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Abstract. We consider nonconvex vector optimization problems with

variable ordering structures in Banach spaces. Under certain boundedness

and continuity properties we present necessary conditions for approximate
solutions of these problems. Using a generic approach to subdifferentials

we derive necessary conditions for approximate minimizers and approxi-

mately minimal solutions of vector optimization problems with variable
ordering structures applying nonlinear separating functionals and Eke-

land’s variational principle.
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1. Introduction and preliminaries

Our aim here is to derive new necessary conditions for approximate minimiz-
ers and approximately minimal solutions of vector optimization problems with
variable ordering structures by using nonlinear separating functionals and their
subdifferentials. Bao and Mordukhovich [3, 4] showed necessary conditions for
nondominated points of sets and nondominated solutions of vector optimization
problems with variable ordering structures and general geometric constraints,
applying methods of variational analysis and generalized differentiation (see
Mordukhovich [22], and Mordukhovich and Shao [23]). Furthermore, Bao et al.
[2] gave necessary conditions for approximately nondominated solutions of vec-
tor optimization problems with variable ordering structures in Asplund spaces
using a vector-valued variant of Ekeland’s variational principle. Here, we in-
troduce a generic approach to subdifferentials which includes many well-known
subdifferentials. In the next section, we recall definitions of approximately
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minimal, approximately nondominated solutions and approximate minimizers
of vector optimization problems with respect to variable ordering structures.
In the case of exact solutions of a vector optimization problem, specially in the
variable ordering case, authors use a cone or a pointed convex cone-valued map
in order to describe the solution concepts but here, we use a set-valued map
and this map is not necessarily a (pointed convex) cone-valued map. In the
third section, we will give necessary conditions for approximately minimal so-
lutions of vector optimization problems with variable ordering structures. For
this purpose, we will use a generalization of nonlinear separating functionals
studied by Gerth and Weidner in [14]. Moreover, we give necessary conditions
for approximate minimizers. In order to derive necessary conditions for ap-
proximate minimizers of vector optimization problems with variable ordering
structures, a modification of the nonlinear separating functionals by Chen and
Yang [6] and the special case of scalarization functional defined by Chen et al.
[7] are used.

Let X and Y be real Banach spaces and C be a nonempty set in Y . The
notations intC, clC, and bdC respectively stand for the topological interior,
the topological closure, and the topological boundary of the set C. For a
nonconvex set C, the convex hull of C is denoted by convC. The set C is said
to be solid if and only if intC 6= ∅, proper if and only if C 6= ∅ and C 6= Y ,
pointed if and only if C ∩ (−C) ⊆ {0}, and a cone if and only if λc ∈ C, for
all c ∈ C and λ ≥ 0; see [15, 19] for basic definitions and solution concepts of
vector optimization problems, and [14, 24] for some scalarization methods and
their properties.

As usual, for a set S ⊂ X, we denote by IS the indicator function of S
(IS(x) = 0, if x ∈ S and IS(x) = +∞, if x /∈ S).

Here, we derive necessary conditions for approximate minimizers and mini-
mal solutions of vector optimization problems with variable ordering structures
using the following generic approach to subdifferentials; e.g., see [8, 9] and [18].

Let X be a class of Banach spaces which contains the class of finite dimen-
sional normed vector spaces. By an abstract subdifferential ∂ we mean a map
which associates to every lower semicontinuous (lsc) function h : X ∈ X →
R ∪ {+∞} and to every x ∈ X a (possible empty) subset ∂h(x) ⊂ X∗. We use
the notation Domh := {x ∈ X | h(x) 6= +∞}. Let X,Y ∈ X and denote by
F(X,Y ) a class of functions acting between X and Y having the property that
by composition at left with an lsc function from Y to R, the resulting function
is still lsc.

In the following we work with some properties of the abstract subdifferential
∂:

(H1) If h is convex, then ∂h(x) coincides with the Fenchel subdifferential.
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(H2) If x is a local minimal point for h, then 0 ∈ ∂h(x); ∂h(u) = ∅ if
u /∈ Domh.

(Note that (H1) and (H2) are quite natural requirements for any subdiffer-
ential.)

(H3) If ϕ : Y → R ∪ {+∞} is convex and ψ ∈ F(X,Y ), then for every x,

∂(ϕ ◦ ψ)(x) ⊆ ⋃y∗∈∂ϕ(ψ(x))∂(y∗ ◦ ψ)(x).

(H4) If ϕ : Y → R ∪ {+∞} is convex, ψ ∈ F(X,Y ), and S ⊂ X is a closed
set containing x, then

∂(ϕ ◦ ψ + IS)(x) ⊆ ∂(ϕ ◦ ψ)(x) + ∂IS(x).

(H5) If h is convex and g : X → R ∪ {+∞} is locally Lipschitz, then for
every x ∈ Domh ∩Dom g,

∂(h+ g)(x) ⊆ ∂h(x) + ∂g(x).

As usual, for a closed set S ⊂ X the set ∂IS(x) is denoted by N∂(S, x) and
is called the set of normal directions to S at x ∈ S with respect to ∂.

The properties (H3), (H4) and (H5) are “exact calculus rules” for sums and
for composition, and as examples of subdifferentials with these properties we
can mention the followings:

• the limiting (or Mordukhovich) subdifferential, when X is the class of
Asplund spaces, Y is finite dimensional and F(X,Y ) is the class of
Lipschitz functions from X into Y (see [23]);

• the approximate (or Ioffe) subdifferential, when X is the class of Ba-
nach spaces and F(X,Y ) is the class of strongly compactly Lipschitz
functions from X into Y (see [18]).

