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ABSTRACT. We present an improved version of a full Nesterov-Todd step
infeasible interior-point method for linear complementarity problem over
symmetric cone (Bull. Iranian Math. Soc., 40, (2014), no. 3, 541-564).
In the earlier version, each iteration consisted of one so-called feasibility
step and a few -at most three - centering steps. Here, each iteration
consists of only a feasibility step. Thus, the new algorithm demands less
work in each iteration and admits a simple analysis of complexity bound.
The complexity result coincides with the best-known iteration bound for
infeasible interior-point methods.
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1. Introduction

Consider a Euclidean Jordan algebra (7, o, (-, -)), where o denotes the Jordan
product and 7 is a finite-dimensional vector space over the real field R equipped
with the inner product (-, -), and let K be a symmetric cone in J. The monotone
linear complementarity problem over symmetric cone (SCLCP) requires the
computation of a vector pair (z,s) € K x K satisfying

(1.1) s=Mx+gq, xos=0,

where ¢ € R™ and M € R™ " such that v = Mu implies that (u,v) > 0.
Although SCLCP is not an optimization problem, it is closely related to one,
because optimality conditions of several important optimization problems can
be written as an SCLCP; e.g., linear optimization (LO) problem over symmetric
cone (SCO). Faybusovich was the first to analyze a short-step path-following
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interior-point method (IPM) for SCLCP [2,3]. In addition to Faybusovich’s
results, Rangarajan [10] proposed the first infeasible IPM (IIPM) for SCLCP.
The primal-dual full-Newton step feasible IPM for LO was first analyzed by
Roos et al. [12] and was later extended to infeasible version by Roos [11]. Both
versions of the method were extended by Kheirfam and Mahdavi-Amiri [3] to
SCLCP by using the Nesterov-Todd (NT) direction as a search direction. The
obtained iteration bounds coincide with the ones derived for LO, currently be-
ing best known iteration bounds for SCLCP. Subsequently, both versions were
extended by Kheirfam and Mahdavi-Amiri [6,7] to SCLCP based on modified
NT-directions using Euclidean Jordan algebra. Recently, Roos [13] proposed
a new method for LO by improving the full-Newton step IIPMs so that the
centering steps not be needed, whereas the above-mentioned methods require
a few (at most three) centering steps in each (main) iteration. Motivated by
Roos’ recent work, we present a new full-NT step ITPM for SCLCP which uses
only a full step in each (main) iteration. The new algorithm starts from an
infeasible point, located in a small neighborhood of the central path of a per-
turbed SCLCP. Then, after a full-NT step the new iterate is well-centered for
the new perturbed SCLCP. This kind of strategy reduces the number of itera-
tions and the resulting complexity coincides with the best known bound, while
tendering a simple analysis.

In what follows, we briefly recall some concepts, properties, and results from
Euclidean Jordan algebras as needed. A comprehensive treatment of Euclidean
Jordan algebra can be found in [1].

A Euclidean Jordan algebra is a triple (7,0, (-,-)), where (7, (-,-)) is an
n-dimensional inner product space over R and (z,y) — xoy on J is a bilinear
mapping satisfying the following conditions for all z,y,z € J:

(1) moy=you,
(i) zo(z?0y)=2a%0(xoy), where 22 =r oz,

(i11) (woy,z) = (w,yo0z),
where the inner product (-,-) is defined by (x,y) := tr(x o y) for any x,y € J.

Note that, by Theorem III.2.1 of [1], the symmetric cone K coincides with
the set of squares {mQ :x € J} of some Euclidean Jordan algebra J. We
assume that there exists an element e such that zoe = eox =z, for all z € J.
The rank of (7,0, (-,-)) is defined to be

r:=max {deg(z) : v € T},
where deg(x) is the degree of x € J, given by
deg(z) := min {k : {e,z,...,2"} are linearly dependent}.

