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ON NONLINEAR PRESERVERS OF WEAK MATRIX
MAJORIZATION
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ABSTRACT. For X|Y € Mum(:= Mpm(R)), we say X is weakly
matrix majorized or matriz magjorized from the left by Y and write
X <, Y, if X = RY for some row stochastic matrix R. Also we
write X ~, YV if X <, Y <, X. A mapping T : Mnm — My is
said to be a strong preserver of <, if {X € Mpn, : X <¢ A} ={X €
Mym : TX <¢ TA} for all A € Mpm. Two such strong preservers
T and 7 are called equivalent if TX ~y 7X for all X € My,,. It is
shown that if m > 2 and if T : Mypm — My is a surjective (not
necessarily linear) strong preserver of <¢, then 7'— 70 is equivalent
to a linear strong preserver of <.

1. Introduction

Throughout this paper the following notations are fixed. The real
vector space of all 1 x m (row) vectors are denoted by R,,, and the real
linear space of all n X m matrices by M,,,, for any integers n,m > 1.
For every A € My, R(A) C R, will denote the set of all distinct rows
of A. For every z € R,,, we let (") denote the n x m matrix such that
R(z™) = {z}. If X,Y € M,,,, we say X is matriz magorized from the
left or weakly matriz majorized by Y, and write X <y Y, if the rows
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Xi,..., Xy of X and Yi,... .Y, of YV satisfy X; = X7_;r;;Y; for some
nonnegative scalars r;; such that X7 r;; =1 (i, = 1,2,...,n). The
matrix R = [r;;] is called a row stochastic matrix and the relation X <,
Y can be illustrated as X = RY. We write X ~p YV if X <, Y <, X.
Also, we define C(A) :={X € My, : X <y A} and [A] .= {X € My, :
X ~yp A}

There is a right-sided type of matrix majorization <, on M, de-
fined by X <, Y whenever X = Y R for some row stochastic matrix R
depending on X and Y. In this paper, we deal only with the left-sided
type and hence, for the remainder of the paper, we use the conventions
< and ~ for <, and ~y, respectively. Throughout the paper, the letter
T stands for a mapping satisfying the conditions set in the following
Definition 1.1.

Definition 1.1. A (not necessarily linear) mapping 7" : My, — Mpm,
is said to be a strong preserver of <, if {X € M,,, : X < A} = {X €
My : TX < TA} for all A € My,,.

Definition 1.2. Two strong preservers 1" and 7 of < on M, are said
to be equivalent, if TX ~ 7X for all X € M,,,.

The main result of the paper is to show that if m > 2 and if T :
My — My, is a surjective strong preserver of <, then the mapping
X — TX —T0 is equivalent to a linear one. This extends results due
to L.B. Beasley, S.-G. Lee and Y.-H. Lee [4] and A.M. Hasani and M.
Radjabalipour [8]. Note that if 7" is a linear strong preserver, then it
is injective and, hence, bijective [4,8,9]. Also, note that, if T : R — R
is any function, then 7 is a strong preserver of < on M; = R but
T — T0 is not equivalent to a linear one. For more information on
matrix majorization and the previous work on this subject we also refer
to [1-3], [5-7] and [10-12]. In particular, the authors of [8] show that T
is a linear strong preserver of <, if and only if there exist a permutation
matrix P and an invertible matrix L in M, such that TX = PXL for all
X € M,,. We will obtain this result as a byproduct of our investigations
in the present paper.

The following lemma enables us to assume, without loss of generality,
that 70 = 0.

Lemma 1.3. Let T : My, — My, be a strong preserver of <. Then
the following assertions are true.
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(a) Assume T is surjective. Then C(TA) =TC(A) for all A € M.

(b) Assume C(TA) = TC(A) for all A € Myy,. Then R(X) is a
singleton if and only if R(TX) is a singleton.

(c) Assume C(TA) = TC(A) for all A € Mpy,. The mapping T' :
My — My, defined by T'X = TX — TO0 for all X € My, is a strong
preserver of < satisfying C(T'A) = T'C(A) for all A € My, and T'0 =
0.

