
Special Issue of the

Bulletin of the
Iranian Mathematical Society

Special Issue Dedicated to ORO2013 Conference

ISSN: 1017-060X (Print) ISSN: 1735-8515 (Online)

Vol. 42 (2016), No. 7, pp. 43–53

Title:

First step immersion in interval linear programming with linear dependencies

Author(s):

M. Hlad́ık and M. Černý
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Abstract. We consider a linear programming problem in a general form

and suppose that all coefficients may vary in some prescribed intervals.
Contrary to classical models, where parameters can attain any value from

the interval domains independently, we study problems with linear depen-
dencies between the parameters. We present a class of problems that are

easily solved by reduction to the classical case. In contrast, we also show

a class of problems with very simple dependencies, which appear to be
hard to deal with. We also point out some interesting open problems.
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1. Introduction

Here, we are concerned with linear programming (LP) problems with interval
data. Interval data naturally appear in many situations because of errors in
measurement, missing or imperfect information, or other types of uncertainty.
By interval parameters we can also check stability, sensitivity and robustness
of our model or solution.

The core principle of the interval (or possibilistic) approach is to take all
possible realizations of interval data into account. In the context of Linear
Programming (LP), we get a family of linear programs such that their data
are guaranteed to lie in given intervals. The most important question is to
compute rigorous bounds on the optimal value and optimal solutions.

Before we state the problem more precisely, we introduce some notations
first.

1.1. Notation. An interval matrix A is defined as

A := [A,A] = {A ∈ Rm×n; A ≤ A ≤ A},
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where A,A ∈ Rm×n, A ≤ A, are given, and the inequality is to hold entrywise.
The midpoint and the radius of A are defined respectively as

Ac :=
1

2
(A + A), A∆ :=

1

2
(A−A).

The set of all m-by-n interval matrices is denoted by IRm×n. Interval vectors
are considered as one-column interval matrices. For interval arithmetic and
more on interval computating, we refer to [1, 19,21].

Let A ∈ IRm×n, b ∈ IRm and consider the feasible set

M(A, b)(1.1)

of a general linear system with the constraint matrix A and the right-hand side
b, which can (depending on the context) consist of equations, inequalities, or
both, and each variable may be nonnegative, nonpositive or free of sign. Thus,
M(A, b) can take, for instance, the form of

M(A, b) = {x ∈ Rn : Ax = b, x ≥ 0}, or

M(A, b) = {x ∈ Rn : Ax ≤ b}, or

M(A, b) = {x ∈ Rn : Ax ≤ b, x ≤ 0}, or

M(A = (A1;A2), b = (b1; b2)) = {x ∈ Rn : A1x ≤ b1, A2x = b2}.
A family of systems (1.1) with A ∈ A and b ∈ b is called an interval linear
system and its solution set is defined as

M :=
⋃

A∈A, b∈b

M(A, b).

We say that (1.1) is strongly feasible if it is feasible (i.e.,M(A, b) 6= �) for each
A ∈ A and b ∈ b.

1.2. Dependencies and relaxation. In classical interval computation, we
assume that each entry in the linear system corresponds to a unique interval
parameter. For example, the interval linear equations are usually defined as

Ax = b, A ∈ A, b ∈ b,

and the solution set is:

(1.2) {x ∈ Rn : (∃A ∈ A)(∃b ∈ b) Ax = b}.
However, in many practical situations, parameters are somehow related or are
subject to additional constraints. For example, we might be interested in the
“dependent” system,

(1.3) {x ∈ Rn : (∃A ∈ A)(∃b ∈ b) ϕ(A, b) and Ax = b},
where ϕ(A, b) is a given predicate. For example, we can take ϕ(A, b) ≡ [A11 =
A12] or

(1.4) ϕ(A = (A1;A2), b = (b1; b2)) ≡ [A2 = −A1 and b2 = −b1].
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The predicate ϕ imposes additional conditions on parameters and causes their
dependency. Replacement of (1.3) by (1.2) is called relaxation.

Remark 1.1 (A tempting problem). Currently, available theory of dependent
systems is able to work with only simple predicates ϕ and there is a big research
potential.

Example 1.2. Consider the system

ax + 0y = 2, 0x + ay = 2, a ∈ a = [1, 2].

This system contains a dependency of the form of a “correlation” between
parameters, here caused by double occurrence of a. The solution set (1.3) is
the line segment from (1, 1)T to (2, 2)T . Relaxation (1.2) leads to the interval
system

ax + 0y = 2, 0x + a′y = 2, a, a′ ∈ a = [1, 2],

the solution of which expands the line segment to the square 1 ≤ x ≤ 2,
1 ≤ y ≤ 2. This property is fundamental: relaxation implies that the solution
set never loses any solution, only becomes larger. Therefore, for verified bounds
on the solutions, relaxation is still applicable, but it may be more conservative.