For any = € J, the Lyapunov transformation L(z) : J — J is defined as
L(z)y = zoy, for all y € J. It follows from (i) and (#ii) above that the
Lyapunov transformation is symmetric; i.e., (L(z)y, z) = (y, L(z)z) holds for
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all y,z € J. Specially, L(x)e = = and L(z)x = 22, for + € J. Using the
Lyapunov transformation, the quadratic representation of z € J is defined as

P(z) := 2L(x)* — L(z?),

where L(z)? = L(z)L(z). For any € K, L(z) is positive semidefinite; i.e.,

(L(z)z,z) >0, and (z,y) = 0 if and only if zoy =0, foranyx yelC(Lemma
2.2 of [ ]). An element ¢ € J is idempotent if ¢ o ¢ = ¢ # 0, which is also
primitive if it cannot be written as a sum of two idempotents. We say that

{c1,¢c2,...,cx} is a Jordan frame, if each ¢; is a primitive idempotent, ¢; o ¢; =
0(i # j) and Zle ¢i =e. Let (J,o0, () be a Euclidean Jordan algebra with
rank(J) = r. Then, for any x € J, there exist a Jordan frame {c;,ca,..., ¢}

and real numbers A\ (), A2(), ..., A (z) such that x = >"'_; \;(z)¢; (spectral
decomposition, Theorem II1.1.2 of [1]). Every \;(z) is called an eigenvalue
of z. We denote the minimum and maximum eigenvalues of = by Amin(2)
and Apax(z), respectively. If two elements = and y share the same Jordan
frames in the spectral decompositions, then they operator commute; i.e., they
satisfy L(x)L(y) = L(y)L(x) (Theorem 27 of [14]). The trace of x is defined
to be tr(z) := >_'_; \i(z) and the Frobenius norm of z is ||z||r := \/(z,z) =
VA1(Z)2 + ...+ \(z)2. Observe that |le||r = /r. We also see that = € K
(respectively, € intK) if and only if A;(x) > 0 (respectively, \;(z) > 0),
for all ¢+ = 1,2,...,r. For any x € J, having the spectral decomposition
z = _, Ai(x)e;, we denote

3 — Z \/70“ if A;(x) >0 and z7l= i)\i(fﬁ)ilcia if Ai(z) #0
i=1

The remainder of our work is organized as follows. In the next section, we
introduce the perturbed problem and describe our proposed algorithm. Section
3 gives an analysis of the algorithm. In subsection 3.1, we derive an upper
bound for the proximity measure after a full step. Subsection 3.2 serves to
derive an upper bound for w(v). In subsection 3.3, we fix the values of the
parameters 6 and 7 in the algorithm. Here, 7 is a uniform upper bound for the
values of the proximity measure, d(z, s; 1), occurring during the course of the
algorithm, and 6 determines the progress to feasibility and optimality of the
iterates. As a result, we realize the algorithm to be well-defined for the chosen
values of 6 and 7. Finally, we derive the complexity of the algorithm coinciding
with the best known iteration bound for ITPMs.

2. Infeasible full-NT step IPM

In the case of an infeasible method, we call the pair (z,s) an e-solution of
(1.1) if the Frobenius norm of the residual vector s — Mz — g does not exceed
e, and also (x,s) :=tr(zos) <e.
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2.1. The perturbed problem. In accordance with the available results on
ITPMs (e.g., see [8]), it is assumed that there exists a solution (x*, s*) such that

(2.1 2% loo < pp, max{]|s”|[co; [opMe + gllr} < pas

where p, and pg are positive numbers. Furthermore, we choose arbitrarily
(29, %) € intK and p° > 0 such that

(22) 2’ = Pp€; ¥ = pae, and /~LO = PpPd;

as the starting point of the algorithm, where p, and pq are defined as in (2.1).
The initial value of the residual vector is denoted to be 7“2 =50 — Mz —q.
In general, we have 7"2 # 0. However, a sequence of perturbed problems is
constructed below in a such a way that the initial iterate is strictly feasible for
the first perturbed problem in the sequence.

For any v, with 0 < v < 1, we consider the perturbed problem (SCLCP,),
defined by

s— Mz —q=vr), (z,s) € KxK (SCLCP,).

It is obvious that (z, s) = (29, s°) is a strictly feasible solution of (SCLCP,),
when v = 1. This means that the perturbed problem (SCLCP,) satisfies the
interior point condition (IPC), for v = 1; i.e., there exists (2%, s°) € intK x intK
such that s — Ma2® — ¢ = m“g, which then straightforwardly leads to the
following result.

Theorem 2.1. (Theorem 3.1 of [8]) Let (1.1) be feasible and 0 < v < 1. Then,
the perturbed problem (SCLCP,) satisfies the IPC.

