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Abstract. One of unsolved problems in quantum measurement theory

is to characterize coexistence of quantum effects. In this paper, applying
positive operator matrix theory, we give a mathematical characterization
of the witness set of coexistence of quantum effects and obtain a series of
properties of coexistence. We also devote to characterizing bijective mor-

phisms on quantum effects leaving the witness set invariant. Furthermore,
applying linear maps preserving commutativity, which are characterized
by Choi, Jafarian and Radjavi [Linear maps preserving commutativity,
Linear Algebra Appl. 87 (1987), 227–241.], we classify multiplicative

general morphisms leaving the witness set invariant on finite dimensional
Hilbert space effect algebras.
Keywords: Positive operator matrices, coexistence, Hilbert space effect
algebras, isomorphisms.
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1. Introduction

Let H be a complex Hilbert space. Denote by B(H) the algebra of all
bounded linear operators acting on H. The operator interval in B(H): E(H) =
{T ∈ B(H) | 0 ≤ T ≤ I}, where I is the identity operator, is called the Hilbert
space effect algebra or the standard effect algebra. Elements in E(H) are called
quantum effects. Let P(H) be the set of projections on H (projections are
also called sharp effects). The concept of standard effect algebras plays a
fundamental role in quantum measurement ([11]). For A,B ∈ E(H), A,B are
coexist if there exists a C ∈ E(H) such that A = A1 + C, B = B1 + C and
A1 +B1 +C ∈ E(H). In quantum measurement theory, if two quantum effects
A,B coexist, they can be measured together. An important unsolved problem
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of quantum measurement theory is to characterize coexistence of two quantum
effects. Many authors pay their attentions to such a problem ([4,18] and their
references). If dimH = 2, Gudder [4] completely characterizes coexistence of
two quantum effects by their eigenvalues and eigenvectors. However in the
case of dimH ≥ 3, there exists no complete operational characterization of
coexistence of quantum effects. In order to study coexistence more deeply,
Gudder [4] introduces a set

W(A,B) = {C ∈ E(H)|A+B − I ≤ C ≤ A,B}.
W(A,B) is called the witness set for coexistence of A and B. The set W(A,B)
is nonempty if and only if A,B coexist. In matrix analysis, the problem on
positivity of operator matrices has been focused on by many researchers ( [2,
9, 10]). Let A be a unital C∗ algebra and A,B,C ∈ A. A well-known fact

is that the operator matrix

(
A C
C∗ B

)
≥ 0 if and only if A ≥ 0, B ≥ 0

and there is a contractive operator X such that C = A
1
2XB

1
2 ([2]). Hou and

Gao [7] give a condition for positivity of 3×3 operator matrices. In the paper,
we apply positive operator matrix techniques to study coexistence of quantum
effects (see Theorem 2.1). Applying this result, we obtain more properties of
coexistence of two quantum effects (see Corollary 2.3-2.6).

It is mentioned that linear preserver problems deal with the characterization
of linear maps on matrix algebras with some special properties such as leaving
certain functions, subsets or relations invariant ([16]). Commutativity is one
of the important relations. Professors Choi, Jafarian and Radjavi [1] gave a
characterization of linear maps on matrix algebras preserving commutativity,
where the following conclusion is showed:

Theorem 1.1 (Choi-Jafarian-Radjavi Theorem ). Denote by Hn the real
linear space of all n×n Hermitian complex matrices. If Φ : Hn → Hn is a linear
map and preserves commutativity, i.e., AB = BA ⇒ Φ(A)Φ(B) = Φ(B)Φ(A)
for A,B ∈ Hn, then either Φ(Hn) is commutative, or there exist a unitary
matrix U , a linear functional f : Hn → R and a real number t such that Φ has
one of the following forms: (i) Φ(A) = tUAU∗ + f(A)I for all A ∈ Hn; (ii)
Φ(A) = tUATU∗ + f(A)I for all A ∈ Hn, where AT is the transpose of A.