Proof. (a) Let A € M,,,. By definition, TC(A) C C(TA). Now, let
Y € C(T'A). Then there exists X € My, such that Y = T'X. Since
TX <TA, X < A and hence, Y € TC(A).

(b) The set R(A) is a singleton if and only if C(A) = {A} if and only
if C(TA) =TC(A) ={TA} if and only if R(T'A) is a singleton.

(c) By part (b), R(T0) = {a} for some (1 x m row) vector a € R,,.
Now, let A, X € M,,, andlet B=TA and Y =TX. Let B;,Y; be the
ith rows of B and Y, respectively (i = 1,2,...,n). Then X € C(A) if
and only if Y = TX € C(B) if and only if Y; = pj1B1 + ... + pinBn
or, equivalently, Y; —a = pj(B1 — a) + ... + pin(Bp — a) for some
nonnegative scalars p;; satisfying ¥7_,p;; =1 (4,5 = 1,2,... ,n). The
latter shows that 7'X = TX —T0 < TA —T0 = T'A and hence, T" is
a strong preserver of matrix majorization which satisfies 70 = 0. Now,
if Y < T'A for some A € My,,, then Y < TA — TO0 or, equivalently,
Y+T0<TA. Then Y +7T0=TX for some X € My, and hence, Y =
TX —T0=TX. Obviously, C(T"A) =T'C(A) for all A € My,,. O

The converse of part (a) of Lemma 1.3 will be proven in Theorem
2.2. Throughout the remainder of the paper we impose the following
assumption on 7" unless otherwise stated.

Assumption 1.4. 70 = 0.

We conclude this section by a technical lemma needed in the sequel.
If W is a subset of a real vector space V, co W will denote the convex
hull of W, and, if W is convex, ext W will denote the set of extreme
points of W.

Lemma 1.5. Let A € My,,. Then the following assertions are true.

(a) Up to the natural identification of the vector spaces My, and
(R,)", C(A) = (co R(A))™. In particular, C(A) is a convex subset of
My, .
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(b) ext C(A) = (ext co R(A))".
Proof. Part (a) is easy, and part (b) follows from the fact that (ext W7)x
oo x (ext Wy) = ext (Wy x ... x W), whenever Wy, ..., W} are convex
subsets of the real vector spaces Vi, ... , Vi, respectively. U

2. Nonlinear preservers

In this section we study the structure of the surjective strong pre-
servers of matrix majorization < which are not necessarily linear. We
will show that if m > 2, such mappings are equivalent to linear ones.

We begin with a lemma which strengthens Lemma 1.3.

Lemma 2.1. Assume T : My, — My, is a strong preserver of <
satisfying TO = 0 and TC(A) = C(TA) for all A € My,,. Let A € My,

let ext co R(A) = {x1,x9,... , 2}, and let Ta:l(»n) = yi(n), i=1,2,... k,
where, as before, u™ denotes an n x m matriz whose rows are all equal
to some u € Ry,. Then ext co R(TA) = {y1,v2,--. , Yk}

Proof. Define S : R,, — R,, by Sz = y, where y™ = Tz(™. Since
T2z = Ty™ if and only if (™ = ¢ it follows that S is an injective
mapping whose range contains co R(TX) for all X € M,,,. Assume
z € R,, is an extreme point of co R(A) and, if possible, y = Sz is not
an extreme point of co R(T'A). Then, there exists u # v € co R(T'A)
such that y = (u+v)/2. Let B € My, be any matrix such that R(B) =
{u,v}. Since B < TA, there exists D < A such that B = T'D. Let
r = S"'u and s = S~'v. Then {x,7,s} C R(D). Let E,F,G € C(D)
be such that R(E) = {z,r}, R(F) = {z,s} and R(G) = {r,s}. Then
co R(TE) D [y,u], co R(TF) D [y,v], and co R(T'G) D [u,v], where [a, b]
denotes the closed line segment joining the vectors a,b € R,,. Replacing
TE, TF, and TG by minor matrices having, respectively, {y,u}, {y, v},
and {u, v} as their exact collection of rows, one can easily see that E, F’
and G have still the same collections {x,r}, {z,s} and {r,s} as their
exact collections of rows, respectively. Thus, we can assume without loss
of generality that R(T'E) = {x,y}, R(TF) = {y,v} and R(T'G) = {u,v}.
This implies that S[z,r] = [y,u], S[z,s] = [y,v] and S[r,s] = [u,v].
If x,r,s form a nontrivial triangle, choose a point w in the interior
of the triangle and observe that w(™ < D and hence Tw™ < TD
or, equivalently, Sw € [u,v], which implies that S is not injective; a