A significant result in nonlinear analysis is Ekeland’s variational principle
[13], which shows the existence of an exact solution of a perturbed problem
in a neighborhood of an approximate solution of the original problem without
convexity and compactness assumptions.

Theorem 1.1. Let X be a real Banach space, ε > 0 and ϕ : X → R∪{+∞} be
a lower semicontinuous functional bounded from below on a closed set Ω ⊂ X.
Suppose x ∈ Ω such that ϕ(x) ≤ inf

x∈Ω
ϕ(x)+ε. Then, there exists xε ∈ Domϕ∩Ω

such that

(a) ϕ(xε) ≤ ϕ(x) ≤ inf
x∈Ω

ϕ(x) + ε,

(b) ‖xε − x‖ ≤
√
ε,

(c) ϕ(xε) +
√
ε ‖x− xε‖ ≤ ϕ(x).
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2. Different concepts of approximate solutions of vector
optimization problems with variable ordering structures

Vector optimization with variable ordering structures is a growing area of
research (see [12] for a recent overview). In this section, we recall definitions
of εk0-minimizers, εk0-nondominated and εk0-minimal solutions of vector opti-
mization problems with respect to variable ordering structures. For sure there
is no difference between εk0-minimizers, εk0-nondominated and εk0-minimal
solutions in vector optimization problems with fixed ordering structures. This
statement is also true for weakly and strongly εk0-optimal solutions. Here,
we show that this statement is not true for vector optimization problems with
variable ordering structures and all these three definitions define different ele-
ments. This will be shown by several examples. For more details, properties
and characterization of these solution concepts, see [26, 27].

We will use following assumptions.

(A) X,Y are Banach spaces, Ω ⊂ X is a closed set in X, f ∈ F(X,Y ) is a
function with Dom f 6= ∅ and ε ≥ 0.

(B) The set-valued mapping C : Y ⇒ Y satisfies 0 ∈ bdC(y), C(y) is
closed, solid and pointed for all y ∈ Y , and the nonzero vector k0 ∈
Y \ {0} satisfies C(y) + [0,+∞)k0 ⊂ C(y), for all y ∈ Y .

Under assumptions (A) and (B), we consider the following vector optimiza-
tion problem with respect to a variable ordering structure:

(VVOP) minimize f(x) subject to x ∈ Ω with respect to C.

In order to introduce the different concepts for approximate solutions of
(VVOP) we suppose that the assumptions (A) and (B) are fulfilled, x1, x2, x3 ∈
X and define the following three different domination relations:

(2.1) f(x1) ≤1 f(x2) if f(x2) ∈ f(x1) + (C(f(x2))\{0}),

(2.2) f(x1) ≤2 f(x2) if f(x2) ∈ f(x1) + (C(f(x1))\{0}),

(2.3) f(x1) ≤3 f(x2) if for all x3 ∈ X, f(x2) ∈ f(x1) + (C(f(x3))\{0}).

If C(f(x1)) = C(f(x2)) = C(f(x3)), for all x1, x2, x3 ∈ X, then these three
domination relations are the same and the problem reduces to the optimization
with standard domination structure.

The first concept of the approximate solution is based on the domination
relation (2.1), called approximately minimal solutions of (VVOP); see [27] for
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more details and properties of approximately minimal solutions of problem
(VVOP).

Definition 2.1. Let assumptions (A) and (B) be fulfilled, ε ≥ 0 and consider
(VVOP).

(a) An element x ∈ Ω is said to be an εk0-minimal solution of (VVOP)
with respect to the variable ordering structure C(·) if and only if there
is no element y ∈ f(Ω) := ∪x∈Ω{f(x)} such that y + εk0 ≤1 f(x); i.e.,(

f(x)− εk0 − (C(f(x)) \ {0})
)
∩ f(Ω) = ∅.

(b) Suppose that intC(f(x)) 6= ∅. An element x ∈ Ω is said to be a weakly
εk0-minimal solution of (VVOP) with respect to C(·) if and only if(

f(x)− εk0 − int C(f(x))
)
∩ f(Ω) = ∅.

(c) x ∈ Ω is said to be a strongly εk0-minimal solution of (VVOP) with
respect to C(·) if and only if

∀x ∈ Ω\{x}, f(x)− εk0 ∈ f(x)− (C(f(x)) \ {0}).
The case ε = 0, it coincides with the usual definition of (weakly) minimal so-

lutions; e.g., see [10, 17]. We denote the set of εk0-minimal, weakly εk0-minimal
and strongly εk0-minimal solutions by εk0-M(Ω, f, C), εk0-WM(Ω, f, C) and
εk0-SM(Ω, f, C), respectively. For ε = 0, we also write M(Ω, f, C), WM(Ω, f, C)
and SM(Ω, f, C).

We now introduce a second concept of approximate solutions based on
the domination relation (2.2) called approximately nondominated solutions to
(VVOP). More details and properties of approximately nondominated solutions
can be found in [27].

Definition 2.2. Let assumptions (A) and (B) be fulfilled, ε ≥ 0 and consider
(VVOP).

