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Abstract. The aim of this note is to study the submajorization inequal-
ities for τ -measurable operators in a semi-finite von Neumann algebra on
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1. Introduction

First we recall the definition of majorization. Given a real vector x =
(x1, x2, . . . , xn) ∈ Rn, we rearrange its components as x[1] ≥ x[2] ≥ · · · ≥ x[n].
For x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn) ∈ Rn, if

k∑
i=1

x[i] ≤
k∑

i=1

y[i], k = 1, 2, . . . , n

then we say that x is weakly majorized by y and write x ≺w y. If x ≺w y and
n∑

i=1

xi =
n∑

i=1

yi, then we say that x is majorized by y and write x ≺ y.

Denote by Mn the usual von Neumann algebra consisting of n× n complex
matrices. Let A ∈ Mn. We always denote the singular values of A by s1(A) ≥
s2(A) ≥ · · · ≥ sn(A), and denote s(A) := (s1(A), s2(A), . . . , sn(A)). If A is
a Hermitian matrix, we denote the eigenvalues of A in decreasing order by
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λ1(A) ≥ λ2(A) ≥ · · · ≥ λn(A) and denote λ(A) := (λ1(A), λ2(A), . . . , λn(A)).
Recently, Zhang [15] proved the following result:

Theorem 1.1. Let H =

(
A X
X∗ B

)
be a positive semidefinite block matrix

with square matrices A and B of the same order. Then for any complex number
z with |z| = 1,

λ(H) ≺ 1

2
λ([A+B + 2Re(zX)]⊕ 0) +

1

2
λ([A+B − 2Re(zX)]⊕ 0).

If, in addition, X is Hermitian, then for any real number r ∈ [−2, 2]

λ(H) ≺ 1

2
λ((A+B + rX)⊕ 0) +

1

2
λ((A+B − rX)⊕ 0),

while if X is skew-Hermitian, then for any real number r ∈ [−2, 2]

λ(H) ≺ 1

2
λ((A+B + irX)⊕ 0) +

1

2
λ((A+B − irX)⊕ 0),

where Re(X) = X+X∗

2 , i =
√
−1 and 0 is the zero matrix of compatible size.

It is worth pointing that in the majorization theory, the submajorization
(see definition in Section 2), is one of the most important orderings. Many
authors have studied it. We refer to [1, 3, 4, 7–13] for more related results on
this topic.

The purpose of this note is to extend Theorem 1.1 to the case that H =(
A X
X∗ B

)
∈ M2(M) is τ̂ -measurable positive operator in a semifinite von

Neumann algebra. In addition, we also study the submajorization among (A+
B) ⊕ (A + B), A ⊕ B and (|A| + |B|) ⊕ 0, where A, B ∈ M (see below) are
τ -measurable operators.

2. Preliminaries

Denote by M a semi-finite von Neumann algebra on the Hilbert space H
with a normal faithful semi-finite trace τ . The closed densely defined linear
operator T in H with domain D(T ) is said to be affiliated with M if U∗TU = T
for all unitary U that belong to the commutant M′ of M. If T is affiliated
with M, then T is said to be τ -measurable if for every ε > 0 there exists a
projection P ∈ M such that P (H) ⊆ D(T ) and τ(P⊥) < ε (where for any
projection P we let P⊥ = I−P , I here denotes the identity operator). The set
of all τ -measurable operators will be denoted by M which is the closure of M
with respect to the measure topology, which is the linear (Hausdorff) topology
whose fundamental system of neighborhoods around 0 is given by

V (ε, δ) = {T ∈ M | ∥TP∥ ≤ εfor some projectionP ∈ M withτ(I − P ) ≤ δ}
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Here, ε, δ run over all strictly positive numbers and ∥ · ∥ is the operator norm.

For a positive self-adjoint operator T =
∫∞
0

λdEλ affiliated with M, we set

τ(T ) = sup
n

τ
( ∫ n

0

λdEλ

)
=

∫ ∞

0

λdτ(Eλ).