Nonlinear preservers of weak majorization 25

contradiction. If z,r, s are collinear, then [z,7] N [z, s]\{z} # 0 which
implies that S is multivalued; again a contradiction. Summing up, we
have shown that S(ext co R(A)) C ext co R(T'A).

To prove the converse, assume y is an extreme point of co R(TA).
Since 3™ < TA, there exists © € co R(A) such that Tz(™ = y™,
We claim z is an extreme point of co R(A). If not, there exists r,s €
co R(A) such that x = (r + s)/2. Assume without loss of generality
that R(A) = {r,s}. Let Tr(™ =4 and Ts(™ = v, By the previous
paragraph, u, v are extreme points of co R(T'A) and, hence, y,u,v are
noncollinear extreme points of co R(T'A). By an argument similar to the
one given for the first part, there exist matrices E, F' and G such that
co R(E) = [z,r], co R(F) = [z, s], co R(G) = [r,s], co R(TE) = [y, ul,
co R(TF) = [y,v], and co R(T'G) = [u,v]. Choosing t € [z, r]\{z,r}, it
follows that t(® < E, t( < G and hence, Tt™ € [y,u] N [u,v]. Thus
St = y,u, or v. Equivalently, t = x, 7, or s; a contradiction. O

Corollary 2.2. Let S : R,, — R, be as in the proof of Lemma 2.1; i.e.,
Tz = (Sz)™ for allz € R,,. Then S is injective and ext co R(TA) =
S(ext co R(A)). In particular, if m > 2 and if x and y are distinct
vectors in Ry, then S((1 —t)z +ty) = (1 — f(t))Sz + f(t)Sy for some
strictly increasing function f from [0,1] onto [0, 1].

Definition 2.3. The operator S : R,, — [R,, defined in Corollary 2.2
will be called the border operator corresponding to T'.

In the proof of the next theorem, we will make use of the following
version of a fact due to Zs. Pales [14] as interpreted by L. Molnar [13] :
If K is a noncollinear convex set in R,,, and if S : K — K is a bijective
mapping such that for any x,y € K and any A\ € [0, 1], there exists
w € [0, 1] satisfying S(Ax + (1 — \)y) = uS(x) + (1 — 1)S(y), then there
exist a linear operator ¥ : R,, — R,,, a constant vector a € R,,, a
linear functional f on [R,,, and a constant b € R such that

Y(z)+a
)= Fawy+e

and f(z) + b is always positive on K. In particular, if K = R,,,, then f
has to be zero.

for all z € K, (2.1)

Theorem 2.4. Let m > 2 and assume C(T'A) = TC(A) for all A €
M. The border operator S : R, — R, is a bijective linear operator.
Also, T is bijective.
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Proof. We break the proof into various steps.

Step 1. Claim: For any = € R,,, the ray [0, Sz —) := {tSx : t > 0}
is a subset of SR,,,. Fix x € R,, and assume, if possible, the ray [0, Sz —
) contains some point z not lying in the range of S. Choose y € R,
such that 0,x,y are noncollinear. By Lemma 2.1, the points 0, Sz, Sy
are noncollinear too. Let A € (0,1) be such that 271Sy = S(\y), and
join the point w = S(Ay) to the point z. Choose u € [w, z] N [Sz, Sy].
Then u = Sv for some v € [y, x]. (See Corollary 2.2.) Replacing z by 2z,
if necessary, we can assume without loss of generality that the extension
of [Ay,v] intersects the extension of [0,z] at some point r. In view of
Corollary 2.2, this means that Sr is equal to z; a contradiction.