(a) x ∈ Ω is said to be an εk0-nondominated solution of the problem
(VVOP) with respect to the ordering map C : Y ⇒ Y if and only if

∀x ∈ Ω, (f(x)− εk0 − (C(f(x))\{0})) ∩ {f(x)} = ∅.
(b) Suppose that intC(f(x)) 6= ∅, for all x ∈ Ω. x ∈ Ω is said to be

a weakly εk0-nondominated solution of (VVOP) with respect to the
ordering map C : Y ⇒ Y if and only if

∀x ∈ Ω, (f(x)− εk0 − intC(f(x))) ∩ {f(x)} = ∅.
(c) x ∈ Ω is said to be a strongly εk0-nondominate solution of (VVOP)

with respect to the ordering map C : Y ⇒ Y if and only if

∀x ∈ Ω\{x}, f(x)− εk0 ∈ f(x)− (C(f(x))\{0}).
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We denote the set of εk0-nondominated, weakly εk0-nondominated and
strongly εk0-nondominated solutions by εk0-N(Ω, f, C), εk0-WN(Ω,
f, C) and εk0-SN(Ω, f, C), respectively. For ε = 0, we write N(Ω, f, C),
WN(Ω, f, C) and SN(Ω, f, C); see also [10, 29] for definition of exact nondom-
inated solution of vector optimization problems with variable ordering struc-
tures.

A third concept of approximate solutions based on the domination relation
(2.3) is as follows; see [27] for more details and properties of approximate
minimizers of (VVOP).

Definition 2.3. Let assumptions (A) and (B) be fulfilled, ε ≥ 0 and consider
(VVOP).

(a) x ∈ Ω is said to be an εk0-minimizer of the problem (VVOP) with
respect to the ordering map C : Y ⇒ Y if and only if

∀x, x1 ∈ Ω, (f(x)− εk0 − (C(f(x))\{0})) ∩ {f(x1)} = ∅.
Equivalently, x is an εk0-minimizer if and only if

∀x ∈ Ω, (f(x)− εk0 − (C(f(x))\{0})) ∩ {f(Ω)} = ∅.
(b) Suppose that intC(f(x)) 6= ∅ for all x ∈ Ω. x ∈ Ω is said to be a

weakly εk0- minimizer of (VVOP) with respect to the ordering map
C : Y ⇒ Y if and only if

∀x, x1 ∈ Ω, (f(x)− εk0 − intC(f(x))) ∩ {f(x1)} = ∅.
Equivalently, x is an εk0-minimizer if and only if

∀x ∈ Ω, (f(x)− εk0 − intC(f(x))) ∩ {f(Ω)} = ∅.
(c) x ∈ Ω is said to be a strongly εk0-minimizer of (VVOP) with respect

to the ordering map C : Y ⇒ Y iff

∀x, x1 ∈ Ω\{x}, f(x)− εk0 ∈ f(x)− (C(f(x1))\{0}).
We denote the set of εk0-minimizers, weak εk0-minimizers and strong εk0-

minimizers by εk0-MZ(Ω, f, C), εk0-WMZ(Ω, f, C) and εk0-SMZ(Ω, f,

C) respectively. For ε = 0, we also write MZ(Ω, f, C), WMZ(Ω, f, C) and
SMZ(Ω, f, C); see also [5] for the definition of minimizers under a different
name.

Obviously, by definitions 2.1, 2.2 and 2.3, sets of εk0-minimizers, εk0-nondo-
minated and εk0-minimal solutions of vector optimization problems with fixed
ordering structures coincide. This statement is also true for weakly and strongly
εk0-optimal solutions. Now, by several examples, we show that this statement
cannot be true for vector optimization problems with variable ordering struc-
tures. For reader’s convenience, in the following examples, we suppose that
f : R2 → R2 is the identity function and f(Ω) = Ω.
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Example 2.4. Let ε = 1
100 and k0 = (1, 0)T . Also, suppose that

Ω =
{

(y1, y2) | {(y1 + y2 ≥ 1)} ∩ {0 ≤ y1, y2 ≤ 1}
}
,

and

C(y1, y2) =

{
R2

+, if y1 = 0,
cone conv{(1, 0)T , (y1, y2)}, otherwise.

Obviously, C(y) + [0,+∞)k0 ⊆ C(y), for all y ∈ Ω, and elements of

{(y1, y2) ∈ Ω | y1 + y2 ≤ 1 +
1

100
},

are εk0-minimizer, εk0-nondominated and εk0-minimal solutions and the sets
of all these points coincide (see Figure 1).

(0, 1)T

(1, 0)T

(1, ǫ)T

(ǫ, 1)T

Ω
(y1, y2)

(y′1, y
′
2)

(y1, y2)− ǫk0 − C(y1, y2)

(y′1, y
′
2)− ǫk0 − C(y′1, y

′
2)

Sets ǫk0-N(Ω, C), ǫk0-M(Ω, C) and ǫk0-MZ(Ω, C).

Figure 1. Example 2.4, where sets of εk0-N(Ω, f, C), εk0-
MZ(Ω, f, C) and εk0-M(Ω, f, C) of Ω coincide.

In the following example, we show that there exists an approximately mini-
mal solution of vector optimization problems with variable ordering structures
which is neither an approximate minimizer nor an approximately nondominated
solution.

Example 2.5. Let ε = 1
100 and k0 = (1, 0)T . Consider

Ω = {(y1, y2) | 0 ≤ y1, y2 ≤ 1} ,
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and

C(y1, y2) =

{
{(d1, d2) ∈ R2 | d1 ≥ 0, d2 ≤ 0}, if y1 = 0,
cone conv{(1, 0)T , (y1, y2)}, otherwise.

It is obvious to see that C(y)+[0,+∞)k0 ⊆ C(y), for all y ∈ Ω, and {(y1, y2) ∈
Ω | y1 ≤ ε} is the set of εk0-minimal solutions. But, only the elements of the set
{(y1, y2) ∈ Ω | y1 < ε}⋃{(ε, 1)T } are εk0-minimizers and εk0-nondominated
solutions (see Figure 2).