For 0 < p < ∞, Lp(M; τ) is defined as the set of all densely defined closed
operators T affiliated with M such that

∥T∥p = τ(|T |p)
1
p < ∞,

where |T | = (T ∗T )
1
2 . In addition, we put L∞(M; τ) = M and denote by ∥ ·∥∞

(= ∥ · ∥) the usual operator norm. It is well known that Lp(M; τ) is a Banach
space under ∥ · ∥p (1 ≤ p ≤ ∞) satisfying all the expected properties such as
duality.
Let T be a τ -measurable operator and t > 0. The t-th singular number (gen-
eralized s-number) of T , denoted by µt(T ), is

µt(T ) = inf{∥TP∥ | P a projection in M/mboxwithτ(I − P ) ≤ t}.

Then µt(T ) has the following properties (see [5, Lemma 2.5]).

Lemma 2.1. Let T , S, R be τ -measurable operators.

(i) The map: t ∈ (0,∞) → µt(T ) is non-increasing and continuous from the
right. Moreover

lim
t→0+

µt(T ) = ∥T∥ ∈ [0,∞].

(ii) µt(T ) = µt(|T |) = µt(T
∗) and µt(αT ) = |α|µt(T ) for t > 0 and α ∈ C.

(iii) µt(T ) ≤ µt(S), t > 0, if 0 ≤ T ≤ S.
(iv) µt(f(|T |)) = f(µt(|T |)), t > 0 for any continuous increasing function f

on [0,∞] with f(0) ≥ 0.
(v) µt+s(T + S) ≤ µt(T ) + µs(S), t, s > 0.
(vi) µt(STR) ≤ ∥S∥∥R∥µt(T ), t > 0.
(vii) µt+s(TS) ≤ µt(T )µs(S), t, s > 0.

From (vi) of Lemma 2.1, we immediately know that µt(·) has unitary invari-
ance property, i.e.,

µt(U
∗TU) = µt(T )

for τ measurable operators T , U with U unitary.

Next, we will give the definition of submajorization. The submajorization
of operators is a generalization of the notion of submajorization for functions
introduced by Hardy, Littlewood and Polya.
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Definition 2.2. If f and g are measurable positive decreasing functions on
(0,∞), then we say that g is submajorized by f and write g ≺≺ f if∫ t

0

g(s)ds ≤
∫ t

0

f(s)ds

for all t > 0. Given A, B ∈ M, we say that B is submajorized by A and write
B ≺≺ A if µ(B) ≺≺ µ(A).

For example, it has been established that µ(A + B) ≺≺ µ(A) + µ(B) and
µ(AB) ≺≺ µ(A)µ(B) for A, B ∈ M (see Theorems 4.4 and 4.2 in [5]).

We remark that if M = Mn and τ is the standard trace, i.e., τ(A) = tr(A) =
n∑

i=1

aii for A = (aij) ∈ Mn, then

µt(A) = sj(A), t ∈ [j − 1, j), j = 1, 2, . . . , n,

and if A,B ∈ M, then A ≺≺ B is equivalent to

k∑
i=1

si(A) ≤
k∑

i=1

si(B), k = 1, 2, . . . , n.

3. Submajorization inequalities

Let M2(M) be the von Neumann algebra

M2(M) =
{(

A11 A12

A21 A22

) ∣∣∣Aij ∈ M, i, j = 1, 2
}

on the Hilbert space H ⊕H with trace τ̂ = tr ⊗ τ , i.e., τ̂(A) = τ(A11 + A22)

for A =

(
A11 A12

A21 A22

)
∈ M2(M). For A ∈ M2(M), let

(3.1) C(A) = C
( (

A11 A12

A21 A22

) )
=

(
A11 0
0 A22

)
=

1

2

2∑
k=1

(U∗)kAUk,

where U =

(
I 0
0 −I

)
. Then C : M2(M) → M2(M) is a trace-preserving

positive contraction.

In this section, we mainly study submajorization inequalities. To achieve
our goal, we need the following lemma. Its matrix version was given by Bourin
and Lee in [2].
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Lemma 3.1. Let H =

(
A X
X∗ B

)
∈ M2(M) be τ̂ -measurable positive oper-

ator. Then there exist partial isometries U, V ∈ M2(M) such that

(3.2)

(
A X
X∗ B

)
= U

(
A 0
0 0

)
U∗ + V

(
0 0
0 B

)
V ∗.