Let (1.1) be feasible and 0 < v < 1. Then, Theorem 2.1 implies that the
problem (SCLCP,) satisfies the IPC, for 0 < v < 1, and hence a corresponding
central path exists. This means that the system

s—Mz—q=vr), (r,5) e KxK,

(2:3) xos=ue,

has a unique solution for every p > 0, as the u-center of the perturbed problem
(SCLCP,). The set of u-centers is called the central path. In what follows,
the parameters u and v always satisfy the relation u = vu® = vp,p4. It is also
worth noting that, according to (2.2), 2° 0 s = ule; hence, (2, s%) is the u°-
center of the perturbed problem (SCLCP,) for v = 1. Therefore, the algorithm
can easily be started since by construction we have the initial starting point
lying exactly on the central path of (SCLCP,) for v = 1.

Let (z,s) be a feasible solution of (SCLCP,), and pu = vu®. Then, we
measure proximity to the p-center of the perturbed problem (SCLCP, ) by the
quantity

oz, s; ) :=0(v) := %Hv_l - vHF7 where v := P
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_1 1
and w := P(x3)(P(x2)s) *[= P(s~2)(P(s?)z)?] is called the scaling point
of z and s (Lemma 3.2 of [1]). As a consequence, we have the following lemma.

Lemma 2.2. (Lemma 4.7 of [5]) If § :== d(v), then

ﬁ < Amin(v) € Amax(v) < p(6), where p(6) := 0+ V14 62

2.2. An iteration of our algorithm. Suppose that for some p € (0, u°] we
have  and s satisfying the first equation in (2.3) for v = 5 and such that
0(x,s; ) < 7. This certainly holds at the start of the first iteration, since
s — Mz® — ¢ = urg, when v = 1 and 6(z%, 5% %) = 0. We reduce i to
pt:=(1—-0)u and v to v := (1 — O)r with 0 € (0,1), and find new iterates
xt and s satisfying the first equation in (2.3), with u replaced by u™ and v
by vt = ‘:L—:, and such that 6(z*,s™; u*) < 7. Note that v™ = (1 — )v. So,
the relation p = vu® is maintained in every iteration.

Suppose that we have strictly feasible iterates « and s for (SCLCP,). This
means that (z, s) satisfies the first equation of (2.3) with z € intK and s € intk.
With v replaced by v+ = (1 —6)v, we find displacements Az and As such that

(2.4) MAx—As:Hurg,

soArx+xoAs=pue—zos.
Due to the fact that L(z)L(s) # L(s)L(z), in general, the above system does
not always have a unique solution. To overcome this difficultly, the second equa-
tion of the system (2.3) is replaced by the following equivalent scaled equation
(see Lemma 28 of [11]):

P(wié)z o P(w%)s = pe,

where w is the NT-scaling point of z and s. This scaling point was first proposed
by Nesterov and Todd [9] for self-scaled cones and then adapted by Faybusovich
[3] for symmetric cones. In this case, the system (2.4) becomes

MAz — As = vr?
(2.5) P(w?)so P(w™2)Az + P(w™2)z o P(w2)As =

It is easily seen that 2+ := x4+ Az and s := s+ As satisfy s — Mz —q = v 7).
The main part of the analysis is to guarantee that + € intK and st € intK

satisfy §(xt,sT;u™) < 7.
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2.3. The algorithm. A formal description of the new algorithm is given in
Figure 1.

Infeasible interior — point algorithm
Input :
accuracy parameter € > 0;
barraier update parameter 6, 0 < 6 < 1;
begin
x = ppe; §:i=pae; V=15 u= pppa;
while max (tr(z o s), [|r4]|r) > € do
begin
(z,8) := (x,8) + (Az, As);
pr=(1—-0)p vi=(1-0)v;
end
end
Figure 1 : The algorithm

3. Analysis of the algorithm
Let = and s denote the iterates at the start of an iteration, and assume
0z, ;) < T

3.1. Upper bound for §(v"). As established in subsection 2.2, the full-NT

step generates new iterates 7 and st that satisfy the feasibility condition

for (SCLCP,+), except for possibly the constraints on the cone K. A crucial

element in the analysis is to show that, after the full-NT step, 6(z+, sT; ut) < 7.
Defining

(3.1) d, =

the second equation of (2.5) turns to
dy +ds =v ! — 0.
In this case, using the definition of v and (3.1), we get
(3.2) rt = \/ﬁP(w%)(v +dy), st = \/ﬁP(w_%)(v +dy).