1.3. Interval linear programming. Let A ∈ IRm×n, b ∈ IRm and c ∈ IRn

be given. By an interval LP problem [2–4, 7, 9, 15, 18, 23], we understand a
family of LP problems,

min cTx subject to x ∈M(A, b),(1.5)

where A ∈ A, b ∈ b, c ∈ c, and M(A, b) is the feasible set described by linear
constraints such as equations, inequalities or both. In traditional LP, usually
one formulation is taken as a basic one and alternative formulations can be
transformed to the basic one. For example, taking the form

min cTx subject to Ax ≤ b

as the basic one, then the form

(1.6) min cTx subject to Ax = b, x ≥ 0

can be rewritten into the basic form

(1.7) min cTx subject to Ax ≤ b,−Ax ≤ −b,−x ≤ 0.

In interval LP, however, transformations among different formulations are not
possible, in general, since they may cause dependencies; indeed, the indepen-
dent form (1.6) has been transformed into the dependent form (1.7) with double
occurrences of A, b; cf. (1.4).

For any type of LP problem (1.5), its dual problem has the form

max bTu subject to u ∈ N (AT , c),(1.8)

where N (AT , c) is the dual feasible set described by linear constraints, as well.
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Example 1.3. The primal problem (1.5) can be of the form

min cTx subject to Ax ≤ b, x ≥ 0.

The corresponding dual is:

max bTu subject to N (AT , c) = {u : ATu ≤ c, u ≤ 0}.
As another example, the primal problem

min cTx subject to Ax ≤ b

has the dual counterpart

max bTu subject to N (AT , c) = {u : ATu = c, u ≤ 0}.

A recent survey on interval linear programming can be found in [9], where
three basic formulations were considered, fundamental problems discussed, use-
ful techniques presented, and some open problems stated.

1.4. Two major problems: Problem 1. Denote the optimal value function
by

f(A, b, c) := min cTx subject to x ∈M(A, b).

Notice that infinite values are possible: +∞ corresponds to infeasibility and
−∞ corresponds to unboundedness. There are two major problems in interval
LP. The first one is to compute the optimal value range f = [f, f ], where

f := inf f(A, b, c) subject to A ∈ A, b ∈ b, c ∈ c,

f := sup f(A, b, c) subject to A ∈ A, b ∈ b, c ∈ c.

In some special cases, the problem is easily solvable, but, in general, it is NP-
hard [4,5,8]. A general framework for determining the optimal value range was
presented in [7]. We state this in Algorithm 1, where

N :=
⋃

A∈A, c∈c

N (AT , c)

is the dual solution set. Solvability of a general form of interval linear con-
straints was characterized in [11]. Particular cases were investigated by many
researchers; see, e.g., [3, 4, 20], and an approximation of the computationally
hard instances in [13].

Algorithm 1.

1: Compute

f := inf(cc)Tx− (c∆)T |x| subject to x ∈M.(1.9)

2: If f =∞ then set f :=∞ and stop.
3: Compute

ϕ := sup(bc)Tu + (b∆)T |u| subject to u ∈ N .(1.10)
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4: If ϕ =∞ then set f :=∞ and stop.
5: If the primal problem is strongly feasible then set f := ϕ else set f :=∞.

Algorithm 1 has an exponential-time, in general, due to the presence of |x|
and |u|. To compute (1.9), in general, one has to solve 2n linear programs to
get

f = inf
s∈{−1,1}n

inf(cc)Tx− (c∆)TDsx subject to x ∈M,

where Ds is the diagonal matrix with entries s1, . . . , sn. A similar idea holds
for (1.10). However, in Section 2, we will take advantage of the following
observation.

Lemma 1.4. Let Rk
s denote the orthant {x ∈ Rk : Dsx ≥ 0}. If two sign

vectors s ∈ {−1, 1}n and t ∈ {−1, 1}m exist (and are known in advance) such
that

(a) M⊆ Rn
s ,

(b) N ⊆ Rm
t ,

and if, in addition,

(c) strong feasibility of (1.5) can be tested in a polynomial time,

then Algorithm 1 runs in a polynomial time.

Proof. Nonlinear conditions (1.9) and (1.10) reduce to the linear programs

f = inf(cc)Tx− (c∆)TDsx subject to x ∈M,(1.11)

ϕ = sup(bc)Tu + (b∆)TDtu subject to u ∈ N .(1.12)

Due to [11], the sets M and N are convex polyhedral sets. �

Obviously, the above result can be directly extended to the case when M
andN intersect a polynomial number of orthants, and we are able to enumerate
them in a polynomial time.

