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Abstract. A common approach to determine efficient solutions of a
multiple objective optimization problem is reformulating it to a parame-

ter dependent scalar optimization problem. This reformulation is called

scalarization approach. Here, a well-known scalarization approach named
Pascoletti-Serafini scalarization is considered. First, some difficulties of

this scalarization are discussed and then removed by restricting the pa-

rameter set.
A method is presented to convert a space ordered by a specific ordering

cone to an equivalent space ordered by the natural ordering cone. Uti-

lizing the presented conversion, all confirmed results and theorems for
multiple objective optimization problems ordered by the natural ordering

cone can be extended to multiple objective optimization problems ordered

by specific ordering cones.
Keywords: Multiple objective optimization, Pascoletti-Serafini scalar-

ization, ordering cone, parameter set restriction, convexification.
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1. Introduction

There are various research works on approximating efficient solutions of mul-
tiple objective optimization problems (MOPs); e.g., see [2, 4, 6, 7, 9, 12, 14, 20–
22, 25]. A common approach to determine efficient solutions of a MOP is re-
formulating it to a parameter dependent scalar optimization problem. This re-
formulation is called scalarization. By solving the scalar optimization problem
for a variety of parameters, several solutions of the MOP are generated. The
most interesting scalarizations are those that by varying their parameters, all
efficient solutions of a general MOP can be obtained. For example, we can refer
to the well-known Pascoletti-Serafini scalarization [22] method. The Pascoletti-
Serafini scalarization [22] is termed variously in the references [9–11,19,24,26],
but its application to multiple objective optimization was first given in [22].
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Despite popularity, the Pascoletti-Serafini scalarization has some difficulties
as mentioned below:
1. Its parameters are selected from an unbounded set.
2. For some parameters, it is possible that the scalar problem becomes un-
bounded from below. In practical situations, the user could pick a finite num-
ber of points as parameters, corresponding to many (or all) of which the scalar
problem becomes unbounded from below.
3. The parameter selection is random and does not appear to have any partic-
ular regularity.

Now, the question is whether we can eliminate the mentioned difficulties by
restricting the parameter set of this Pascoletti-Serafini scalarization and still
obtain all efficient solutions of the MOP? Here, it is shown that the answer to
this question is “positive” for MOPs being bounded from below (have utopia
points).

The Pascoletti-Serafini scalarization [22] has two parameters which by vary-
ing them in Rp, all efficient solutions of a general MOP can be obtained. We
show that the parameter set of the scalarization can be restricted to a bounded
subset and all efficient solutions of MOPs that have utopia points can still be
obtained. This bounded subset is constant for all MOPs and does not depend
on the structure of different MOPs. Also, for any parameter of this subset the
Pascoletti-Serafini scalarization always is bounded from below.

Some works on restricting the parameter set of the Pascoletti-Serafini scalar-
ization are [9] and [17]. The parameter set restriction method given in [17] is
proposed for MOPs with natural ordering cones, and the proposed method
in [9] has some difficulties to be addressed in our work. The method proposed
here is an extension of the method given in [17] for MOPs with closed pointed
ordering cones.

There are several effective methods to approximate efficient solutions of
MOPs ordered by the natural ordering cone. We can refer to the ε-constraint
method [13], the improved ε-constraint method [8], the weighted Tchebycheff
method [15], the free disposal outer approximation method [12], the weighted
sum method and the methods reviewed in [4, 6, 16]. Also, in [18] a method
is presented to convexify the Pareto front of MOPs ordered by the natural
ordering cone with certain properties.

These well-known approaches are not able to determine efficient solutions
of MOPs ordered by unnatural ordering cones. Considering that the unnat-
ural ordering cones appear in many practical multiple objective optimization
problems [1, 5, 23], generalizations of the mentioned methods to approximate
efficient solutions of MOPs ordered by unnatural ordering cones may turn to
be worthwhile from both theoretical and practical points of view. To this end,
we present a method to convert a space ordered by a specific ordering cone
to an equivalent space ordered by the natural ordering cone. The equivalence
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between the original space and the converted space means that the order be-
tween two points in the original space is the same as the order between their
corresponding points in the converted space.