Step 2. Claim: SR, =R,,.

Let {e1,...,en} be the standard basis of R,,, and choose j,... ,jk

such that {Sej,,...,Se; } forms a basis for < Sey, Ses,...,Sen >.
Assume k < m and choose j € {1,2,... ,m}\{j1,...,Jjk}. Then there
exist real numbers ci,... ,c; such that Se; = c1Se;;, + ...+ ¢pSej,. In

view of Step 1 and Corollary 2.2, if 0 # = € R,, and if n > 0, then
—Sx = S(—ux) and nSx = S(yx) for some positive numbers p and +.
Hence, there exist real numbers d, dy,ds, ... ,d; with d # 0 such that

S(de;) =n"tSe; =n"1S(diej,) + ... +n" S (dye;,).

Let A, B € My, be such that R(A) = {0,de;j,,... ,dre;, } and R(B) =
{O,S(dlejl), e ,S(dkejk)}. Fix i = 1,2,... ,m. Since (dleﬁ)(") < A,
it follows that T(diej, )™ < TA and hence, in view of Corollary 2.2,
the unique distinct row S(die;,) of T(die;,)™ is a convex combina-
tion of the rows of TA. Since 0 < A and T0 = 0, it follows that
O1xm € coR(TA) and hence, B < TA. Thus, T(de;)™ < B < TA,
and hence, (dej)”) < A. Therefore, de; is a convex combination of
0,diej, ... ,dgej,; a contradiction. Thus £ = m and SIR,, contains m
(full) lines with linearly independent directions. (See Step 1 and Corol-
lary 2.2.) Since SR,, is convex, SR, =R,,.

Step 3. Claim: S is linear.

The proof follows from (2.1). Note that K = R, and hence f = 0
and b > 0. Also, b"'a = b=1(¥(0) + a) = SO = 0. Thus a = 0 and
S=b"1v.

Step 4. Claim: There exists an invertible matriz K such that the
mapping Ty : My — Mpy defined by T1'X = (TX)K satisfies the
properties of T set in Definition 1.1 and Assumption 1.4. Moreover, if
S1 is the border operator corresponding to Ty, then S; = 1.
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Let p; = Se;, where {eq,... ,e,} is the standard basis for R,,. Since
S is linear and injective, it follows that {¢1,¢2,... ,@m} is also a basis.
Choose K € M,, such that p; K = ¢;, for ¢ = 1,2,... ,m. It is easy to
see that the mapping Th' X = (TX)K satisfies the properties of T set
in Definition 1.1 and Assumption 1.4. Moreover, C(T1A) = T1(C(A4))
for all A € M,,,. Also, Tlez(n) = (Tez(»n))K = @En)K = egn) for 1 =
1,2,...,m. Now, if S; is the (linear) border operator corresponding to
T1, then Sie; = ¢; fori =1,2,... ,n and hence, 51 = I.

Step 5. Claim: T is surjective.

Let T7 and S7 be as in the previous step. Let Y € M, be arbitrary
and choose Z € My, such that R(Z) = ext co R(Y') = {21, 22,... , 2 }.

Since T; 1z§n) = zi(n) < Z, it follows that zgn) < 117 and hence z; €

co R(ThZ), fori=1,2,... k. Then Y < T1Z and therefore, Y = ThU
for some U € M,,,,,. This proves that 77 and hence, T is surjective.O

Corollary 2.5. If T : My, — My, is a surjective strong preserver of
< for some n > 2, then S is linear.