Since P(w?) and its inverse P(w™2) are automorphisms of intk, z+ and s*
belong to intkC if and only if v + d, and v + ds belong to int/C. We have

(v+dy)o(v+ds) =v?+vo(d, +dy)+dyod,
(3.3) =e+dyods.

Lemma 3.1. The iterate (zT,s1) is strictly feasible if e + d, o ds € intkC.

Proof. The proof is similar to the proof of Lemma 4.2 in [5], and is therefore
omitted. 0



61 Kheirfam and Mahdavi-Amiri

Corollary 3.2. The iterate (x,sT) is strictly feasible if | A(dg o dy)||eo < 1.
Proof. By Lemma 3.1, the iterate (z1, sT) is strictly feasible if e+d,od, € intk.

If |A(dy 0 ds)]|oo < 1. Then we have —1 < \j(dyods) <1, foralli=1,...,r
Therefore,

Aile+dyods) =1+ N(dpods) >0, i=1,...,7.

The last inequalities mean that e + d, o ds € intKC, and the proof follows. [
In the sequel, we use the notation
1
(3-4) w(v) = 5 (ldolF + l1ds]l%)-
2
It follows, from Lemmas 2.16 and 2.12 of [5], that
1
IX(dz 0 ds)llo < lldo 0 dsllp < S]Id3 + d2]|r
1
(3.5) < SldellF + sl ) = w(v).

Corollary 3.3. If w(v) < 1, then the iterate (T, s") is strictly feasible.

Proof. Due to (3.5), w(v) < 1 implies ||A(d; 0ds)|lco < 1. By Corollary 3.2, the
proof is complete. O

Assuming w(v) < 1, which guarantees strict feasibility of the iterate (z+, sT),
we proceed by deriving an upper bound for §(z™,s*; ). By definition, we
have

1 _
8t 5t %) = gl = @)
+._ P(wH) " 3)et [ _ P(wh)3)st T
where vt = = [— T ].In what follows, we denote 6(x™, s™; u™)

shortly by &(v™).
Lemma 3.4. Let w(v) < 1. Then, we have
S < 0y/r + w(v) .
2y/(1=0)(1 —w(v))

Proof. Since w(v) < 1, using corollaries 3.3 and 3.2, Lemma 3.1, (3.3) and (3.2),
it follows that v + d,,v + ds and (v + d;) o (v + ds) belong to intXC. Similar to
the proof of lemma 3.3 of [8], we have

[SE

T—6vt ~ [P(v+d,)% (v +dy)] 2.
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Using Theorem 4 of [15] and (3.5), we have
Amin(01)? = mm(P(v—&-d ) (v+ds ))

V1—10 V1i—10
> wn((55) ° (1))
mm(e+d ody)

1+ )\mln (d:r o ds)

1-46
> 1- ||dm ods”F
- 1—46
< 1 —w(v).
- 1-46
Hence, using Lemma 2.9 of [10], the above inequality, Lemma 30 of [11], (3.3),
the triangle inequality and (3.5), we may write
200%) = vt = (") r
_ w2 —els
o )\min(v+)
- V1i—9 P(U—l—dg;)%(v-i-ds)_ H
T /1-w() VI—60/ \y1-9 F
< () () -
T V1I-w)NV1-10 1-6 F
B \/1—9 e—f—dmocls_ H
B 1— w 1-0 ¢ F
B Hee+d ods||,,
V(I =0)(1 - w(v))
< 0/r +w(v)
T V/A-0)(0-w()
This completes the proof. O

3.2. Upper bound for w(v). We may easily check that the system (2.5),
defining the search directions Axz and As, can be expressed in terms of the
scaled search directions d, and d, as follows:

1
_ 2
Md, —d, = Gur9,
(3.6) N q
dy +ds=v"1—w,
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where M := P(w)2 M P(w)? is positive semidefinite [3].
Lemma 3.5. Let a € R® and M € R™ ™ be positive semidefinite. Then, the

solution (u,v) of the linear system

Mu—v=0,

(3.7) e

satisfies
lull® + llvllF < llalZ.
Proof. We have
[ullf + llollE = llu+olf = 2(u,v) < Jlu+ ol = [la]|