The rest of the paper is organized as follows. In Section 2, some prelimi-
naries and basic definitions are provided. In Section 3, the Pascoletti-Serafini
scalarization [22] and the parameter set restriction method of [9] are reviewed.
In Section 4, a new parameter set restriction method for the Pascoletti-Serafini
scalarization is presented. Some numerical results are given in Section 5. In
Section 6, a method to convert a space ordered by a specific ordering cone to an
equivalent space ordered by the natural ordering cone is presented. Conclusions
are given in Section 7.

2. Preliminaries and basic definitions

Consider a multiple objective optimization problem as follows:

(2.1) MOP : min
x∈X

f(x) =
(
f1(x), f2(x), ..., fp(x)

)
,

where X ⊂ Rn is a nonempty set and f is a vector-valued function composed
of p (p ≥ 2) real-valued functions. The image of X under f is denoted by
Y := f(X) ⊆ Rp and referred to as the image space.

Definition 2.1. A nonempty set κ ⊆ Rp is called a cone, if λκ ⊆ κ for all
λ ≥ 0.

Definition 2.2. A cone κ is called pointed if κ ∩ (−κ) = {0}.

Definition 2.3. Let κ be a convex cone (ordering cone). We say that the
space Rp is ordered by the ordering cone κ, if we use the notation “ �κ ” to
compare the points in Rp. For x, y ∈ Rp, the notation x �κ y means y−x ∈ κ.

Remark 2.4. In the rest of the paper, it is assumed that the ordering cone κ is
closed, pointed and int(κ) 6= ∅.

Considering a pointed ordering cone κ ⊆ Rp, efficient solutions of MOP (2.1)
is defined as follows.

Definition 2.5. A feasible solution x̂ ∈ X is called an efficient solution of (2.1)
with respect to the ordering cone κ, if there is no x ∈ X such that f(x) �κ f(x̂)

and f(x) 6= f(x̂)

(
equivalently, (f(x̂)− κ) ∩ f(X) = {f(x̂)}

)
.

The set of all efficient solutions of MOP (2.1) with respect to the ordering
cone κ is denoted by XEκ and f(XEκ) is called nondominated points with
respect to κ and is denoted by YNκ.
Considering the natural ordering cone

Rp= := {y ∈ Rp | yi ≥ 0, i = 1, ..., p},
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the set YNRp

=
is called the Pareto front.

Definition 2.6. The point a∗ ∈ Rp is called the ideal point of (2.1) with
respect to the ordering cone κ, if

a∗ �κ f(x), ∀ x ∈ X,
and there is no a 6= a∗ such that

a �κ f(x) ∀ x ∈ X, and a∗ �κ a.

Remark 2.7. Note that for the ordering cone κ = Rp= := {y ∈ Rp | yi ≥ 0, i =

1, ..., p}, we have

a∗ = (f∗1 , ..., f
∗
p )T ,

where f∗i = infx∈X fi(x), for i = 1, ..., p.

Definition 2.8. Let α ∈ int(κ) and a∗ be the ideal point. The point a∗∗ with
a∗∗ = a∗ − α is called the utopia point (with respect to α).

3. A parameter set restriction and its difficulties

The scalar problem of the Pascoletti-Serafini scalarization [22], which from
now on is denoted by P (a, r), has two parameters a and r that by varying them
in Rp, all efficient solutions of (2.1) with respect to the pointed ordering cone
κ can be generated [9]. The formulation of this scalar problem is as follows:

min t
s.t.
a+ tr − f(x) ∈ κ,

(
P (a, r)

)
x ∈ X, t ∈ R.

In order to solve P (a, r), the ordering cone −κ is moved in the direction r (or
−r) on the line a+ tr starting at the point a till the set (a+ tr− κ) ∩ f(X) is
reduced to the empty set. The smallest value of t̄ for which (a+ t̄r−κ)∩f(X) 6=
∅ is the optimal value of P (a, r) [9]. Note that, it is possible for some parameters
a, r ∈ Rp, the problem P (a, r) becomes unbounded from below [9].
In the following, Section b of Theorem 2.1 in [9] is given.

Theorem 3.1. Let x̂ be an efficient solution of MOP with respect to the pointed
ordering cone κ, then (0, x̂) is an optimal solution of P (a, r), for the parameters
a = f(x̂) and an arbitrary r ∈ κ\{0}.