Recently, this result is applied to determine the structure of some quan-
tum transformations in quantum information ([3,6]). Applying Choi-Jafarian-
Radjavi theorem, Guo and Hou [6] gave a characterization of local quantum
channels whose images are in the set of states with zero quantum discord.
Dolinar and Molnár [3] described the structure of all continuous sequential en-
domorphisms of the effect algebra of a finite-dimensional Hilbert space. By the
Choi-Jafarian-Radjavi theorem, without assumption of bijectivity, we charac-
terize general multiplicative maps leaving the witness set invariant on finite-
dimensional Hilbert space effect algebras. If a morphism Φ : E(H) → E(H)
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satisfies

Φ(W(A,B)) = W(Φ(A),Φ(B)) for A,B ∈ E(H)

or

W(A,B) = W(Φ(A),Φ(B)) for A,B ∈ E(H),

we call Φ a morphism that leaves the witness set of coexistence invariant.
In the third section, we give a characterization of bijective morphisms that
leave the witness set of coexistence invariant. Furthermore, applying the Choi-
Jafarian-Radjavi theorem, we discuss the structure of multiplicative general
morphisms leaving the witness set invariant on finite-dimensional Hilbert space
effect algebras in section four.

Let us give some notations. For A ∈ B(H), Ran(A) and Ker(A) denote

the range and kernel of the operator A respectively. Ran (A) is the closure of
Ran(A). An operator A on H is a contraction if ∥A∥ ≤ 1. We denote by PL

the projection on the space L.
(1) if P is a sharp effect (a projection) and E ∈ E(H), P,E coexist, then

W(P,E) = {PE}. The reverse implication does not hold.
(2) A,B are compatible (or coexist) if and only if W(A,B) ̸= ∅.
(3) W (E, I) = {E} and E coexists with all other effects if and only if E = λI
(4) A ≤ B if and only if A ∈ W(A,B).
(5) 0 ∈ W(A,B) if and only if A ⊥ B.
(6) AB = BA if and only if AB ∈ W(A,B).

2. Characterizing the witness set W(A,B)

In the following theorem, we give a complete characterization of the structure
of the witness set W(A,B). Through this section, we always assume that H is
arbitrary a complex Hilbert space.

Theorem 2.1. Let A,B ∈ E(H) and A,B coexist, assume that the space

decomposition H = H0⊕H1⊕H2 = (Ker(A)∩Ran(B))⊕(Ran(A)∩Ran(B))⊕
Ker(B) and P,Q,R is the projection on H0,H1 and H2 respectively. Then every
C ∈ W(A,B) satisfies C = QCQ,QCQ ≥ QAQ + QBQ − Q, and there exist
contractions X,Y,X ′, Y ′, X ′′, Y ′′ such that

QA
1
2QXRA

1
2R = Q(A− C)

1
2QX ′RA

1
2R = −Q(C −A−B + I)

1
2QX ′′R(I −A)

1
2R,

PB
1
2PY QB

1
2Q = PB

1
2PY ′Q(B − C)

1
2Q = −P (I −B)

1
2PY ′′Q(C −A−B + I)

1
2Q.

To prove Theorem 2.1, we need the following lemma, which is proved by
Hou and Gao [7].

Lemma 2.2. ([9, Corollary 1.3]) The operator matrix D11 D12 D13

D∗
12 D22 D23

D∗
13 D∗

23 D33

 ∈ B(H0 ⊕H1 ⊕H2)
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is positive if and only if Dii ≥ 0 for i = 1, 2, 3 and there exist contractions

X,Y,W such that D12 = D
1
2
11XD

1
2
22, D23 = D

1
2
22Y D

1
2
33 and

D13 =

D
1
2
11XPRan(D22)Y D

1
2
33 + (D11−D

1
2
11XPRan(D22)X

∗D
1
2
11)

1
2W (D33−D

1
2
33Y

∗PRan(D22)Y D
1
2
33)

1
2 .

Proof of Theorem 2.1. Let H0 = Ran(B)∩Ker(A), H1 = Ran(B)∩Ran(A)
and H2 = Ker(B). Since A,B ≥ 0, on the space decomposition H = H0 ⊕
H1 ⊕H2, we have

A =

 0 0 0
0 A1 E
0 E∗ A2

 , B =

 B0 F 0
F ∗ B1 0
0 0 0

 .