1.5. Two major problems: Problem 2. The second problem is even much
more challenging. Therein, we have to determine the set of all optimal solutions,

S :=
⋃

A∈A, b∈b, c∈c

S(A, b, c),

where S(A, b, c) is the optimal solution set to (1.5). The very few of results in
this direction can be seen in [2, 10], for example.

A special property of basis stability was investigated in [12, 15, 22]. If basis
stability is fulfilled, then both main problems are solvable more easily.

Recently, the concept of a solution was extended to a quantified one, in-
cluding both existential and universal quantifiers, and being more flexible in
reflecting a particular robustness standpoint of a decision maker [16–18].
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1.6. Goal. In the standard interval LP model, one assumes that interval pa-
rameters can attain any value from their interval domains independently of
other parameters. This assumption is very restrictive; there are many exam-
ples and applications when dependencies must be taken into account. As an
example we have seen that a transformation of one standard form of a linear
program to another standard form may cause dependencies.

Even though relaxing such dependencies (correlations) still leads to rigorous
bounds on optimal values and optimal solutions, the results may be highly
overestimated. Thus, here we aim to handle at least a particular form of
dependency among the interval parameters. Besides some notes in [7], we
are aware of no other results. We present one class which is easily solvable
(Section 2); however, we also show that some very simple dependencies can
also cause the problem to become very difficult (Section 3).

2. One polynomially solvable sub-class

Consider an interval LP problem as

min cTx + dT y + eT z(2.1)

subject to Ax + Bz ≤ a, Ay + Cz ≤ b, x, y, z ≥ 0,

where A,B,C, a, b, c, d, e vary in given interval matrices and vectors A,B,C,a,
b, c,d, e, respectively. Due to the dependencies caused by double appearance
of the matrix A in the constraints, this is not a standard form of an interval
LP problem. Nevertheless, we will show that the dependency can be relaxed,
and both appearances of A can be handled as independent matrices from A
with no effect on the optimal value range f .

2.1. Optimal value range. To apply Algorithm 1 and Lemma 1.4, we need
to

(a) describe the primal feasible set M (observe that its presence in the
nonnegative orthant of Rn is obvious from (2.1)),

(b) describe the dual feasible set N and check that it lies in a single orthant
of Rm, and

(c) describe a method for testing primal strong feasibility.

By [6, Corollary 3.2], the feasible solutions of (2.1) are described by the
linear system

Ax + Bz ≤ a, Ay + Cz ≤ b, x, y, z ≥ 0.(2.2)

The dual to (2.1) is:

max aTu + bT v

subject to ATu ≤ c, AT v ≤ d, BTu + CT v ≤ e, u, v ≤ 0.
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By [6, Corollary 3.2] and [11], the feasible solutions of the interval family of
the dual problems are described linearly as

A
T
u ≤ c, A

T
v ≤ d, B

T
u + C

T
v ≤ e, u, v ≤ 0.(2.3)

Eventually, by [14, Theorem 7], strong feasible feasibility of (2.1) is equiva-
lent to feasibility of the real system,

Ax + Bz ≤ a, Ay + Cz ≤ b, x, y, z ≥ 0.(2.4)

Remark 2.1 (A tempting problem). The last result can be strengthened to
to following form:

(2.1) is strongly feasible if and only if
⋂

A∈A,b∈b

M(A, b) 6= �,

which can be read as follows: our interval LP problem (either primal or dual)
is strongly feasible if and only if all LP problems in the system share a com-
mon feasible point. This (nontrivial) property is known for systems without
dependencies; see [4]. Here, we have this property for a system with a partic-
ular form of dependency. It is tempting to restate this result for more general
dependency structures in linear systems.

Surprisingly, we can even derive the following stronger result avoiding the
checking for strong feasibility of M.

Theorem 2.2. We have

f := min cTx + dT y + eT z(2.5)

subject to Ax + Bz ≤ a, Ay + Cz ≤ b, x, y, z ≥ 0,

f := min cTx + d
T
y + eT z(2.6)

subject to Ax + Bz ≤ a, Ay + Cz ≤ b, x, y, z ≥ 0.

Proof. The lower bound f simply follows from (1.9) and (1.11). The problem
(2.6) is dual to (1.12), and so they have the same optimal value as long as (2.4),
or equivalently (2.6), is feasible; if not feasible, then f =∞, in accordance with
Algorithm 1. �

In view of Theorem 2.2, the optimal value range is the same if we relax or
if we do not relax the dependencies. Therefore, we have the following result.