(y1, y2)

(y′1, y
′
2)

(0, 1)T

(1, 0)T(ǫ, 0)T

(ǫ, 1)T

(y1, y2)− ǫk0 − C(y1, y2)

(y′1, y
′
2)− ǫk0 − C(y′1, y

′
2)

Set of ǫk0- M(Ω, C).Also set of ǫk0- N(Ω, C) and ǫk0- MZ(Ω, C) except line y1 = ǫ

Ω

Figure 2. Example 2.5, where there exists an εk0-minimal
solution of the set Ω which is neither εk0-minimizer nor εk0-
nondominated solution.

In the following example, we show that there exists an approximately non-
dominated solution of vector optimization problems with variable ordering
structures which is neither an approximately nondominated solution nor an
approximate minimizer.

Example 2.6. Assume that ε = 1
100 and k0 = (1, 1)T . Furthermore, suppose

that

Ω =
{

(y1, y2) ∈ R2 | {y1 + y2 ≥ −1} ∩ {y1 ≤ 0, y2 ≤ 0}
}
,

and

C(y1, y2) =

{
{(d1, d2) ∈ R2 | d2 ≥ 0, d1 + d2 ≥ −1}, for (y1, y2) = (−1, 0)T ,
R2

+, otherwise.
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Obviously, C(y) + [0,+∞)k0 ⊆ C(y), for all y ∈ Ω, and (−1, 0)T is not an
εk0-minimal solution. In fact, {(y1, y2) ∈ Ω | y1 + y2 ≤ − 98

100 , y1 6= −1} is

the set of εk0-minimal solutions. However, (−1, 0)T belongs to the set of εk0-
nondominated solutions which is {(y1, y2) ∈ Ω | y1 + y2 ≤ − 98

100}. Obviously,

(−1, 0)T is not an εk0-minimizer and {(y1, y2) ∈ Ω | − 1 < y2 ≤ −1 + ε} is the
set of εk0-minimizers (see Figure 3).

(−1, 0)T − ǫk0 − C(−1, 0)T

Ω

(−1, 0)T (−98
100 , 0)

T

(y1, y2)− ǫk0 − C(y1, y2)

(y1, y2)

(0, −98
100 )

T

(0,−1)T
(0, −98

100 )
T − ǫk0 − C(0, −98

100 )
T

Figure 3. Example 2.6, where (−1, 0)T is an εk0-
nondominated solution of the set Ω, but it is neither εk0-
minimizer nor εk0-minimal solution.

In the following example, we show that there exists an approximately optimal
solution which is both εk0-nondominated and εk0-minimal solution but it is not
an εk0-minimizer.

Example 2.7. Let ε = 1
100 and k0 = (0, 1)T . Consider

Ω =
{

(y1, y2) ∈ R2
+ | {y1 + y2 ≥ 2} ∩ {y1 ≥ 0, 0 ≤ y2 ≤ 2}

}
,

and

C(y1, y2) =

{
{(d1, d2) ∈ R2 | d1 ≤ 0, d2 ≥ 0}, if (y1, y2) = (4, 2)T ,
R2

+, otherwise.

Then, C(y) + [0,+∞)k0 ⊆ C(y), for all y ∈ Ω, and the set of εk0-minimal
and εk0-nondominated solutions is {(y1, y2) ∈ f(Ω) | y1 + y2 ≤ 2 + ε}. But,
only the elements of the set

{
(y1, y2) ∈ Ω | y2 < ε = 1

100

}
are εk0-minimizer.
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This shows that there exists an approximately optimal solution which is both
εk0-nondominated and εk0-minimal but it is not an εk0-minimizer (see Figure
4).

(0, 2)T
(ǫ, 2)T

(y1, y2)

(y′1, y
′
2)

(ȳ1, ȳ2)

(y1, y2)− ǫk0 − C(y1, y2)

(y′1, y
′
2)− ǫk0 − C(4, 2)T

(ȳ1, ȳ2)− ǫk0 − C(4, 2)T

Ω

(2, 0)T (2 + ǫ, 0)T

The set of ǫk0-M(Ω, C) and ǫk0-N(Ω, C) elements

The set of ǫk0-MZ(Ω, C)

Figure 4. Example 2.7, where there exists an element which
is both εk0-nondominated and εk0-minimal but it is not an
εk0-minimizer.

3. Optimality conditions for εk0-minimal solutions of (VVOP)

In this section, with the help of nonlinear separating functionals and their
properties [14], we will characterize approximately minimal solutions of vec-
tor optimization problems with variable ordering structures, and using this
characterization in the main theorem of this section, we will show necessary
conditions for approximately minimal solutions of vector optimization problems
with variable ordering structures.

Here, we suppose that (A) and (B) hold and consider x ∈ X. In order to
derive necessary optimality conditions for approximately minimal solutions of
(VVOP), we use the scalarization functional θx : Y → R := R∪{±∞}, defined
by

(3.1) θx(y) := inf{t ∈ R | y ∈ tk0 + f(x)− C(f(x))}.
The following results provide some properties of this nonlinear separating func-
tional.
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Theorem 3.1. [15, Theorem 2.3.1] Let assumptions (A) and (B) hold and x ∈
X. The functional θx : Y → R, defined by (3.1), has the following properties:

(a) θx is proper if and only if C(f(x)) does not contain lines parallel to k0;
i.e.,

∀y ∈ Y,∃t ∈ R : y + tk0 /∈ C(f(x)).

(b) θx(λy) = λθx(y), for all λ > 0 and y ∈ Y, if and only if C(f(x)) is a
cone.

