
Special Issue of the

Bulletin of the
Iranian Mathematical Society

Special Issue Dedicated to ORO2013 Conference

ISSN: 1017-060X (Print) ISSN: 1735-8515 (Online)

Vol. 42 (2016), No. 7, pp. 55–66

Title:

An improved infeasible interior-point method for
symmetric cone linear complementarity problem

Author(s):

B. Kheirfam and N. Mahdavi-Amiri

Published by Iranian Mathematical Society
http://bims.ims.ir



Bull. Iranian Math. Soc.
Vol. 42 (2016), No. 7, pp. 55–66
Online ISSN: 1735-8515

AN IMPROVED INFEASIBLE INTERIOR-POINT METHOD

FOR SYMMETRIC CONE LINEAR COMPLEMENTARITY

PROBLEM
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(Communicated by Majid Soleimani-damaneh)

Abstract. We present an improved version of a full Nesterov-Todd step

infeasible interior-point method for linear complementarity problem over

symmetric cone (Bull. Iranian Math. Soc., 40, (2014), no. 3, 541–564).
In the earlier version, each iteration consisted of one so-called feasibility

step and a few -at most three - centering steps. Here, each iteration

consists of only a feasibility step. Thus, the new algorithm demands less
work in each iteration and admits a simple analysis of complexity bound.

The complexity result coincides with the best-known iteration bound for

infeasible interior-point methods.
Keywords: Linear complementarity problem, infeasible interior-point

method, symmetric cones, polynomial complexity.
MSC(2010): Primary: 90C33; Secondary: 90C51.

1. Introduction

Consider a Euclidean Jordan algebra (J , ◦, 〈·, ·〉), where ◦ denotes the Jordan
product and J is a finite-dimensional vector space over the real field R equipped
with the inner product 〈·, ·〉, and letK be a symmetric cone in J . The monotone
linear complementarity problem over symmetric cone (SCLCP) requires the
computation of a vector pair (x, s) ∈ K ×K satisfying

s = Mx+ q, x ◦ s = 0,(1.1)

where q ∈ Rn and M ∈ Rn×n such that v = Mu implies that 〈u, v〉 ≥ 0.
Although SCLCP is not an optimization problem, it is closely related to one,
because optimality conditions of several important optimization problems can
be written as an SCLCP; e.g., linear optimization (LO) problem over symmetric
cone (SCO). Faybusovich was the first to analyze a short-step path-following
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interior-point method (IPM) for SCLCP [2, 3]. In addition to Faybusovich’s
results, Rangarajan [10] proposed the first infeasible IPM (IIPM) for SCLCP.
The primal-dual full-Newton step feasible IPM for LO was first analyzed by
Roos et al. [12] and was later extended to infeasible version by Roos [11]. Both
versions of the method were extended by Kheirfam and Mahdavi-Amiri [8] to
SCLCP by using the Nesterov-Todd (NT) direction as a search direction. The
obtained iteration bounds coincide with the ones derived for LO, currently be-
ing best known iteration bounds for SCLCP. Subsequently, both versions were
extended by Kheirfam and Mahdavi-Amiri [6, 7] to SCLCP based on modified
NT-directions using Euclidean Jordan algebra. Recently, Roos [13] proposed
a new method for LO by improving the full-Newton step IIPMs so that the
centering steps not be needed, whereas the above-mentioned methods require
a few (at most three) centering steps in each (main) iteration. Motivated by
Roos’ recent work, we present a new full-NT step IIPM for SCLCP which uses
only a full step in each (main) iteration. The new algorithm starts from an
infeasible point, located in a small neighborhood of the central path of a per-
turbed SCLCP. Then, after a full-NT step the new iterate is well-centered for
the new perturbed SCLCP. This kind of strategy reduces the number of itera-
tions and the resulting complexity coincides with the best known bound, while
tendering a simple analysis.

In what follows, we briefly recall some concepts, properties, and results from
Euclidean Jordan algebras as needed. A comprehensive treatment of Euclidean
Jordan algebra can be found in [1].

A Euclidean Jordan algebra is a triple (J , ◦, 〈·, ·〉), where (J , 〈·, ·〉) is an
n-dimensional inner product space over R and (x, y)→ x ◦ y on J is a bilinear
mapping satisfying the following conditions for all x, y, z ∈ J :

(i) x ◦ y = y ◦ x,
(ii) x ◦ (x2 ◦ y) = x2 ◦ (x ◦ y), where x2 = x ◦ x,

(iii) 〈x ◦ y, z〉 = 〈x, y ◦ z〉,
where the inner product 〈·, ·〉 is defined by 〈x, y〉 := tr(x ◦ y) for any x, y ∈ J .