As a result of Theorem 3.1, we can find all efficient solutions of (2.1) for a
constant parameter r ∈ κ\{0}, by varying the parameter a ∈ Rp only. In [9],
a method is used to limit the choices of a from Rp, and still obtaining all
efficient solutions of some MOPs. The procedure of that method is different
for two objectives and more than two objectives optimization problems. For
the case p = 2, it is assumed that the ordering cone κ is closed and pointed.
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For example, if κ = R2
=, then the proposed method works as follows.

First, the parameter r ∈ R2\{0} and the hyperplane H := {y ∈ R2 | b1y1 +
b2y2 = β}, with bT r 6= 0 and β ∈ R, are considered. Then, the points x̄1 =
arg minx∈X f1(x) and x̄2 = arg minx∈X f2(x) are determined. Afterwards, the
points f(x̄1) and f(x̄2) are projected in the direction r onto the line H. The
projection points ā1 ∈ H and ā2 ∈ H are given by

āi := f(x̄i)− r
bT f(x̄i)− β

bT r
, i = 1, 2.

Theorem 2.17 of [9] shows that it is sufficient to consider the parameters a ∈
Ha := {y ∈ H | y = λā1 + (1 − λ)ā2, λ ∈ [0, 1]} to approximate the whole
efficient set.
For three and more than three objectives optimization problems, the above
approach does not work correctly [9]. So, a weaker restriction for the parameter
a was proposed in [9] by projecting the image space f(X) in the direction r

onto the set H. Thus, the set H̃ := {y ∈ H | y+tr = f(x), t ∈ R, x ∈ X} ⊂ H
is determined. The set H̃ ⊂ H has in general an irregular boundary and is
therefore not suitable for a systematic procedure. Hence, the set H̃ is embedded
in a (p−1)-dimensional cuboid H0 ⊂ Rp, which is chosen as optimal as possible.
A method for obtaining H0 is given in [9].

For two objectives optimization problems, the method given in [9] has the
following difficulties.
1- If at least one of the problems minx∈X f1(x) or minx∈X f2(x) has alternative
solutions, it is possible that the set Ha becomes unbounded, as illustrated by
Example 3.2 below.

Example 3.2. Consider the following bi-objective optimization problem.

min
x∈R

(
f1(x), f2(x)

)
,

where (
f1(x), f2(x)

)
=

{ (1, 4− x), x ≤ 1,
(x, 4− x), 1 ≤ x ≤ 3,
(x, 1), x ≥ 3.

The image space of this problem is depicted in Figure 1.
Now, consider the hyperplane H := {y ∈ R2 | y1 + y2 = 0} and r = (1, 1)T .
As can be seen, the problems minx∈R f1(x) and minx∈R f2(x) have alternative
solutions and

arg min
x∈R

f1(x) = x̄1 ∈ (−∞, 1],

arg min
x∈R

f2(x) = x̄2 ∈ [3,+∞),

and if x̄1 −→ −∞ and x̄2 −→ +∞, then f2(x̄1) −→ +∞ and f1(x̄2) −→ +∞,
and this causes that Ha −→ H, and therefore Ha becomes unbounded.
2. For a constant set H, the set Ha is not constant for different MOPs and it
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Figure 1. The image space of Example 3.2.

is related to the problem under consideration.
3. It is possible that the points x̄1 and x̄2 do not exist, even if the ideal point
exists, as illustrated by Example 3.3.

Example 3.3. Consider the following bi-objective optimization problem:

min
x∈(0,+∞)

(x,
1

x
).

As shown in Figure 2, the points x̄1 and x̄2 do not exist and the point (0, 0) is
the ideal point for the problem.

For three and more than three objectives optimization problems, the method
given in [9] has the following difficulties.
1. As discussed in [9], the method might be hard to verify in practice, because
obtaining the set H0 is difficult.
2. For a constant set H, the set H0 is not constant for different MOPs and is
related to the problem under consideration.
3. When a considered MOP is not bounded from above, according to the
definition of H̃, it is possible that H̃ and therefore H0 become unbounded,
even if the MOP is bounded from below (the utopia point exists), as illustrated
by Example 3.4.