Theorem 2.3. The optimal value range of the interval LP problem (2.1) is the
same as the one for the interval LP problem with no dependencies,

min cTx + dT y + eT z

subject to Ax + Bz ≤ a, A′y + Cz ≤ b, x, y, z ≥ 0,(2.7)

where A,A′ ∈ A, B ∈ B, C ∈ C, a ∈ a, b ∈ b, c ∈ c, d ∈ d, and e ∈ e.
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Proof. By Vajda’s Theorem [9, 24], the optimal value range for (2.7) can be
computed exactly by the same LP problems as given by (2.5) and (2.6). �

Notice that (2.7) is a standard interval linear programming problem as there
are no dependencies. Contrary to the form (2.1), both matrices A and A′ come
from A independently of each other. Thus, we come up with a class of problems
that can be relaxed (that is, the dependencies can be “forgotten”) with no effect
on the optimal value range.

2.2. Optimal solution set. Unfortunately, the property stated in Theorem
2.3 is no longer valid for the optimal solution set S. As the following example
illustrates, relaxation of dependencies leads to a blow-up of the solution set,
even with respect to its dimension.

Example 2.4. Consider the problem

min−x− y subject to ax ≤ 2, ay ≤ 2, x, y ≥ 0,

where a ∈ a = [1, 2]. The optimal solution to a concrete setting of a ∈ a is the
point (2/a, 2/a)T , and so the overall optimal solution set S is the line segment
joining the points (1, 1)T and (2, 2)T .

In contrast, relaxing the dependencies yields the problem

min−x− y subject to ax ≤ 2, a′y ≤ 2, x, y ≥ 0,

where a, a′ ∈ a = [1, 2]. Now, the optimal solution is (2/a, 2/a′)T , whence the
optimal solution set S represents the square with vertices in (1, 1)T , (1, 2)T ,
(2, 2)T and (2, 1)T ; cf. Example 1.2.

This example shows a high overestimation caused by the relaxation, but on
the other hand, the spreads of the solution sets in each coordinate are the same.

Remark 2.5. (A tempting problem). It is an open question whether the
observation typeset in italic is exceptional or whether it is a rule.

3. One hard-to-solve sub-class with simple dependencies

Consider an interval LP problem

min cTx + dT y + eT z(3.1)

subject to Ax + Bz ≤ a, Ay + Cz ≤ b,

where A,B,C, a, b, c, d, e comes from interval matrices/vectors A,B,C, a, b, c,
d, e, respectively. Contrary to the easy case, (2.1), nonnegativity of variables
is not required.

Let us focus on the optimal value range problem. By [6, Theorem 3.1], the
feasible solutions of (3.1) are described by the nonlinear nonsmooth system
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(involving not only inequalities, but also logical implications):

A∆|x|+ B∆|z|+ a ≥ Acx + Bcz,

A∆|y|+ C∆|z|+ b ≥ Acy + Ccz,

∀k = 1, . . . , n : if xkyk < 0, then |yk| · (a−Acx−Bcz + B∆|z|)
+ |xk| · (b−Acy − Ccz + C∆|z|) + A∆|ykx− xky| ≥ 0.

Remark 3.1. Observe that if x, y, z ≥ 0, then the last system reduces to (2.2).
This helped us in Section 2. But, now we treat x, y, z as unconstrained vari-
ables.

The dual problem to (3.1) is

max aTu + bT v

subject to ATu = c, AT v = d, BTu + CT v = e, u, v ≤ 0.

By [6] and [11], the dual feasible set is

−(A∆)Tu + c∆ ≥ |cc − (Ac)Tu|,
−(A∆)T v + d∆ ≥ |dc − (Ac)T v|,

−(B∆)Tu− (C∆)T v + e∆ ≥ |ec − (Bc)Tu− (Cc)T v|,
−c∆vT − d∆uT +

(A∆)T |uvT − vuT | ≥ |(cc − (Ac)Tu)vT − (dc − (Ac)T v)uT |.

Concerning strong feasibility of (3.1), a necessary and sufficient condition,
by [14, Theorem 8], is to check infeasibility of the system

AT p ≤ 0 ≤ A
T
p,

AT q ≤ 0 ≤ A
T
q,

BT p + CT q ≤ 0 ≤ B
T
p + C

T
q,

|(Ac)T (pqT − qpT )| ≤ (A∆)T |pqT − qpT |,

bT p + cT q ≤ −1, p, q ≥ 0.

We see that all three conditions that are necessary to employ Algorithm 1,
summarized in (a)–(c) of Lemma 1.4, to describe the primal and dual feasible
sets, and to check strong feasibility of the primal one, seem to be very difficult
to verify. Those inequality systems are nonlinear and even nonsmooth, and so it
is a challenging problem to check their solvability. Yet, there might be simpler
characterizations by other means, while the above results indicate otherwise.
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4. Conclusion

Our aim was to show that even very simple dependencies in constraint coef-
ficients may results in a computationally tough problem. This behavior, how-
ever, should not discourage us from further research. Seeking for polynomially
solvable classes of problems, such as the one given in Section 2, or develop-
ing computationally cheap approximation methods, are possible directions for
future research.
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