By Lemma 2.2, Ai ≥ 0, Bi ≥ 0 and there exist contractions X,Y such that

E = A
1
2
1 XA

1
2
2 , F = B

1
2
0 Y B

1
2
1 . Let C ∈ W(A,B). We write

C =

 C11 C12 C13

C∗
12 C22 C23

C∗
13 C∗

23 C33

 .

It follows from Lemma 2.2 again and C ≥ 0 that Cii ≥ 0 for i = 1, 2, 3 and

there exist contractions U, V,W such that C12 = C
1
2
11UC

1
2
22, C23 = C

1
2
22V C

1
2
33

and

C13 =

C
1
2
11UPRan(C22)V C

1
2
33 + (C11−C

1
2
11UPRan(C22)U

∗C
1
2
11)

1
2W (C33−C

1
2
33V

∗PRan(C22)V C
1
2
33)

1
2 .

Since C ∈ W(A,B), we have that C ≤ A,B. It follows that C11 = 0,
C12 = 0, C13 = 0, C33 = 0 and therefore, C23 = 0 by Lemma 2.2. This implies
that C = QCQ.

Furthermore, we have

0 ≤ A− C =

 0 0 0
0 A1 − C22 E
0 E∗ A2

 .

It follows from Lemma 2.2 that there is a contraction X ′ such that E =
(A1 − C22)

1
2X ′(A2)

1
2 . Similarly we have from B − C ≥ 0 that there exists

a contraction Y ′ such that F = (B0)
1
2Y ′(B1 − C22)

1
2 . Since C ∈ W(A,B),

C ≥ A+B − I, we see that

0 ≤ C −A−B + I =

 P −B0 −F 0
−F ∗ C22 −A1 −B1 +Q −E
0 −E∗ R−A2

 .

Then C22 ≥ A1 +B1 −Q, i.e., QCQ ≥ QAQ+QBQ−Q.
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Since A,B,A−C,B−C,C−A−B+I are all positive operators, we have that
there exist contractions X ′′, Y ′′ such that E = −(C22−A1−B1+Q)

1
2X ′′(R−

A2)
1
2 and F = −(P −B0)

1
2Y ′′(C22 −A1 −B1 +Q)

1
2 . Therefore,

E = A
1
2
1 XA

1
2
2 = (A1 − C22)

1
2X ′A

1
2
2 = −(C22 −A1 −B1 +Q)

1
2X ′′(R−A2)

1
2 ,

F = B
1
2
0 Y B

1
2
1 = B

1
2
0 Y

′(B1 − C22)
1
2 = −(P −B0)

1
2Y ′′(C22 −A1 −B1 +Q)

1
2 .

This completes the proof. □

Next applying Theorem 2.1, we will explore properties of coexisting quantum
effects. In the following corollary, we characterize coexistence witness sets of
two orthogonal quantum effects.

Corollary 2.3. Let A,B ∈ E(H), AB = 0. Then W(A,B) = {0}.

Proof. If AB = 0, then Ran(A) ∩ Ran(B) = {0}. It follows from Theorem 2.1
that W(A,B) = {0}. This completes the proof. □

In the following corollary, we characterize coexistence of sharp effects and
general ones.

Corollary 2.4. Let A ∈ E(H) and P ∈ P(H), and A,P coexist. Then AP =
PA and W(A,P ) = {AP}.

Proof. Let H0 = Ran(P )∩Ker(A), H1 = Ran(P )∩Ran(A) and H2 = Ker(P ),
based on the space decomposition H = H0 ⊕H1 ⊕H2, we have that

P =

 I0 0 0
0 I1 0
0 0 0

 , A =

 0 0 0
0 A1 D
0 D∗ A2

 .

Let C ∈ W(A,P ), by Theorem 2.1,

C =

 0 0 0
0 C22 0
0 0 0


and A1 = A1 + I1 − I1 ≤ C22 ≤ A1. It follows that C22 = A1. Thus,

W(A,P ) = {T : T =

 0 0 0
0 A1 0
0 0 0

}.