Example 3.4. Consider the following three-objective optimization problem:

min
x∈[0,+∞)

(

√
2

2
x,

√
2

2
x, x2).
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Figure 2. The image space of Example 3.3.

Considering the hyperplane H := {y ∈ R3 | y3 = 0} and r = (0, 0, 1), we have

H̃ = H0 :=
{

(

√
2

2
x,

√
2

2
x, 0) | x ∈ [0,+∞)

}
,

and so the set H0 is not bounded.

4. Parameter set restriction: a new method

Here, a new parameter set restriction method for P (a, r) is proposed.
Let a∗∗ be the utopia point of (2.1) with respect to the ordering cone κ. If the
utopia point is shifted to the origin, then the image space f(X) will be in the
interior of the ordering cone κ. In Figure 3, this is shown for a two objective
optimization problem with κ = R2

=.

In the rest of our work it is assumed that the utopia point exists and it is
shifted to the origin. So, the image space f(X) is in the interior of the ordering
cone κ.
Now, consider the set R which is defined as follows:

R := {β ∈ Rp | ‖β‖2 = 1} ∩ int(κ),

where ‖.‖2 is the Euclidean norm.
A strategy to generate an even spread of combination vectors β has been pro-
posed in [4] that is related to a nonnegative real parameter named δ. This even
spread of β generates even spaced points on the set R.

In Theorem 4.1, below it is shown that by considering a = 0 and varying
r ∈ R in P (a, r), all efficient solutions of (2.1) with respect to the ordering cone
κ can be obtained.
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Figure 3. The utopia point is shifted to the origin.

Theorem 4.1. Let a = 0, R := {β ∈ Rp | ‖β‖2 = 1} ∩ int(κ) and x̄ ∈ X be
an efficient solution of MOP with respect to the ordering cone κ. Then, there
are r ∈ R and t̄ ∈ R such that (t̄, x̄) is an optimal solution of P (a, r).

Proof. Since f(X) ⊂ int(κ), we have f(x̄) 6= 0. Also, it is obvious that
f(x̄)
‖f(x̄)‖2 ∈ R. Considering r = f(x̄)

‖f(x̄)‖2 ∈ R, t̄ = ‖f(x̄)‖2 and a = 0, we

have

a+ t̄r − f(x̄) = 0 + ‖f(x̄)‖2
f(x̄)

‖f(x̄)‖2
− f(x̄) = 0 ∈ κ.

So, the point (t̄, x̄) is feasible for P (a, r). we claim that the point (t̄, x̄) is also
an optimal solution of P (a, r), since otherwise, there exist t̂ ∈ R and x̂ ∈ X
such that (t̂, x̂) is feasible for P (a, r) and t̂ < t̄. From the feasibility of (t̂, x̂)
for P (a, r), we have

(4.1) a+ t̂r − f(x̂) = 0 + t̂
f(x̄)

‖f(x̄)‖2
− f(x̂) = 0 +

t̂

t̄
f(x̄)− f(x̂) ∈ κ.

Since t̂ < t̄ and t̄ > 0, we have t̂
t̄ < 1. So, from (4.1), we get

(4.2) f(x̂) �κ
t̂

t̄
f(x̄) ≺κ f(x̄).

Hence, f(x̂) ≺κ f(x̄), and this is a contradiction to x̄ being an efficient solution
of MOP with respect to the ordering cone κ. �

Next, Theorem 4.2 shows that the problem P (a, r) always is bounded from
below for a = 0 and r ∈ R.

Theorem 4.2. For a = 0 and r ∈ R := {β ∈ Rp | ‖β‖2 = 1} ∩ int(κ), the
problem P (a, r) always is bounded from below. Also, if f(X) is closed, then
P (a, r) has an optimal solution.
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Proof. Let a = 0 and suppose that r ∈ R is given. Since f(X) ⊂ int(κ),