(c) θx is finite-valued if and only if C(f(x)) does not contain lines parallel
to k0 and Rk0 − C(f(x)) = Y.

(d) The domain of θx is Rk0 − C(f(x)) and

θx(y + λk0) = θx(y) + λ, ∀y ∈ Y, ∀λ ∈ R.

(e) Let D ⊂ Y ; θx be D-monotone; i.e., y2 − y1 ∈ D ⇒ θx(y1) ≤ θx(y2) if
and only if C(f(x)) +D ⊆ C(f(x)).

(f) θx is convex if and only if C(f(x)) is convex.
(g) θx is subadditive if and only if C(f(x)) + C(f(x)) ⊆ C(f(x)).

Theorem 3.2. [15, Theorem 2.3.1] Suppose that assumptions (A) and (B) hold
and x ∈ X. Then,

(a) θx : Y → R defined by (3.1) is lower semicontinuous.
(b) Furthermore, if C(f(x)) + (0,+∞)k0 ⊂ intC(f(x)), then θx is contin-

uous and

{y ∈ Y |θx(y) < λ} = λk0 − intC(f(x)), ∀λ ∈ R,
{y ∈ Y |θx(y) = λ} = λk0 − bdC(f(x)), ∀λ ∈ R,
{y ∈ Y |θx(y) ≤ λ} = λk0 − C(f(x)), ∀λ ∈ R.

If the functional θx is proper and convex we get the following result con-
cerning the classical (Fenchel) subdifferential ∂ of θx.

Theorem 3.3. [9, Theorem 2.2] Let x ∈ X and C(f(x)) ⊂ Y be a closed
convex proper set and k0 ∈ Y \{0} such that C(f(x)) + [0,+∞)k0 ⊂ C(f(x))
holds and for every y ∈ Y there exists t ∈ R such that y+tk0 /∈ C(f(x))−f(x).
Consider the function θx given by (3.1) and let ŷ ∈ Dom θx. Then,

(3.2) ∂θx(ŷ) = {υ∗ ∈ Y ∗ | ∀d ∈ D : υ∗(k0) = 1, υ∗(d) + υ∗(ŷ)− θx(ŷ) ≥ 0},
where D := C(f(x))− f(x).

The following theorem gives a characterization of approximately minimal so-
lutions of (VVOP) using a scalarization by means of the functional θx : Y → R,
defined by (3.1); for similar results and characterization of approximately non-
dominated solutions and approximate minimizers under different scalarizations,
see [26].
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Theorem 3.4. Suppose that assumptions (A) and (B) hold. Let x ∈ Ω be
an εk0-minimal solution of (VVOP). Consider the function θx given by (3.1).
Then, θx(f(x)) ≤ inf

x∈Ω
θx(f(x)) + ε, for all x ∈ Ω.

Proof. Set y = f(x) and suppose that θx(y) = t. First, we prove that t = 0.
By θx(y) = t and Theorem 3.2(b), we get

tk0 + y − y ∈ C(y) =⇒ tk0 ∈ C(y).

By 0 ∈ bdC(y), we get t ≤ 0. We claim that t = 0. Suppose that t < 0. Then,
by 0 ∈ bdC(y) and C(f(x)) + [0,+∞)k0 ⊂ C(f(x)), we get −tk0 ∈ C(y) and
tk0 ∈ C(y) ∩ (−C(y)). But, this is a contradiction to pointedness of C(y) in
assumption (B) and therefore t = 0. Now, by the contrary, suppose that there
exists an element x ∈ Ω such that θx(f(x)) + ε < θx(y) = 0. This means that
there exists γ > 0 such that θx(f(x)) + ε+ γ = 0 and θx(f(x)) = −ε− γ. By
part (b) of Theorem 3.2, we get

(−ε− γ)k0 + y − f(x) ∈ C(y) =⇒ y − εk0 − y ∈ C(y) + γk0 ⊂ C(y) \ {0}.
This means that (y − εk0 − (C(y) \ {0})) ∩Ω 6= ∅. But, this is a contradiction
to approximate minimality of x and therefore,

θx(f(x)) ≤ inf
x∈Ω

θx(f(x)) + ε,

for all x ∈ Ω.
�

Definition 3.5. Consider problem (VVOP). We say that the function f : X →
Y is bounded from below over Ω with respect to y ∈ Y and Θ ⊂ Y if and only
if f(Ω) ⊆ y + Θ.

Lemma 3.6. Let assumptions (A) and (B) hold. Consider the problem (VVOP),
x ∈ Ω and the functional θx given by (3.1). Set y := f(x). Suppose that
C(y) + C(y) ⊆ C(y). If f : X → Y is bounded from below over Ω in the
sense of Definition 3.5 with respect to an element y ∈ Y with θx(y) > −∞ and
Θ := C(y), then the functional θx ◦ f is bounded from below.

Proof. Under the assumption C(y) + C(y) ⊆ C(y), the functional θx is C(y)-
monotone taking into account Theorem 3.1(e). The C(y)-monotonicity of θx
and f(Ω) ⊆ y + C(y) implies

∀x ∈ Ω, θx(f(x)) ≥ θx(y),

that is, θx ◦ f is bounded from below. �

In the next theorem, we show necessary conditions for approximately mini-
mal solutions of vector optimization problems with variable ordering structures.
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Theorem 3.7. Let assumptions (A) and (B) hold. Consider problem (VVOP),
x ∈ εk0-M(Ω, f, C) and the functional θx given by (3.1), and set y := f(x).
Suppose that C(y) is a convex set, C(y)+C(y) ⊆ C(y) and C(y)+(0,+∞)k0 ⊂
intC(y).