Note that, by Theorem III.2.1 of [1], the symmetric cone K coincides with
the set of squares {x2 : x ∈ J } of some Euclidean Jordan algebra J . We
assume that there exists an element e such that x◦ e = e◦x = x, for all x ∈ J .
The rank of (J , ◦, 〈·, ·〉) is defined to be

r := max
{

deg(x) : x ∈ J
}
,

where deg(x) is the degree of x ∈ J , given by

deg(x) := min
{
k : {e, x, . . . , xk} are linearly dependent

}
.

For any x ∈ J , the Lyapunov transformation L(x) : J → J is defined as
L(x)y = x ◦ y, for all y ∈ J . It follows from (i) and (iii) above that the
Lyapunov transformation is symmetric; i.e., 〈L(x)y, z〉 = 〈y, L(x)z〉 holds for
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all y, z ∈ J . Specially, L(x)e = x and L(x)x = x2, for x ∈ J . Using the
Lyapunov transformation, the quadratic representation of x ∈ J is defined as

P (x) := 2L(x)2 − L(x2),

where L(x)2 = L(x)L(x). For any x ∈ K, L(x) is positive semidefinite; i.e.,
〈L(x)x, x〉 ≥ 0, and 〈x, y〉 = 0 if and only if x ◦ y = 0, for any x, y ∈ K (Lemma
2.2 of [2]). An element c ∈ J is idempotent if c ◦ c = c 6= 0, which is also
primitive if it cannot be written as a sum of two idempotents. We say that
{c1, c2, . . . , ck} is a Jordan frame, if each ci is a primitive idempotent, ci ◦ cj =

0(i 6= j) and
∑k
i=1 ci = e. Let (J , ◦, 〈·, ·〉) be a Euclidean Jordan algebra with

rank(J ) = r. Then, for any x ∈ J , there exist a Jordan frame {c1, c2, . . . , cr}
and real numbers λ1(x), λ2(x), . . . , λr(x) such that x =

∑r
i=1 λi(x)ci (spectral

decomposition, Theorem III.1.2 of [1]). Every λi(x) is called an eigenvalue
of x. We denote the minimum and maximum eigenvalues of x by λmin(x)
and λmax(x), respectively. If two elements x and y share the same Jordan
frames in the spectral decompositions, then they operator commute; i.e., they
satisfy L(x)L(y) = L(y)L(x) (Theorem 27 of [14]). The trace of x is defined

to be tr(x) :=
∑r
i=1 λi(x) and the Frobenius norm of x is ‖x‖F :=

√
〈x, x〉 =√

λ1(x)2 + . . .+ λr(x)2. Observe that ‖e‖F =
√
r. We also see that x ∈ K

(respectively, x ∈ intK) if and only if λi(x) ≥ 0 (respectively, λi(x) > 0),
for all i = 1, 2, . . . , r. For any x ∈ J , having the spectral decomposition
x =

∑r
i=1 λi(x)ci, we denote

x
1
2 :=

r∑
i=1

√
λi(x)ci, if λi(x) ≥ 0 and x−1 :=

r∑
i=1

λi(x)
−1
ci, if λi(x) 6= 0.

The remainder of our work is organized as follows. In the next section, we
introduce the perturbed problem and describe our proposed algorithm. Section
3 gives an analysis of the algorithm. In subsection 3.1, we derive an upper
bound for the proximity measure after a full step. Subsection 3.2 serves to
derive an upper bound for ω(v). In subsection 3.3, we fix the values of the
parameters θ and τ in the algorithm. Here, τ is a uniform upper bound for the
values of the proximity measure, δ(x, s;µ), occurring during the course of the
algorithm, and θ determines the progress to feasibility and optimality of the
iterates. As a result, we realize the algorithm to be well-defined for the chosen
values of θ and τ . Finally, we derive the complexity of the algorithm coinciding
with the best known iteration bound for IIPMs.