a+ tr − f(x) ∈ κ =⇒ tr ∈ f(x) + κ =⇒ tr ∈ int(κ),

and since R ⊂ int(κ), the problem P (a, r) is infeasible for t ≤ 0. So, P (a, r) is
bounded from below.
Now, consider an arbitrary feasible solution x̄ ∈ X and form the set f(x̄) + κ.
Consider r ∈ R and a line with slope r passing through the origin. Since
f(x̄) + κ ⊂ int(κ) and r ∈ int(κ), the considered line breaks the set f(x̄) + κ.
Let ŷ be the intersection point. So, ŷ ∈ f(x̄) + κ or equivalently f(x̄) ∈ ŷ − κ,
and also ŷ = ‖ŷ‖r. Thus,

f(x̄) ∈ (0 + ‖ŷ‖r − κ) ∩ f(X),

and considering t̂ = ‖ŷ‖ and a = 0, we have

f(x̄) ∈ (a+ t̂r − κ) ∩ f(X).

So, (t̂, x̄) is feasible for P (a, r) and t̂ is an upper bound for the optimal value of
P (a, r). Therefore, if f(X) is closed, then P (a, r) has an optimal solution. �

The advantages of the new parameter set restriction are the followings.
1. The parameter a is fixed and is equal to zero. The parameter r is changed in
R, which is a constant bounded subset of Rp, and is not related to the problem
under consideration.
2. For parameters a and r ∈ R, the scalar problem P (a, r) is always bounded
from below.

5. Numerical results

Here, the nondominated points of a two bi-objective and a three-objective
optimization problems are approximated based on the restriction method given
in Section 4.

Example 5.1. Consider the following bi-objective optimization problem with
respect to the ordering cone R2

=:

min
x∈R

(
f1(x), f2(x)

)
,

where (
f1(x), f2(x)

)
=

{
(1, 4− x), x ≤ 1,
(x, 4− x), 1 ≤ x ≤ 3,
(x, 1), x ≥ 3.

The image space of the problem is depicted in Figure 4. The set of nondomi-

nated points of the problem is
{(
f1(x), f2(x)

)
| x ∈ [1, 3]

}
. The utopia point

for the problem is (0.9, 0.9)T . After shifting the utopia point to the origin, the
set R := {β ∈ R2 | ‖β‖2 = 1} ∩ int(R2

=) is constructed for δ = 1
20 , and the
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Figure 4. The image space of Example 5.1.

problem P (a, r) is solved for a = 0 and r ∈ R. The obtained approximation to
the set of nondominated points is depicted in Figure 5 using the symbol ∗.

Figure 5. The approximated nondominated points for Ex-
ample 5.1.
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Example 5.2. Consider the following three-objective optimization problem
with respect to the ordering cone R3

=:

min
(
f1(x), f2(x), f3(x)

)
s.t.
0 ≤ x1, x2 ≤ 1,

where
f1(x) = cos(x1π

2 )cos(x2π
2 ),

f2(x) = cos(x1π
2 )sin(x2π

2 ),

f3(x) = sin(x1π
2 ).

The image space of the problem is depicted in Figure 6. The utopia point for

Figure 6. The image space of Example 5.2.

the problem is (−0.1,−0.1,−0.1)T . After shifting the utopia point to the ori-
gin, the set R := {β ∈ R3 | ‖β‖2 = 1} ∩ int(R3

=) is constructed for δ = 1
20 , and

the problem P (a, r) is solved for a = 0 and r ∈ R. The obtained approximation
to the set of nondominated points is depicted in Figure 7 using the symbol ∗.

Example 5.3. Consider the following bi-objective optimization problem:

min
x∈[−3,3]

(
f1(x), f2(x)

)
,

with respect to the ordering cone C = {y ∈ R2 | y2 − 1
2y1 ≥ 0, 2y1 − y2 ≥ 0},

where (
f1(x), f2(x)

)
=

{
(0,−x), x ∈ [−3, 0],
(x, 0), x ∈ [0, 3].

The image space of the problem and the ordering cone C are depicted in Figures
8 and 9, respectively.
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Figure 7. The approximated nondominated points for Ex-
ample 5.2.

The set of nondominated points for the problem is equal to the image space.
The utopia point for the problem with respect to the ordering cone C is the
point (−3.1,−3.1)T . After shifting the utopia point to the origin, the set
R = {β ∈ R2 | ‖β‖2 = 1} ∩ int(C) is constructed for δ = 1

100 , and the problem
P (a, r) is solved for a = 0 and r ∈ R. The obtained approximation to the set
of nondominated points is depicted in Figure 10 using the symbol ∗.