Proof. Since H is positive, then there exists a positive τ̂ -measurable operator(
C Y
Y ∗ D

)
∈ M2(M) such that

(
A X
X∗ B

)
=

(
C Y
Y ∗ D

)(
C Y
Y ∗ D

)
=

(
C 0
Y ∗ 0

)(
C Y
0 0

)
+

(
0 Y
0 D

)(
0 0
Y ∗ D

)
= T ∗T + S∗S

where T =

(
C Y
0 0

)
, S =

(
0 0
Y ∗ D

)
.

Let T ∗ = U |T ∗|, S∗ = V |S∗| be the polar decompositions, respectively. It is
easy to check that

T ∗T = U

(
A 0
0 0

)
U∗

and

S∗S = V

(
0 0
0 B

)
V ∗.

□

Based on Lemma 3.1, we obtain the main result.

Theorem 3.2. Let H =

(
A X
X∗ B

)
∈ M2(M) be a τ̂ -measurable positive

operator. Then for any complex number z with |z| = 1,

1

2
µ([A+B − Y ]⊕ [A+B + Y ]) ≺≺

µ(H) ≺≺ 1

2
µ([A+B − Y ]⊕ 0) +

1

2
µ([A+B + Y ]⊕ 0)(3.3)

where Y = 2Re(zX), and 0 is the zero operator.
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Proof. By Lemma 2.1, 3.1 and [5, Theorem 4.4], we have∫ t

0

µs

( (
A X
X∗ B

) )
ds

≤
∫ t

0

µs

( (
A 0
0 0

) )
ds+

∫ t

0

µs

( (
0 0
0 B

) )
ds

=

∫ t

0

µs

( (
A 0
0 0

) )
ds

+

∫ t

0

µs

( (
0 I
I 0

)(
0 0
0 B

) (
0 I
I 0

))
ds

=

∫ t

0

µs

( (
A 0
0 0

) )
ds+

∫ t

0

µs

( (
B 0
0 0

) )
ds(3.4)

for t > 0.

Taking J1 = 1√
2

(
I −I
I I

)
and Jz =

(
I 0
0 zI

)
, then J1 and Jz are

unitaries and

(3.5) J1JzHJ∗
z J

∗
1 =

(
A+B−Y

2 K
K∗ A+B+Y

2

)
where K = A−B+(zX−zX∗)

2 .

Noting that µs(H) = µs(J1JzHJ∗
z J

∗
1 ) for s > 0, then the second inequality

in (3.3) follows from (3.4).

On the other hand, by Lemma 2.1, equality (3.1), [5, Theorem 4.4], we have∫ t

0

µs(C(H))ds ≤
∫ t

0

µs(H)ds,

for t > 0, which is equivalent to

(3.6) µ(A⊕B) ≺≺ µ(H).

According to (3.5) and µs(H) = µs(J1JzHJ∗
z J

∗
1 ) for s > 0, the relation (3.6)

yields
1

2
µ([A+B − Y ]⊕ [A+B + Y ]) ≺≺ µ(H).

This completes the proof of the first inequality in (3.3). □

Corollary 3.3. Let X, Y ∈ M be τ -measurable operators. Then for any
complex number z with |z| = 1,

(3.7) 2µ(XX∗ + Y Y ∗) ≺≺ µ(X∗X + Y ∗Y − Z) + µ(X∗X + Y ∗Y + Z)

where Z = zX∗Y + zY ∗X.
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Proof. Let T1 =

(
X Y
0 0

)
. Then

T1T
∗
1 =

(
X Y
0 0

)(
X∗ 0
Y ∗ 0

)
=

(
XX∗ + Y Y ∗ 0

0 0

)
and

T ∗
1 T1 =

(
X∗ 0
Y ∗ 0

)(
X Y
0 0

)
=

(
X∗X X∗Y
Y ∗X Y ∗Y

)
.

for t > 0.
On the other hand, let T1 = U1|T1| be a polar decomposition. Then

T1T
∗
1 = U1(T

∗
1 T1)U

∗
1 .

Thus, ∫ t

0

µs(T1T
∗
1 )ds =

∫ t

0

µs(U1T
∗
1 T1U

∗
1 )ds ≤

∫ t

0

µs(T
∗
1 T1)ds.