2. Infeasible full-NT step IPM

In the case of an infeasible method, we call the pair (x, s) an ε-solution of
(1.1) if the Frobenius norm of the residual vector s−Mx− q does not exceed
ε, and also 〈x, s〉 := tr(x ◦ s) ≤ ε.
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2.1. The perturbed problem. In accordance with the available results on
IIPMs (e.g., see [8]), it is assumed that there exists a solution (x∗, s∗) such that

‖x∗‖∞ ≤ ρp, max{‖s∗‖∞, ‖ρpMe+ q‖F } ≤ ρd,(2.1)

where ρp and ρd are positive numbers. Furthermore, we choose arbitrarily
(x0, s0) ∈ intK and µ0 > 0 such that

x0 = ρpe, s
0 = ρde, and µ0 = ρpρd,(2.2)

as the starting point of the algorithm, where ρp and ρd are defined as in (2.1).
The initial value of the residual vector is denoted to be r0q = s0 −Mx0 − q.
In general, we have r0q 6= 0. However, a sequence of perturbed problems is
constructed below in a such a way that the initial iterate is strictly feasible for
the first perturbed problem in the sequence.

For any ν, with 0 < ν ≤ 1, we consider the perturbed problem (SCLCPν),
defined by

s−Mx− q = νr0q , (x, s) ∈ K ×K (SCLCPν).

It is obvious that (x, s) = (x0, s0) is a strictly feasible solution of (SCLCPν),
when ν = 1. This means that the perturbed problem (SCLCPν) satisfies the
interior point condition (IPC), for ν = 1; i.e., there exists (x0, s0) ∈ intK× intK
such that s0 − Mx0 − q = νr0q , which then straightforwardly leads to the
following result.

Theorem 2.1. (Theorem 3.1 of [8]) Let (1.1) be feasible and 0 < ν ≤ 1. Then,
the perturbed problem (SCLCPν) satisfies the IPC.

Let (1.1) be feasible and 0 < ν ≤ 1. Then, Theorem 2.1 implies that the
problem (SCLCPν) satisfies the IPC, for 0 < ν ≤ 1, and hence a corresponding
central path exists. This means that the system

s−Mx− q = νr0q , (x, s) ∈ K ×K,
x ◦ s = µe,

(2.3)

has a unique solution for every µ > 0, as the µ-center of the perturbed problem
(SCLCPν). The set of µ-centers is called the central path. In what follows,
the parameters µ and ν always satisfy the relation µ = νµ0 = νρpρd. It is also
worth noting that, according to (2.2), x0 ◦ s0 = µ0e; hence, (x0, s0) is the µ0-
center of the perturbed problem (SCLCPν) for ν = 1. Therefore, the algorithm
can easily be started since by construction we have the initial starting point
lying exactly on the central path of (SCLCPν) for ν = 1.

Let (x, s) be a feasible solution of (SCLCPν), and µ = νµ0. Then, we
measure proximity to the µ-center of the perturbed problem (SCLCPν) by the
quantity

δ(x, s;µ) := δ(v) :=
1

2

∥∥v−1 − v∥∥
F
, where v :=

P (w−
1
2 )x

√
µ

[
=
P (w

1
2 )s

√
µ

]
,
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and w := P (x
1
2 )
(
P (x

1
2 )s
)− 1

2 [= P (s−
1
2 )
(
P (s

1
2 )x
) 1

2 ] is called the scaling point
of x and s (Lemma 3.2 of [4]). As a consequence, we have the following lemma.

Lemma 2.2. (Lemma 4.7 of [5]) If δ := δ(v), then

1

ρ(δ)
≤ λmin(v) ≤ λmax(v) ≤ ρ(δ), where ρ(δ) := δ +

√
1 + δ2.

2.2. An iteration of our algorithm. Suppose that for some µ ∈ (0, µ0] we
have x and s satisfying the first equation in (2.3) for ν = µ

µ0 and such that

δ(x, s;µ) ≤ τ . This certainly holds at the start of the first iteration, since
s0 − Mx0 − q = νr0q , when ν = 1 and δ(x0, s0;µ0) = 0. We reduce µ to

µ+ := (1 − θ)µ and ν to ν+ := (1 − θ)ν with θ ∈ (0, 1), and find new iterates
x+ and s+ satisfying the first equation in (2.3), with µ replaced by µ+ and ν

by ν+ = µ+

µ0 , and such that δ(x+, s+;µ+) ≤ τ . Note that ν+ = (1 − θ)ν. So,

the relation µ = νµ0 is maintained in every iteration.
Suppose that we have strictly feasible iterates x and s for (SCLCPν). This

means that (x, s) satisfies the first equation of (2.3) with x ∈ intK and s ∈ intK.
With ν replaced by ν+ = (1− θ)ν, we find displacements ∆x and ∆s such that

M∆x−∆s = θνr0q ,
s ◦∆x+ x ◦∆s = µe− x ◦ s.(2.4)