Figure 8. The image space of Example 5.3.
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Figure 9. The ordering cone C.
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Figure 10. The approximated nondominated points for Ex-
ample 5.3.

6. Converting a MOP to an equivalent MOP with a different
ordering cone

Here, it is assumed that the ordering cone κ is a polyhedral cone that is
generated by the convex hull of p linear independent vectors bi ∈ Rp (i =
1, ..., p), that is,

κ = cone

(
conv

(
{b1, b2, ..., bp}

))
.

It is not difficult to see that κ is a closed pointed convex cone with a nonempty
interior.
Linear independent vectors bi ∈ Rp (i = 1, ..., p) on the boundary of the or-
dering cone κ generate a basis for Rp. Therefore, the coordinate vector of an
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arbitrary point y ∈ Rp with respect to the basis {b1, b2, ..., bp}, denoted by ȳ,
is

(6.1) ȳ =


ȳ1

ȳ2

...
ȳp

 =


b11 b21 . . . bp1
b12 b22 . . . bp2
...

...
. . .

...
b1p b2p . . . bpp


−1 

y1

y2

...
yp

 ,
where bj = (bj1, ..., bjp)

T .
On the other hand, it is easy to check that

(6.2)


b11 b21 . . . bp1
b12 b22 . . . bp2
...

...
. . .

...
b1p b2p . . . bpp


−1

κ = Rp=.

Hence, we can redefine Definition 2.5 as the follows.

Definition 6.1. A feasible solution x̂ ∈ X is called an efficient solution of
MOP with respect to the ordering cone κ, if there is no x ∈ X such that
f̄(x) �Rp

=
f̄(x̂) and f̄(x) 6= f̄(x̂) (equivalently (f̄(x̂) − Rp=) ∩ f̄(X) = {f̄(x̂)}),

where f̄(x) is defined by (6.1).

Therefore, MOP (2.1) ordered by the ordering cone κ is equal to the following
MOP ordered by the natural ordering cone:

(6.3) min
x∈X

f̄(x) =
(
f̄1(x), f̄2(x), ..., f̄p(x)

)
.

Thus, instead of solving (2.1) with respect to κ, we solve (6.3) with respect to
the natural ordering cone.
Hence, all confirmed results and theorems related to MOPs ordered by the
natural ordering cone Rp= can be generalized to MOPs ordered by the ordering

cone κ. Indeed, it is sufficient to convert the set f(X) to f̄(X) and consider
Rp= as the ordering cone instead of the ordering cone κ.

Considering

(6.4) A =


a11 a21 . . . ap1
a12 a22 . . . ap2
...

...
. . .

...
a1p a2p . . . app

 =


b11 b21 . . . bp1
b12 b22 . . . bp2
...

...
. . .

...
b1p b2p . . . bpp


−1

,

we have

f̄(x) = Af(x),
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and therefore,

(6.5)

f̄1(x) =
∑p
i=1 ai1fi(x),

...
f̄p(x) =

∑p
i=1 aipfi(x).

Based on the results obtained so far, in the following subsections we present
extensions of the ε-constraint method [13] and the convexification method given
in [18] to (2.1) ordered by the ordering cone κ.

6.1. An extension of the ε-constraint method. The ε-constraint method,
initially introduced in [13], was discussed in detail in [3]. In this method, one
of the objectives is minimized while all the others are bounded from above by
means of additional constraints.
The formulation of the ε-constraint method to (2.1), ordered by the natural
ordering cone, is as follows:

(6.6)

min fk(x)
s.t.
fi(x) ≤ εi, i ∈ {1, ..., p} \ {k}
x ∈ X,

where (ε1, ..., εk−1, εk+1, ..., εp) ∈ Rp−1 and k ∈ {1, 2, ..., p}.
According to the equivalence of MOP (2.1), ordered by Rp=, and (6.3), ordered

by κ, and relation (6.5), we can formulate the ε-constraint method for (2.1),
ordered by the ordering cone κ, as follows:

(6.7)

min
∑p
i=1 aikfi(x)

s.t.∑p
i=1 aijfi(x) ≤ εj , j ∈ {1, ..., p} \ {k}

x ∈ X.
In Example 6.2 below, the set of efficient solutions of a MOP ordered by an
unnatural ordering cone is approximated by formulation (6.7).