Assume that f ∈ F(X,Y ) is locally Lipschitz and bounded from below in the
sense of Definition 3.5 with respect to an element y ∈ Y with θx(y) > −∞ and
Θ := C(y). Consider an abstract subdifferential ∂, for which (H1) – (H5) hold.
Then, there exists xε ∈ Dom f ∩ Ω and v∗ ∈ ∂(θx(f(xε)) such that

(3.3) 0 ∈ ∂(v∗ ◦ f)(xε) +N(xε; Ω) +
√
εBX∗ .

Proof. Let x ∈ εk0 -M(Ω, f,C). Applying Theorem 3.4, we get θx(f(x)) ≤
inf
x∈Ω

θx(f(x))+ε. Therefore, x is an approximate solution of the scalar problem

with the objective functional θx◦f . From Theorem 3.2 (a) we get that (θx◦f) is
lower semicontinuous because of f ∈ F(X,Y ). Furthermore, (θx◦f) is bounded
from below because of Lemma 3.6. This ensures that the assumptions of the
scalar Ekeland’s variational principle (Theorem 1.1) hold.

By Theorem 1.1, there exists an element xε ∈ Dom f ∩ Ω satisfying Theo-
rem 1.1(a)-(c) and being an exact solution of minimizing a functional h : X →
R ∪ {+∞} over Ω with

h(x) := (θx ◦ f)(x) +
√
ε ‖x− xε‖ , for all x ∈ X.

Taking into account (H2) and (H4), we get

0 ∈ ∂h(xε) +N(xε; Ω).

Under the given assumptions, the functional θx is convex and continuous taking
into account Theorem 3.1 (f) and Theorem 3.2 (b). Since f is locally Lipschitz
and θx is convex and continuous (and hence locally Lipschitz; see [25, Propo-
sition 1.6]), it is clear that θx ◦ f is also locally Lipschitz. This, along with the
convexity of ‖·‖ and (H5) imply

∂h(xε) ⊆ ∂
(
θx ◦ f

)
(xε) + ∂(

√
ε ‖· − xε‖)(xε).

From (H3), we get

∂(θx ◦ f)(xε) ⊆
⋃{

∂(v∗ ◦ f)(xε) | v∗ ∈ ∂θx(f(xε))
}
.

Because of the convexity of the norm and (H1), we get ∂ ‖· − xε‖ (xε) = BX∗ ,
and by the last three inclusions, we can find v∗ ∈ ∂θx(f(xε)) satisfying

0 ∈ ∂(v∗ ◦ f)(xε) +N(xε; Ω) +
√
εBX∗ ,

and the proof is complete. �

Remark 3.8. Taking into account Theorem 3.3, for Theorem 3.7, we get the
existence of v∗ ∈ Y ∗ such that (3.2) holds.
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The following corollary gives the necessary conditions for approximately non-
dominated solutions of (VVOP).

Corollary 3.9. Let assumptions (A) and (B) hold. Consider problem (VVOP),
x ∈ εk0-N(Ω, f, C) and the functional θx given by (3.1), and set y := f(x).
Suppose that C(y) is a convex set, C(y) + C(y) ⊆ C(y), C(f(x)) ⊆ C(f(x))
for all x ∈ Ω, and C(y) + (0,+∞)k0 ⊂ intC(y).

Suppose that f ∈ F(X,Y ) is locally Lipschitz and bounded from below in the
sense of Definition 3.5 with respect to an element y ∈ Y with θx(y) > −∞ and
Θ := C(y).

Consider an abstract subdifferential ∂ for which (H1)–(H5) hold. Then, there
exists xε ∈ Dom f ∩ Ω and v∗ ∈ ∂(θx(f(xε)) such that

(3.4) 0 ∈ ∂(v∗ ◦ f)(xε) +N(xε; Ω) +
√
εBX∗ .

Proof. Consider x ∈ εk0-N(Ω, f, C). By C(f(x)) ⊆ C(f(x)) and [27, Theo-
rem 5.3], x is an approximately minimal solution of (VVOP); i.e., x ∈ εk0-
M(Ω, f, C), and the proof is complete by applying Theorem 3.7. �

Remark 3.10. If x is an approximately minimal solution of (VVOP) and
C(f(x)) ⊆ C(f(x)), for all x ∈ Ω, then by [27, Theorem 5.3], x is also an
approximately nondominated solution of (VVOP) and all the results about
optimality conditions for approximately nondominated solutions given by Bao
et al. [2] can also be used for approximately minimal solutions.

4. Optimality condition for εk0-minimizers

Here, we give necessary conditions for approximate minimizers of vector opti-
mization problems with variable ordering structures. First, we recall a theorem
(see [27, Theorems 5.1, 5.2]), which shows that each (approximate) minimizer
of a vector optimization problem with variable ordering structures is both (ap-
proximate) minimal and nondominated solution of a vector optimization prob-
lem with variable ordering structures (VVOP). It worth to remember that all
these solution concepts coincide in the case of vector optimization problems
with fixed ordering structures.

Theorem 4.1. [27, Theorems 5.1, 5.2] Let assumptions (A) and (B) hold.

(a) Every εk0-minimizer of (VVOP) is also an εk0-nondominated solution.
(b) Every εk0-minimizer of (VVOP) is also an εk0-minimal solution.

Remark 4.2. By Theorem 4.1, all necessary conditions presented in the previ-
ous section and results in the paper by Bao et al. [2] also hold for approximate
minimizers of (VVOP).