Due to the fact that L(x)L(s) 6= L(s)L(x), in general, the above system does
not always have a unique solution. To overcome this difficultly, the second equa-
tion of the system (2.3) is replaced by the following equivalent scaled equation
(see Lemma 28 of [14]):

P (w−
1
2 )x ◦ P (w

1
2 )s = µe,

where w is the NT-scaling point of x and s. This scaling point was first proposed
by Nesterov and Todd [9] for self-scaled cones and then adapted by Faybusovich
[3] for symmetric cones. In this case, the system (2.4) becomes

M∆x−∆s = θνr0q ,

P (w
1
2 )s ◦ P (w−

1
2 )∆x+ P (w−

1
2 )x ◦ P (w

1
2 )∆s =

µe− P (w−
1
2 )x ◦ P (w

1
2 )s.

(2.5)

It is easily seen that x+ := x+∆x and s+ := s+∆s satisfy s−Mx−q = ν+r0q .

The main part of the analysis is to guarantee that x+ ∈ intK and s+ ∈ intK
satisfy δ(x+, s+;µ+) ≤ τ .
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2.3. The algorithm. A formal description of the new algorithm is given in
Figure 1.

Infeasible interior− point algorithm
Input :

accuracy parameter ε > 0;
barraier update parameter θ, 0 < θ < 1;

begin
x := ρpe; s := ρde; ν = 1; µ = ρpρd;

while max
(
tr(x ◦ s), ‖rq‖F

)
> ε do

begin
(x, s) := (x, s) + (∆x,∆s);
µ := (1− θ)µ; ν := (1− θ)ν;

end
end

Figure 1 : The algorithm

3. Analysis of the algorithm

Let x and s denote the iterates at the start of an iteration, and assume
δ(x, s;µ) ≤ τ.

3.1. Upper bound for δ(v+). As established in subsection 2.2, the full-NT
step generates new iterates x+ and s+ that satisfy the feasibility condition
for (SCLCPν+), except for possibly the constraints on the cone K. A crucial
element in the analysis is to show that, after the full-NT step, δ(x+, s+;µ+) ≤ τ.

Defining

dx :=
P (w−

1
2 )∆x
√
µ

, ds :=
P (w

1
2 )∆s
√
µ

,(3.1)

the second equation of (2.5) turns to

dx + ds = v−1 − v.
In this case, using the definition of v and (3.1), we get

x+ =
√
µP (w

1
2 )(v + dx), s+ =

√
µP (w−

1
2 )(v + ds).(3.2)

Since P (w
1
2 ) and its inverse P (w−

1
2 ) are automorphisms of intK, x+ and s+

belong to intK if and only if v + dx and v + ds belong to intK. We have

(v + dx) ◦ (v + ds) = v2 + v ◦ (dx + ds) + dx ◦ ds
= e+ dx ◦ ds.(3.3)

Lemma 3.1. The iterate (x+, s+) is strictly feasible if e+ dx ◦ ds ∈ intK.

Proof. The proof is similar to the proof of Lemma 4.2 in [5], and is therefore
omitted. �
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Corollary 3.2. The iterate (x+, s+) is strictly feasible if ‖λ(dx ◦ ds)‖∞ < 1.

Proof. By Lemma 3.1, the iterate (x+, s+) is strictly feasible if e+dx◦ds ∈ intK.
If ‖λ(dx ◦ ds)‖∞ < 1. Then we have −1 < λi(dx ◦ ds) < 1, for all i = 1, . . . , r.
Therefore,

λi(e+ dx ◦ ds) = 1 + λi(dx ◦ ds) > 0, i = 1, . . . , r.

The last inequalities mean that e+ dx ◦ ds ∈ intK, and the proof follows. �

In the sequel, we use the notation

ω(v) :=
1

2

(
‖dx‖2F + ‖ds‖2F

)
.(3.4)

It follows, from Lemmas 2.16 and 2.12 of [5], that

‖λ(dx ◦ ds)‖∞ ≤ ‖dx ◦ ds‖F ≤
1

2
‖d2x + d2s‖F

≤ 1

2
(‖dx‖2F + ‖ds‖2F ) = ω(v).(3.5)

Corollary 3.3. If ω(v) < 1, then the iterate (x+, s+) is strictly feasible.