By Theorem 3.2, we get the desired results.
□

Putting z = 1 in Z. Then inequality (3.7) gives

2µ(XX∗ + Y Y ∗) ≺≺ µ(X∗X + Y ∗Y − (X∗Y + Y ∗X))

+ µ(X∗X + Y ∗Y + (X∗Y + Y ∗X)).

This is a generalization of a matricial result obtained by Turkman, Paksoy and
Zhang in [14].

Corollary 3.4. Let S, T ∈ M be τ -measurable positive operators. Then for
any real number r ∈ [−2, 2],

(3.8) 2µ(T 2 + ST 2S) ≺≺ µ(T 2 + TS2T + rTST ) + µ(T 2 + TS2T − rTST ).

Proof. Let X = T and Y = ST . Then zX∗Y + zY ∗X = 2Re(z)TST . Since
2Re(z) ranges over [-2,2] as we vary z over all complex number of modulus 1,
the result follows from Corollary 3.6. □

Remark 3.5. The matrix form of 3.8 when r = 1 was obtained by Furuichi
and Lin in [6].

Corollary 3.6. Let A,B ∈ M be τ -measurable operators. Then for any real
number r ∈ [−2, 2], the following inequality holds,

2µ

( (
A∗A+B∗B A∗B +B∗A
A∗B +B∗A A∗A+B∗B

) )
≺≺ µ([A∗A+B∗B − rC]⊕ 0)

+ µ([A∗A+B∗B + rC]⊕ 0)(3.9)

where C = A∗B +B∗A.
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Proof. Since both

(
A∗A A∗B
B∗A B∗B

)
and

(
B∗B B∗A
A∗B A∗A

)
are τ̂ -measurable

positive operators, so is

(
A∗A+B∗B A∗B +B∗A
A∗B +B∗A A∗A+B∗B

)
. Then by Theorem

3.2, we obtain the result (3.9). □

4. Further results

In this section, we mainly study the submajorization among (A+B)⊕ (A+
B), A ⊕ B and (|A| + |B|) ⊕ 0, where A, B ∈ M are τ -measurable operators.
We have the following results.

Theorem 4.1. Let A, B ∈ M be τ -measurable operators. Then the following
holds:

(4.1)
1

2
µ([A+B]⊕ [A+B]) ≺≺ µ(A⊕B) ≺≺ µ([|A|+ |B|]⊕ 0).

Proof. Since

(4.2)

(
A+B 0

0 A+B

)
=

(
A 0
0 B

)
+

(
0 I
I 0

)(
A 0
0 B

)(
0 I
I 0

)
,

by [5, Theorem 4.4] and Lemma 2.1, the first submajorization of (4.1) holds
at once.

On the other hand, let A = U1|A|, B = U2|B| be polar decompositions.
Then

(4.3)

(
|A|+ |B| 0

0 0

)
=

(
|A| 12 |B| 12
0 0

)(
|A| 12 0

|B| 12 0

)

and

(4.4)

(
|A| 12 0

|B| 12 0

)(
|A| 12 |B| 12
0 0

)
=

(
|A| |A| 12 |B| 12

|B| 12 |A| 12 |B|

)
.

There exists a partial isometry U3 such that

(4.5)

(
|A| |A| 12 |B| 12

|B| 12 |A| 12 |B|

)
= U3

(
|A| 12 |B| 12
0 0

)(
|A| 12 0

|B| 12 0

)
U∗
3 .
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Then by Lemma 2.1, (3.1), (4.2), (4.4), (4.5) and [5, Theorem 4.4], we have∫ t

0

µs

( (
A 0
0 B

) )
ds

≤
∫ t

0

µs

( (
|A| 0
0 |B|

) )
ds

≤
∫ t

0

µs

( (
|A| |A|

1
2 |B|

1
2

|B|
1
2 |A|

1
2 |B|

) )
ds

=

∫ t

0

µs

(
U3

(
|A|

1
2 |B|

1
2

0 0

)(
|A|

1
2 0

|B|
1
2 0

)
U∗

3

)
ds

≤
∫ t

0

µs

( (
|A|+ |B| 0

0 0

) )
ds

for t > 0.
By Definition 2.2, the second submajorization of (4.1) also holds. □
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