Let assumptions (A) and (B) hold and x ∈ X. In order to derive necessary
conditions for approximate minimizers of vector optimization problems with
variable ordering structures, we use the following functional which is a slight



19 Soleimani and Tammer

modification of the functional defined by Chen and Yang [6], specially concern-
ing the assumptions for the set-valued map C. We define ξx(z, y) : Y ×Y → R
as follows:

(4.1) ξx(z, y) := inf{t ∈ R | z ∈ tk0 + f(x)− C(y)}.
Lemma 4.3. [6, Lemma 2.3] Let assumptions (A) and (B) hold and x ∈ X.
For each t ∈ R and y, z ∈ Y, the followings hold:

ξx(z, y) > t⇐⇒ z /∈ tk0 + f(x)− C(y),

ξx(z, y) = t⇐⇒ z /∈ tk0 + f(x)− intC(y),

ξx(z, y) = t⇐⇒ z ∈ tk0 + f(x)− bdC(y),

ξx(z, y) 5 t⇐⇒ z ∈ tk0 + f(x)− C(y),

ξx(z, y) < t⇐⇒ z ∈ tk0 + f(x)− intC(y).

Theorem 4.4. Suppose assumptions (A) and (B) hold and additionally, C(y)+
(0,+∞)k0 ⊂ intC(y), for all y ∈ Y. Then, for each arbitrary fixed y ∈ Y ,
ξx(·, y) is continuous.

Proof. Let y ∈ Y be an arbitrary but fixed element. We prove that for any
t ∈ R, the set

St := {z ∈ Y | ξx(z, y) ≤ t},
is closed. For this, we suppose that zn → z0 is a sequence and zn ∈ St. We
show that the limit point of this sequence belongs to the set St and this proves
that St is a closed set. Since zn ∈ St, ξx(zn, y) ≤ t. By Lemma 4.3, we have

zn ∈ tk0 + f(x)− C(y)⇒ tk0 + f(x)− zn ∈ C(y).

Taking into account that C(y) is a closed set, the limit point of the sequence
tk0+f(x)−zn → tk0+f(x)−z0 also belongs to C(y) and z0 ∈ tk0+f(x)−C(y)
and by Lemma 4.3, we get ξx(z0, y) ≤ t. This means that St is a closed set for
any t ∈ R and ξx(·, y) is lower semicontinuous for any y ∈ Y .

Now, we show that ξx(·, y) is upper semicontinuous and for any t ∈ R, the
set

St := {z1 ∈ Y | ξx(z1, y) ≥ t},
is a closed set. For this, we suppose that zn → z0 is a sequence and zn ∈ St.
Since zn ∈ St, ξx(zn, y) ≥ t. By Lemma 4.3, we get

zn /∈ tk0 + f(x)− intC(y)⇒ tk0 + f(x)− zn /∈ intC(y).

This implies tk0 + f(x) − zn ∈ (intC(y))c. Since intC(y) is an open set,
its complement (intC(y))c is a closed set and includes all the limit points.
Therefore, tk0 + f(x)− z0 ∈ (intC(y))c and this means

tk0 + f(x)− z0 /∈ intC(y)⇒ z0 /∈ tk0 + f(x)− intC(y).
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Again, by Lemma 4.3, we have ξx(z0, y) ≥ t, and this implies that St is a
closed set and ξx(·, y) is upper semicontinuous. Since ξx(·, y) is also lower
semicontinuous, ξx(·, y) is continuous. �

Theorem 4.5. Suppose that assumptions (A) and (B) hold, x ∈ X and addi-
tionally, C(y) is a convex cone, for all y ∈ Y . Then, ξx(·, y) is convex, for all
y ∈ Y .

Proof. Let y ∈ Y be an arbitrary but fixed element. Assume that λ ∈ [0, 1]
and z1, z2 ∈ Y such that ξx(z1, y) = t1 and ξx(z2, y) = t2. By Lemma 4.3, we
have the followings:

ξx(z1, y) = t1 =⇒ y1 ∈ t1 + f(x)− C(y),

ξx(z1, y) = t2 =⇒ y2 ∈ t2 + f(x)− C(y).

This means that there exists c, d ∈ C(y) such that z1 = t1k
0 + f(x) − c,

z2 = t2k
0 + f(x)− d and

λz1 + (1− λ)z2

= λt1k
0 + λf(x)− λc+ (1− λ)t2k

0 + (1− λ)f(x)− (1− λ)d

=
(
λt1 + (1− λ)t2

)
k0 + f(x)−

(
λc+ (1− λ)d

)
.

By c, d ∈ C(y) and convexity of C(y), we get λc+(1−λ)d ∈ C(y) and therefore,

λz1 + (1− λ)z2 ∈ (λt1 + (1− λ)t2)k0 + f(x)− C(y).

Again, by Lemma 4.3, ξx(λz1 + (1− λ)z2, y) ≤ λt1 + (1− λ)t2,

ξx(λz1 + (1− λ)z2, y) ≤ λξx(z1, y) + (1− λ)ξx(z2, y),

and ξx(·, y) is convex, completing the proof.
�

Definition 4.6. Consider x ∈ X and the functional ξx : Y × Y → R, given by
(4.1). f : X → Y is called bounded from below over Ω with respect to ξx if
and only if for all ω ∈ Ω, there exists a real number α > −∞ such that

inf
x∈Ω

ξx(f(x), f(ω)) > α.

The following theorem gives a characterization of approximate minimizers
of (VVOP) using a scalarization by means of the functional ξx : Y × Y → R,
defined by (4.1).