Proof. Due to (3.5), ω(v) < 1 implies ‖λ(dx ◦ds)‖∞ < 1. By Corollary 3.2, the
proof is complete. �

Assuming ω(v) < 1, which guarantees strict feasibility of the iterate (x+, s+),
we proceed by deriving an upper bound for δ(x+, s+;µ+). By definition, we
have

δ(x+, s+;µ+) :=
1

2

∥∥v+ − (v+)−1
∥∥
F
,

where v+ := P ((w+)
− 1

2 )x+√
µ+

[
= P ((w+)

1
2 )s+√

µ+

]
. In what follows,we denote δ(x+, s+;µ+)

shortly by δ(v+).

Lemma 3.4. Let ω(v) < 1. Then, we have

δ(v+) ≤ θ
√
r + ω(v)

2
√

(1− θ)(1− ω(v))
.

Proof. Since ω(v) < 1, using corollaries 3.3 and 3.2, Lemma 3.1, (3.3) and (3.2),
it follows that v + dx, v + ds and (v + dx) ◦ (v + ds) belong to intK. Similar to
the proof of lemma 3.3 of [8], we have

√
1− θv+ ∼

[
P (v + dx)

1
2 (v + ds)

] 1
2 .
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Using Theorem 4 of [15] and (3.5), we have

λmin(v+)2 = λmin

(
P
( v + dx√

1− θ

) 1
2
( v + ds√

1− θ

))
≥ λmin

(( v + dx√
1− θ

)
◦
( v + ds√

1− θ

))
=

λmin(e+ dx ◦ ds)
1− θ

=
1 + λmin(dx ◦ ds)

1− θ

≥ 1− ‖dx ◦ ds‖F
1− θ

≥ 1− ω(v)

1− θ
.

Hence, using Lemma 2.9 of [10], the above inequality, Lemma 30 of [14], (3.3),
the triangle inequality and (3.5), we may write

2δ(v+) = ‖v+ − (v+)−1‖F

≤ ‖(v+)2 − e‖F
λmin(v+)

≤
√

1− θ√
1− ω(v)

∥∥∥P( v + dx√
1− θ

) 1
2
( v + ds√

1− θ

)
− e
∥∥∥
F

≤
√

1− θ√
1− ω(v)

∥∥∥( v + dx√
1− θ

)
◦
( v + ds√

1− θ

)
− e
∥∥∥
F

=

√
1− θ√

1− ω(v)

∥∥∥e+ dx ◦ ds
1− θ

− e
∥∥∥
F

=

∥∥θe+ dx ◦ ds
∥∥
F√

(1− θ)(1− ω(v))

≤ θ
√
r + ω(v)√

(1− θ)(1− ω(v))
.

This completes the proof. �

3.2. Upper bound for ω(v). We may easily check that the system (2.5),
defining the search directions ∆x and ∆s, can be expressed in terms of the
scaled search directions dx and ds as follows:

Mdx − ds =
P (w

1
2 )

√
µ

θνr0q ,

dx + ds = v−1 − v,
(3.6)
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where M := P (w)
1
2MP (w)

1
2 is positive semidefinite [8].

Lemma 3.5. Let a ∈ Rn and M ∈ Rn×n be positive semidefinite. Then, the
solution (u, v) of the linear system

Mu− v = 0,
u + v = a,

(3.7)

satisfies

‖u‖2F + ‖v‖2F ≤ ‖a‖2F .

Proof. We have

‖u‖2F + ‖v‖2F = ‖u+ v‖2F − 2〈u, v〉 ≤ ‖u+ v‖2F = ‖a‖2F .
The inequality follows from M being positive semidefinite to complete the
proof. �

Lemma 3.6. Let a and b be two n-dimensional vectors, and let M ∈ Rn×n be
positive semidefinite. Then, the solution (u, v) of the linear system

Mu− v = b,
u+ v = a,

(3.8)

satisfies

‖u‖2F + ‖v‖2F ≤ 4‖a‖2F + 6‖b‖2F .

Proof. It is easily seen that the system (3.8) can be written as

Mu− ṽ = 0,
u+ ṽ = a+ b,

(3.9)

where ṽ = v + b. Applying Lemma 3.5 to (3.9), it follows that

‖u‖2F + ‖ṽ‖2F ≤ ‖a+ b‖2F = ‖a‖2F + ‖b‖2F + 2〈a, b〉 ≤ 2
(
‖a‖2F + ‖b‖2F

)
.

Therefore, using the above inequality, we get

‖u‖2F + ‖v‖2F = ‖u‖2F + ‖ṽ − b‖2F
≤ 2‖u‖2F + 2

(
‖ṽ‖2F + ‖b‖2F

)
≤ 4‖a‖2F + 6‖b‖2F .

