv. Thus

α = d(fu, Su) = d(Tv, Su).

We prove that α = 0. On letting α > 0, by (iii), we get

ψ

(
d(fu, gv), d(Su, Tv), d(Su, fu),
d(gv, Tv), d(Su, gv), d(Tv, fu)

)
≤ 0.
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Since d(Su, gv) ≤ d(Su, fu) + d(fu, gv), by the above inequality, it fol-
lows that

ψ

(
d(fu, gv), α, α,
d(gv, fu), α+ d(fu, gv), 0

)
≤ 0,

and (ψ1) implies that d(fu, gv) < α = d(fu, Su). Since gv ∈ g(X) ⊆
S(X), there exists w ∈ X such that Sw = gv. Similarly, using (iii), we
obtain

ψ

(
d(fw, gv), d(Sw, Tv), d(Sw, fw),
d(gv, Tv), d(Sw, gv), d(Tv, fw)

)
≤ 0.

As d(fw, Tv) ≤ d(fw, Sw)+d(Sw, Tv), by the above inequality, we have

ψ

(
d(fw, Sw), d(gv, Tv), d(Sw, fw),
d(gv, Tv), 0, d(fw, Sw) + d(gv, Tv)

)
≤ 0.

If d(gv, Tv) = 0, by (ψ1), we get d(fw, Sw) = 0. Thus

α = d(fu, Su) ≤ d(fw, Sw) = 0,

a contradiction. So d(gv, Tv) > 0, and by (ψ1), we get d(fw, Sw) <
d(gv, Tv). Thus

α = d(fu, Su) ≤ d(fw, Sw)
< d(gv, Tv)
< d(fu, Su) = α

a contradiction. Hence α = 0 which implies that fu = Su = Tv. If
gv 6= Tv, by (iii), we get

ψ

(
d(fu, gv), d(Su, Tv), d(Su, fu),
d(gv, Tv), d(Su, gv), d(Tv, fu)

)
= ψ

(
d(Tv, gv), 0, 0,
d(gv, Tv), d(Tv, gv), 0

)
≤ 0.

From (ψ1) it follows that gv = Tv. Hence, Tv = gv = fu = Su = p.
By weak compatibility of the pairs (g, T ) and (f, S), we have gp = Tp

and fp = Sp. We now prove that fp = p. In fact, if p 6= fp, by using
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(iii), we have

ψ

(
d(fp, gv), d(Sp, Tv), d(Sp, fp),
d(gv, Tv), d(Sp, gv), d(Tv, fp)

)
= ψ

(
d(fp, p), d(fp, p), 0,
0, d(fp, p), d(p, fp)

)
≤ 0,

and (ψ3) implies that p = fp = Sp. We next prove that gp = p.
Indeed, if p 6= gp, by using (iii), we obtain

≤ ψ

(
d(fp, gp), d(Sp, Tp), d(Sp, fp),
d(gp, Tp), d(Sp, gp), d(Tp, fp)

)
= ψ

(
d(p, gp), d(p, gp), 0,
0, d(p, gp), d(p, gp)

)
≤ 0,

and (ψ3) implies that p = gp = Tp. Therefore, p is a common fixed
point of f, g, S and T .

The uniqueness of p follows from (iii).

Example 3.2. Let (X, d) be a metric space with d(x, y) = |x − y|.
Define the self-maps f, g, S and T on X by

fx = gx = 1/2, Sx =
x+ 1

3
and Tx =

2x+ 1
4

,

for all x ∈ X. Hence

0 = d(fx, gx) ≤ d(Sx, Tx),

for every x in X . If we define ψ(t1, t2, t3, t4, t5, t6) = t1 − t2, it is easy
to see that all conditions of Theorem 3.1 hold and there exists a unique
z = 1/2 such that

f(1/2) = g(1/2) = S(1/2) = T (1/2) = 1/2.

Corollary 3.3. Let fi, gj , T and S be self-mappings of a complete metric
space (X, d) satisfying the following conditions:

(i) there exists i0, j0 ∈ N such that fi0(X) ⊆ T (X), gj0(X) ⊆ S(X)and
E = {d(fi0x, Sx)| x ∈ X} is a closed subset of [0,∞),

(ii) the pairs (fi0 , S) and (gj0 , T ) are weakly compatible,
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(iii) ψ
(
d(fix, gjy), d(Sx, Ty), d(Sx, fix),
d(gjy, Ty), d(Sx, gjy), d(Ty, fix)

)
≤ 0,

for all x, y ∈ X, ψ ∈ Ψ and i, j = 1, 2, · · · .
Then, fi, gj , S and T have a unique common fixed point in X for all

i, j = 1, 2, · · · .

Proof. By Theorem 3.1, S, T and fi0 and gj0 , for some i0, j0 ∈ N,
have a unique common fixed point in X. That is, there exists a unique
z ∈ X such that

S(z) = T (z) = fi0(z) = gj0(z) = z.

Suppose there exists j ∈ N such that j 6= j0. Then by (iii) we have

ψ

(
d(fi0z, gjz), d(Sz, Tz), d(Sz, fi0z),
d(gjz, Tz), d(Sz, gjz), d(Tz, fi0z)

)
= ψ

(
d(z, gjz), 0, 0,
d(gjz, z), d(z, gjz), 0

)
≤ 0.

By (ψ3), it follows that d(gjz, z) = 0. Hence for every j ∈ N, we have
gj(z) = z. Similarly for every i ∈ N, we get fiz = z. Therefore for every
i, j ∈ N, we have

fiz = gjz = Sz = Tz = z.

�
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