Proof. In view of Lemma 1.3, T satisfies the conditions of the above
theorem. O

Example 2.6. Let T : My; = R, — My, = R,, be any function. In
this case C(T'A) = T(C(A)) = {T' A} for all A € Mj,,. Also T defines a
strong preserver of < on My, if and only if it is injective. So we assume
T is injective. (Now, 7" may or may not be surjective.) Thus 7" and the
corresponding border operator S are the same and hence, they need not
be linear. Thus, when T is not linear, it cannot be equivalent to a linear
one.

Proposition 2.7. LetT : My, — M., be a strong preserver of < such
that TO = 0. Assume K € My, is invertible. Define Ty : My — Mpm
by T1 X = (TX)K forall X € My,y,. Then T is linear if and only if Ty is
linear. Moreover, T is equivalent to a strong preserver T : My, — Mym
if and only if Ty is equivalent to T defined by X = [7(X)|K for all
X e Myp.

The simple proof of Proposition 2.7 is omitted.

Example 2.8. Let m > 2 and choose A € My, such that |ext co R(A)| >
2. Let f : [A] — [A] be an arbitrary bijective function satisfying
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f(A) # A. Define T : My, — My by TX = f(X) for all X € [A], and
TX = X, otherwise. Then T is a strong preserver of <, 70 = 0, and
Tz™ = 2™ for all x € R,,. However, T(24) = 24 # 2T A. That is, a
strong preserver T' of < satisfying T'0 = 0 need not be linear. The next
theorem shows that any such T is equivalent to a linear one.

Theorem 2.9. Let T : My, — My, be a strong preserver of <. Then
T—TO0 is equivalent to a linear strong preserver of <. In fact, there exists
an invertible K € M,, such that TX —T0 ~ XK~ for all X € M.

Proof. In view of Lemma 1.3(c), we assume without loss of generality
that 70 = 0. Letting K and 73 be as in Step 4 of the proof of Theorem
2.4, we have Tyz(™ = z(™ for all 2 € R,,. By Lemma 2.1 and Propo-
sition 2.7, T'X = X for all X € M,,, and hence, TX ~ XK~ for all
X € My, O

The following corollary is due to Hasani-Radjabalipour [8]. So is the
alternative proof given below which is based on the results of the present

paper.

Corollary 2.10. Let m > 1. For a linear strong preserver T : My, —
My, there exist a permutation matriz P € P(n) and an invertible matrix
L € My, such that TX = PXL for all X € My,,.

Proof. Assume without loss of generality that m > 2. Since T is
assumed to be a linear mapping, it is clear that 70 = 0. Also, by letting
K and T) to be as in Theorem 2.9, and replacing T' by 71, we can
assume without loss of generality that Tz = 2z for all € R,, or,
equivalently, S = 1.

Fix j=1,2,... ,m. Fori=1,2,... ,n, let E;; be the n x m matrix
whose (r,s) entry is 0;05, for r =1,2,... ;m and s = 1,2,... ,n. By
Theorem 2.8, R(TEj;) = {0,¢;}. Since £, Ej; = el it follows that,
for each i, there exists an integer o(i) (depending on j too) such that
TE;j = Eq(;); and, if i # k, then (i) # o (k). Thus, there exists an nxn
permutation matrix P; such that TFE;; = PjE;; for all i = 1,2,... ,n
and j =1,2,... ,m.

We claim P, = P, = ... = P,,. If not, then P. # P, for some
r # s. Let {e1,...,en} and {¢1,...,pn} be the standard bases for
R, and [R,,, respectively. Hence, there exists ¢ such that P.p; # Psp;.
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Let A = E; + E;s and observe that R(A) = {0,e, + es}. But TA =
TE;y + TE;s = P,E;y + PsE;s and hence, R(TA) U {0} = {0,¢,,es5}.
Thus {0, e, +es} = {0,e,,es}; a contradiction. Hence, TE;; = PE;; for
alli=1,2,...,nand j=1,2,... ,m, where P= P, = ... = P,,. Now,
if X = [245] € Mpm, then

TX = T(ELJ‘CCUEZ']’) = Ei,jxijTEij =
Zi,jxijPEij = PEZ"]‘:L’Z']'EZ']‘ = PX.
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