This completes the proof. �

Comparing the system (3.8) with the system (3.6) and considering (u, v) =

(dx, ds), b =
P (w

1
2 )

√
µ

θνr0q and a = v−1 − v in (3.8), by using Lemma 3.6 and∥∥P (w
1
2 )r0q

∥∥2
F

=
〈
P (w

1
2 )r0q , P (w

1
2 )r0q

〉
=
〈
P (w)r0q , r

0
q

〉
=
〈
P (w)r0q , 2ρde

〉
−
〈
P (w)r0q , 2ρde− r0q

〉
≤
〈
P (w)r0q , 2ρde

〉
=
〈
P (w)(2ρde), 2ρde

〉
−
〈
P (w)(2ρde− r0q), 2ρde

〉
≤
〈
P (w)(2ρde), 2ρde

〉
= 4ρ2d

〈
P (w)e, e

〉
= 4ρ2dtr(w

2),
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where the inequalities hold since x0 = ρpe, s
0 = ρde and ‖ρpMe + q‖F ≤ ρd

imply 2ρde � r0q � 0, we get

ω(v) ≤ 2‖v−1 − v‖2F +
3θ2ν2

µ

∥∥P (w
1
2 )r0q

∥∥2
F

≤ 8δ2 +
12θ2ν2ρ2d

µ
tr(w2).

Now, using the inequality tr(w2) ≤ tr(x2)

µλmin(v)2
(Lemma 4.5 of [5]), Lemma 2.2,

tr(x) ≤ rρp(2 + ρ(δ)2) ( Lemma 3.7 of [8]) and µ = νρpρd, we obtain:

ω(v) ≤ 8δ2 +
12θ2ν2ρ2d

µ
× tr(x2)

µλmin(v)2
≤ 8δ2 +

12θ2ρ(δ)2

ρ2p
tr(x)2

≤ 8δ2 + 12θ2r2ρ(δ)2
(
2 + ρ(δ)2

)2
.(3.10)

3.3. Values for θ and τ . Our aim is to find a positive number τ such that if
δ := δ(v) ≤ τ , then δ(v+) ≤ τ . By Lemma 3.4, this holds if ω(v) < 1 and

θ
√
r + ω(v)

2
√

(1− θ)(1− ω(v))
≤ τ.(3.11)

Assuming δ(v) ≤ τ , we therefore need to find τ such that the above inequality
holds, with θ as large as possible. We choose

θ =
1

46r
, τ =

1

16
.(3.12)

Using δ ≤ τ , it follows from (3.10), with the right-hand side of (3.10) being
monotonically increasing with respect to δ, that

omega(v) ≤ 8τ2 + 12θ2r2ρ(τ)2
(
2 + ρ(τ)2

)2
= 8

( 1

16

)2
+ 12

( 1

46r

)2
r2ρ
( 1

16

)2(
2 + ρ

( 1

16

)2)2
= 0.0943 < 1.

The above inequality means, using Corollary 3.3, that the iterate (x+, s+) is
strictly feasible. From Lemma 3.4, it follows that

δ(v+) ≤ θ
√
r + ω(v)

2
√

(1− θ)(1− ω(v))
≤

1
46
√
r

+ 0.0943

2
√

(1− 1
46r )(1− 0.0943)

= 0.0617 <
1

16
= τ.

This implies that (3.11) holds. Therefore, the algorithm is well-defined in the
sense that the property δ(x, s;µ) ≤ τ is maintained in all iterations.
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3.4. Complexity. We have found that if at the start of an iteration the iterate
satisfies δ(x, s;µ) ≤ τ and τ and θ are defined as in (3.12), then after the full-
NT step, the iterate is strictly feasible and satisfies δ(x+, s+;µ+) ≤ τ . This
establishes that the algorithm is well-defined.

In each main iteration, both the barrier parameter µ and the norm of the
residual vector are reduced by the factor 1 − θ. Hence, the total number of
main iterations is bounded above by

1

θ
log

max{tr(x0 ◦ s0), ‖r0q‖F }
ε

.

Thus, we next state the main result of our work.

Theorem 3.7. If (1.1) has a solution (x∗, s∗) such that ‖x∗‖∞ ≤ ρp and
‖s∗‖∞ ≤ ρd, then after at most

46r log
max{tr(x0 ◦ s0), ‖r0q‖F }

ε

iterations the algorithm finds an ε-solution of (1.1).
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