Example 6.2. Consider the following bi-objective optimization problem with
respect to the ordering cone D:

(6.8) min
0≤x≤1

f(x) = (x, 1−
√

1− (x− 1)2).

The image space of MOP (6.8) and the ordering cone D are depicted in Figures
11 and 12, respectively.

The set of efficient solutions of MOP (6.8) ordered by the ordering cone D
is:

XED =
{

(x1, x2) ∈ R2 | 0.0299 ≤ x1 ≤ 0.7575, x2 = 1−
√

1− (x1 − 1)2
}
.

The set f(XED) is depicted in Figure 13.
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Figure 11. The image space of MOP (6.8).

Figure 12. The ordering cone D of Example 6.2.

The linear independent vectors b1 = (4,−1)T and b2 = (−1, 4)T , on the bound-
ary of D, form a basis for R2.
Hence, according to formulation (6.7), we solve the following problem for dif-
ferent choices of ε1 to approximate the set XED:

min 1
15x+ 4

15 −
4
15

√
1− (x− 1)2

s.t.
4
15x+ 1

15 −
1
15

√
1− (x− 1)2 ≤ ε1

x ∈ X.

It is assumed that ε1 ∈ [0, 1] and the distance between any two choices of the
parameter ε1 is 0.01 unit. The obtained approximation of YND is depicted in
Figure 14 shown by ∗.
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Figure 13. The set f(XED).

Figure 14. The obtained approximation of YND for Example 6.2.

6.2. An extension of the convexification method given in [18]. In [18],
a method is proposed to convexify the Pareto front of a MOP with certain
properties, in which all objective functions are nonnegative. By replacing all
the objective functions of a MOP by their rth power, a converted MOP is
formed. It is shown that the set of efficient solutions of the original MOP is
equal to the set of efficient solutions of the converted MOP. If the value of r is
chosen to be large enough, the Pareto front of the converted MOP is convex.
Therefore, applying techniques capable of approximating all efficient solutions
of a MOP with convex Pareto front, we can approximate all efficient solutions
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of a MOP with a nonconvex front. We can refer to the weighted sum method
as the well-known approach to solve a MOP with a convex Pareto front.
In Example 6.3, it is shown that if the ordering cone is unnatural, then it is
possible that the set of efficient solutions of the original MOP and the con-
verted MOP be different. Thus, the convexification method given in [18] is not
correct for MOPs ordered by unnatural ordering cones. Afterwards, we present
an extension of the method given in [18] corresponding to MOPs ordered by
unnatural ordering cones.

Example 6.3. Consider the following bi-objective optimization problem with
respect to the ordering cone C:

(6.9) min
0≤x≤1

f(x) =
(
f1(x), f2(x)

)
= (x,

√
1− x2).

The ordering cone C is defined as

C = cone

(
conv

(
{b1, b2}

))
,

where b1 =

[
6
−1

]
and b2 =

[
−1
6

]
.

On the other hand, we have

C =

{
α

[
6
−1

]
+ β

[
−1
6

] ∣∣∣ α, β ≥ 0

}
.

The image space of MOP (6.9) and the ordering cone C are depicted in Figures
15 and 16, respectively.

Figure 15. The image space of MOP (6.9).

Considering r = 4, the MOP (6.10) is:

(6.10) min
0≤x≤1

(
f4

1 (x), f4
2 (x)

)
=
(
x4, (1− x2)2

)
.
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Figure 16. The ordering cone C.

The image space of MOP (6.10) is depicted in Figure 17.

Figure 17. The image space of MOP (6.10).

In the following, it is shown that the set of efficient solutions of MOP (6.9) with
respect to the ordering cone C is different from the set of efficient solutions of
MOP (6.10) with respect to the ordering cone C. To this end, it is shown that
the feasible solution x̂ = 1 is efficient for the MOP (6.9), but it is not efficient
for the MOP (6.10).
According to Definition 2.5 we show that (f(1)−C)∩ f(X) = {f(1)}. Assume
to the contrary that (f(1)−C)∩f(X) 6= {f(1)}. Thus, there exists an x = 1−ε
with 0 < ε ≤ 1 such that

f(x) ∈ (f(1)− C\{0}).