It follows from T ∈ W(A,P ) that T ≤ A, i.e., 0 0 0
0 A1 0
0 0 0

 ≤

 0 0 0
0 A1 D
0 D∗ A2

 .
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This implies that D = 0. Thus, A has to be of the form

A =

 0 0 0
0 A1 0
0 0 A2

 .

So AP = PA. Therefore,

W(A,P ) = {T : T =

 0 0 0
0 A1 0
0 0 0

} = {PAP} = {AP}.

This completes the proof. □

From Corollary 2.4, we have the following corollary since an effect that
commutes with all sharp effects is a multiple of the identity.

Corollary 2.5. The effect coexists with all sharp effects is a multiple of the
identity.

Corollary 2.6. For A ∈ E(H) and P ∈ P(H) with rank 1, W(A,B) = {λ0P},
where λ0 = tr(AP ).

Proof. This follows from Corollary 2.4. □

In the following corollary, we give a necessary and sufficient condition of
equivalence of quantum effects associated with their witness set of coexistence.

Corollary 2.7. For A,B ∈ E(H) and dimH = n < ∞, the following are
equivalent:

(i) A = B.
(ii) W (A,P ) = W (B,P ) for all rank one projections P that coexist with A.

Proof. (i)⇒ (ii) is obvious. Next we claim that (ii)⇒(i).
For P ∈ P(H), since P coexists with A, we have PA = AP by Corollary 2.4.

Taking unit eigenvectors xi of A, i = 1, 2, . . . , n, and Axi = λi. With respect
to the orthonormal basis {xi}ni=1, we write

A =


λ1 0 · · · 0
0 λ2 · · · 0
...

...
...

...
0 0 · · · λn

 , and B =


b11 b12 · · · b1n
b̄12 b22 · · · b2n
...

...
...

...
b̄1n b̄2n · · · bnn

 .

By (II), W (A,Pi) = W (B,Pi) for all sharp effects Pi = xi⊗xi. So by Corollary
2.4,

{APi} = W (A,Pi) = W (B,Pi) = {BPi}.
Thus APi = BPi for all Pi. A short computation show that λi = bii and bij = 0
when i ̸= j. So A = B. This completes the proof. □



201 He, Sun, Hou and Yuan

3. Bijective morphisms leaving the coexistence witness set invariant

In this section, we give a characterization of two kinds of morphisms on
quantum effects that leave the witness set of coexistence invariant.

Theorem 3.1. Let E(H) be arbitrary a Hilbert space effect algebra on a complex
Hilbert space H. Then the bijective morphism Φ : E(H) → E(H) satisfies

Φ(W(A,B)) = W(Φ(A),Φ(B))

for A,B ∈ E(H) if and only if there is a unitary or anti-unitary operator U
such that Φ(A) = UAU∗ for every A ∈ E(H).

Theorem 3.2. Let E(H) be a Hilbert space effect algebra on a complex Hilbert
space H. Then the bijective map Φ : E(H) → E(H) satisfies

W(A,B) = W(Φ(A),Φ(B))

for A,B ∈ E(H) if and only if Φ(A) = A for every A ∈ E(H).

Proof. Checking the “if” part is straightforward, so we will only deal with the
“only if” part.

Since Φ(W(A,B)) = W(Φ(A),Φ(B)) forA,B ∈ E(H), we haveA ∈ W(A,B)
⇔ Φ(A) ∈ W(Φ(A),Φ(B)). It is well known that A ∈ W(A,B) if and only
if A ≤ B by [4, Lemma 2.4]. Thus, A ≤ B if and only if Φ(A) ≤ Φ(B),
i.e., Φ preserves the order of effects in both directions. Since Φ(W(A,B)) =
W(Φ(A),Φ(B)) and Φ is bijective, we haveW(A,B) ̸= ∅ if and only ifW(Φ(A),
Φ(B)) ̸= ∅. If follows that A,B coexist if and only if Φ(A),Φ(B) coexist. So the
bijective morphism Φ preserves the order and coexistence of quantum effects
in both directions. Such a map is characterized by L. Molnár in [12, Corollary
2.7.5], as follows: there exist a unitary or anti-unitary operator U on H such
that

Φ(A) = UAU∗

for A ∈ E(H). This completes the proof. □
Proof of Theorem 3.2. It is easy to check the “if” part, so we still only deal
with the “only if” part.