Theorem 4.7. Suppose that assumptions (A) and (B) hold and let x ∈ Ω be
an εk0-minimizer of (VVOP). Then, for all ω ∈ Ω,

(4.2) ξx(f(x), f(ω)) ≤ inf
x∈Ω

ξx(f(x), f(ω)) + ε.
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Proof. Let ω be an arbitrary but fixed element of Ω and set y = f(x). We
prove that ξx(f(x), f(ω)) = 0. Suppose ξx(f(x), f(ω)) = t. By Theorem 4.3,
we get

tk0 + y − y ∈ C(f(ω)) =⇒ tk0 ∈ C(f(ω)).

By 0 ∈ bdC(f(ω)), we get t ≤ 0. If ξx(f(x), f(ω)) < 0, then t < 0 and
−t > 0. By 0 ∈ bdC(f(ω)) and C(f(ω)) + [0,+∞)k0 ⊂ C(f(ω)), we get
−tk0 ∈ C(f(ω)), and tk0 ∈ C(f(ω)) ∩ (−C(f(ω))), arriving at a contradiction
because C(y) is a pointed set, for all y ∈ Y . This means that t = 0. Now,
we prove that ξx(f(x), f(ω)) ≤ inf

x∈Ω
ξx(f(x), f(ω)) + ε. Suppose, by the con-

trary, that (4.2) does not hold and there exists an element x ∈ Ω such that
ξx(f(x), f(ω)) + ε < ξx(f(x), f(ω)) = 0. This means that there exists β > 0
such that ξx(f(x), f(ω)) = −ε− β. By Theorem 4.3, we get

(−ε− β)k0 + y − f(x) ∈ C(f(ω))

=⇒ y − εk0 − f(x) ∈ C(f(ω)) + βk0 ⊂ C(f(ω)) \ {0}.
This means that there exists ω ∈ Ω such that

(y − εk0 − (C(f(ω)) \ {0}) ∩ Ω 6= ∅
and y /∈ εk0 -MZ(Ω, f, C). But this is a contradiction, because x is an εk0-
minimizer of (VVOP). Therefore,

ξx(f(x), f(ω)) ≤ inf
x∈Ω

ξx(f(x), f(ω)) + ε,

for all x, ω ∈ Ω. �

Now, we use Theorem 4.7 and Ekeland’s variational principle (Theorem 1.1)
in order to derive necessary conditions for minimizers of vector optimization
problems with variable ordering structures.

Theorem 4.8. Let assumptions (A) and (B) hold. Consider problem (V V OP ),
x ∈ εk0 -MZ(Ω, f,C), the functional ξx given by (4.1) and set y = f(x).

Suppose that f ∈ F(X,Y ) is locally Lipschitz and bounded from below in
the sense of Definition 4.6 over Ω with respect to ξx. Assume that C(y) is
a convex set and C(y) + (0,+∞)k0 ⊂ intC(y), for all y ∈ Y . Consider the
abstract subdifferential ∂ for which (H1)–(H5) hold. Then, for all ω ∈ Ω, there
exists xω ∈ Dom f ∩ Ω and v∗ω ∈ ∂(ξx(f(xω), f(ω)) such that

(4.3) 0 ∈ ∂(v∗ω ◦ f)(xω) +N(xω; Ω) +
√
εBX∗ .

Proof. Let x ∈ εk0 -MZ(Ω, f,C). Applying Theorem 4.7, we get, for all ω ∈ Ω,

ξx(f(x), f(ω)) ≤ inf
x∈Ω

ξx(f(x), f(ω)) + ε.

Therefore, x is an approximate minimizer of the scalar problem with the ob-
jective functionals ξx(·, f(ω)), for all ω ∈ Ω. Taking into account Theorem 4.4
and f ∈ F(X,Y ), we get ξx(·, f(ω)) to be lower semicontinuous, for all ω ∈ Ω.
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Furthermore, ξx(·, f(ω)) is bounded from below, for all ω ∈ Ω. By the scalar
Ekeland’s variational principle (Theorem 1.1), for all ω ∈ Ω, there exists an
element xω ∈ Dom f ∩ Ω satisfying parts (a), (b) and (c) of Theorem 1.1 and
being an exact solution of an optimization problem with the objective function
h : X → R ∪ {+∞} over Ω with

h(x) := ξx(f(x), f(ω)) +
√
ε ‖x− xω‖ , for all x ∈ X.

By (H2) and (H4), we get

0 ∈ ∂h(xω) +N(xω; Ω).

Under the given assumptions, the functional ξx(·, f(ω)) is convex (Theorem
4.5) and continuous (Theorem 4.4), taking into account Theorem 4.4 and The-
orem 4.5. Since f is locally Lipschitz and ξx(·, f(ω)) is convex and continuous
and hence locally Lipschitz, the composition ξx(f(·), f(ω)) is also locally Lips-
chitz. This together with the convexity of the norm ‖·‖ and (H5) imply

∂h(xω) ⊆ ∂
(
ξx(f(·), f(ω))

)
(xω) + ∂(

√
ε ‖· − xω‖)(xω).

By (H3), we get

∂(ξx(f(·), f(ω)))(xω) ⊆
⋃{

∂(v∗ω ◦ f)(xω) | v∗ω ∈ ∂ξx(f(xω), f(ω))
}
.

Because of the convexity of the norm and (H1), we get ∂ ‖· − xω‖ (xω) =
BX∗ , and by the last three inclusions, we can find v∗ω ∈ ∂ξx(f(xω), f(ω)) sat-
isfying

0 ∈ ∂(v∗ω ◦ f)(xω) +N(xω; Ω) +
√
εBX∗ ,

and the proof is complete. �
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Ordered Spaces, Springer-Verlag, New York, 2003.
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