The inequality follows from M being positive semidefinite to complete the
proof. O

Lemma 3.6. Let a and b be two n-dimensional vectors, and let M € R™*™ be
positive semidefinite. Then, the solution (u,v) of the linear system

Mu—v =0,

(3.8) u+v=a,

satisfies
[ullf + [[oll7 < 4]lallF + 6]/l
Proof. Tt is easily seen that the system (3.8) can be written as

Mu—9=0,
(3.9) u+0=a+b,
where © = v + b. Applying Lemma 3.5 to (3.9), it follows that

lullf + 19l < lla + bli% = llalF + [IblIF + 2(a, b) < 2(|lallF + [Ib]I%)-

Therefore, using the above inequality, we get

lullf + llollz = [lullf + 1o bl
< 2lfullf +2(|IolF + 18l[F) < 4llallZ + 6[Ib]I%-
This completes the proof. O

Comparing the system (3.8) with the system (3.6) and considering (u,v) =

(dz,ds), b= P<w§)91/7ﬂ2 and a = v~! — v in (3.8), by using Lemma 3.6 and
N

|PGwb)rglfy = (Plwhyrg, Plwting) = < o)
= (P(w)r ,2pde> (P( dee—r > (P( rq,2pd6>

<P(w)(2pde),20de>—<P( )(2pae — 1), 2pqe)
< (P(w)(2pae), 2pae) = 4p3(P(w)e, €>—4pdtr(w2)
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where the inequalities hold since 2° = ppe, s® = pge and [|p,Me + q|lr < pa
imply 2pge > 7’2 > 0, we get

_ 36212 1 2
ww) < 2o —ollf+ == [Pl
1202 2,2
< 857 4 P (y?),
. . . ) tr(z?)
Now, using the inequality tr(w?) < (0] (Lemma 4.5 of [5]), Lemma 2.2,
MU Amin U
tr(z) < rpy(2 + p(6)?) ( Lemma 3.7 of [3]) and pu = vp,p4, we obtain:
126%12p? tr(a?) 1262p(6)?
w(v) < 862 + d <852+ L gr(x)?
( ) N)\min(v)2 ;012) ( )
(3.10) < 882 +1260%7%p(6)2 (2 + p(6)%)°.

3.3. Values for 6 and 7. Our aim is to find a positive number 7 such that if
§ :=d(v) <7, then §(v") < 7. By Lemma 3.4, this holds if w(v) < 1 and
0\/1 4+ w(v) <r

2/ -1 - w(v))
Assuming §(v) < 7, we therefore need to find 7 such that the above inequality
holds, with 6 as large as possible. We choose

11
460 T 16

Using § < 7, it follows from (3.10), with the right-hand side of (3.10) being
monotonically increasing with respect to 4, that

(3.11)

(3.12) 6=

omega(v) < 877 +120%r%p(1)*(2 + /)(7)2)2

_ oLy EEVCWERY 1232
= 8(55) +12(g5) () (2+p(16) )
— 0.0943 < 1.

The above inequality means, using Corollary 3.3, that the iterate (z+,s™) is
strictly feasible. From Lemma 3.4, it follows that

sty < —VrEel) or +0.0943
2/ =01 —w(0) ™ 2, /(1 L)(1 - 0.0943)

1
=0.0617 < ="

This implies that (3.11) holds. Therefore, the algorithm is well-defined in the
sense that the property 6(z, s; u) < 7 is maintained in all iterations.
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3.4. Complexity. We have found that if at the start of an iteration the iterate
satisfies 0(z, s; ) < 7 and 7 and 6 are defined as in (3.12), then after the full-
NT step, the iterate is strictly feasible and satisfies d(z™,s*; u™) < 7. This
establishes that the algorithm is well-defined.

In each main iteration, both the barrier parameter p and the norm of the
residual vector are reduced by the factor 1 — . Hence, the total number of
main iterations is bounded above by

1 max{tr(z° o %), ||r2|\p}
7] log .

€
Thus, we next state the main result of our work.

Theorem 3.7. If (1.1) has a solution (x*,s*) such that ||[z*||c < pp and
Is*loo < pd, then after at most

max{tr(z® o s° , r0
P L G L [

€
iterations the algorithm finds an e-solution of (1.1).
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