Since W(A,B) = W(Φ(A),Φ(B)), so A,B coexist if and only if Φ(A),Φ(B)
coexist. As we know the effect A coexists with all other effects if and only if
A = µI for some positive scalar µ ≤ 1. Since I coexists with all other effects
and Φ is bijective and preserves coexistence of effects in both directions, it
follows that Φ(I) = λI.

Next we show λ = 1. Indeed, in W(A,B) = W(Φ(A),Φ(B)), taking A =
B = I, we have that

{I} = W(I, I) = W (Φ(I),Φ(I)) = W (λI, λI) = [(2λ− 1)I, λI].

This implies that λ = 1. Taking B = I only, we have from Corollary 2.4 that

{A} = W(A, I) = W (Φ(A),Φ(I)) = W (Φ(A), I) = {Φ(A)}.
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So Φ(A) = A. We complete the proof. □

4. Multiplicative general morphisms preserving the coexistence
witness set

In the section, without assumption of bijectivity, we discuss the classification
of multiplicative general morphisms leaving the witness set invariant on finite
dimensional Hilbert space effect algebras. Let E−1(H) be the set of all invertible
effects.

Theorem 4.1. Let E(H) be a Hilbert space effect algebra on a complex Hilbert
space H and dimH = n < ∞. If a multiplicative map Φ : E(H) → E(H)
satisfies that Φ(CI\{0}) ⊆ CI\{0} and

Φ(W(A,B)) ⊆ W(Φ(A),Φ(B))

for A,B ∈ E(H), then one of the following statements holds:
(I) there exists a unitary or an anti-unitary operator U on H and a nonzero

real constant d such that Φ(A) = exp(tr(SlnA))UAdU∗ for all invertible A ∈
E(H);

(II) Φ(E−1(H)) is commutative.

Proof. For A,B ∈ E(H), if AB = BA, then Φ(A)Φ(B) = Φ(B)Φ(A) since
Φ is multiplicative. So Φ preserves commutativity. Furthermore, if A ≤ B,
by [4, Lemma 2.4 (a)], A ∈ W(A,B), so Φ(A) ∈ W(Φ(A),Φ(B)). By [4,
Lemma 2.4 (d)] again, Φ(A) ≤ Φ(B). Next we claim that Φ maps projections
to projections. For P ∈ P(H), P 2 = P , and hence Φ(P )2 = Φ(P ). So
Φ(P ) ∈ P(H). So Φ(I) = I since Φ(CI\{0}) ⊆ CI\{0}. Finally, we show that
Φ maps invertible effects to themselves. IfA is invertible, then there is a nonzero
λ0 ≤ 1 such that λ0I ≤ A, so Φ(λ0I) ≤ Φ(A). Since Φ(CI\{0}) ⊆ CI\{0},
Φ(A) ≥ µ0I for some scalar µ0. Thus, Φ(A) is invertible.

Now similar to the proof of [3, Proposition 2], define a transformation Λ on
the cone B+(H) of all the positive semi-definite operators on H by

Λ(D) = −lnΦ(exp(−D)), (D ∈ B+(H)).

We can extend Λ to a linear map Ψ̃ on the space Sa(H) of all self-adjoint
operators on H by a standard process (see the [3, proof of Theorem 2]) and Ψ
preserves commutativity. By [1, Theorem 2], there are two cases to consider.
(a) the range of Ψ is commutative;
(b) Ψ is of the standard form Ψ(T ) = dUTU∗ + g(T ) for all T ∈ Sa(H), where
d is a nonzero real number, U is a unitary or an anti-unitary operator on H,
and g is a linear functional on Sa(H).

In case (a), since the range of Ψ is commutative, Φ(E−1(H)) is commutative.
If (b) occurs, there is S ∈ Sa(H) such that g(T ) = tr(ST ) for all T ∈ Sa(H).
Thus,

Φ(A) = exp(tr(SlnA))UAdU∗ for invertible A ∈ E−1(H).
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This completes the proof. □
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