Restricting the parameter set 108

Hence,

f(1)− f(x) =

[
1− (1− ε)
0−

√
1− (1− ε)2

]
∈ C\{0}.

Since

f(1)− f(x) =

[
1− (1− ε)
0−

√
1− (1− ε)2

]
= α

[
6
−1

]
+ β

[
−1
6

]
,

with

β =
ε− 6

√
2ε− ε2

35
< 0,

thus, according to the definition of the ordering cone C, we get[
1− (1− ε)
0−

√
1− (1− ε)2

]
/∈ C\{0},

So, x̂ = 1 is efficient for the MOP (6.9) with respect to the ordering cone C.
Now, it is shown that the feasible solution x̂ = 1 is not efficient for the MOP

(6.10). To this end, it is shown that

f4(0.9) ∈ f4(1)− C\{0}.
Since

f4(1)− f4(0.9) = α

[
6
−1

]
+ β

[
−1
6

]
with α = 0.0579 > 0 and β = 0.0036 > 0, we have

f4(0.9) ∈ f4(1)− C\{0}.
Therefore, the set of efficient solutions of the MOP (6.9) and the MOP (6.10),
ordered by the ordering cone C, are different. Thus, the convexification method
given in [18] is not correct for MOPs with unnatural ordering cones.

In order to apply the convexification method given in [18] to a MOP ordered
by unnatural ordering cone, the MOP is first converted to a MOP ordered by
the natural ordering cone, using our proposed approach here. If the new MOP
satisfies the assumptions of [18], then the convexification approach is applied.
Therefore, we can use the weighted sum method to find an approximation of
the set of efficient solutions for the new MOP with convex Pareto front. Since
efficient solutions of the new MOP and the original MOP are the same, an
approximation of the set of efficient solutions of the original MOP is at hand.
This is illustrated by Example 6.4.

Example 6.4. Consider the following bi-objective optimization problem or-
dered by the ordering cone C, which was defined in Example 6.3:

(6.11) min
0≤x≤1

f(x) =
(
f1(x), f2(x)

)
= (1 + 6x−

√
1− x2, 1− x+ 6

√
1− x2).

The image space of MOP (6.11) is depicted in Figures 18. According to our
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Figure 18. The image space of MOP (6.11).

proposed method, the MOP (6.11) ordered by the ordering cone C is equal to
the MOP (6.12) below ordered by the natural ordering cone:

(6.12) min
0≤x≤1

f̄(x) =
(
f̄1(x), f̄2(x)

)
= (

7

35
+ x,

7

35
+
√

1− x2).

The image space of the MOP (6.12) is depicted in Figure 19. As seen, the

Figure 19. The image space of MOP (6.12).

Pareto front of MOP (6.12) is not convex. In order to convexify the Pareto
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front, we consider r = 4 and construct the following MOP:

(6.13) min
0≤x≤1

f̄4(x) =
(
f̄4

1 (x), f̄4
2 (x)

)
=
(
(

7

35
+ x)4, (

7

35
+
√

1− x2)4
)
.

The image space of the MOP (6.13) is depicted in Figure 20. We solved the

Figure 20. The image space of MOP (6.13).

MOP (6.13) using the weighted sum method. The image of the obtained ef-
ficient solutions corresponding to the MOP (6.11) is depicted in Figure 21.

Figure 21. Approximate Pareto front for MOP (6.11).
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7. Conclusions

We considered the well-known Pascoletti-Serafini scalarization and MOPs
being bounded from below. It was first shown that the parameters of this
scalarization could be restricted to a bounded subset of Rp, and still all ef-
ficient solutions could be obtained. The obtained subset is constant and is
not dependent on the structure of the problem under consideration. Also, it
was shown that for parameters of the obtained subset, the scalar problem is
always bounded from below. Then, a method to convert a MOP with respect
to a specific ordering cone to an equivalent MOP ordered by the natural order-
ing cone was introduced. Based on the proposed conversion, it was concluded
that the available methods for solving MOPs ordered by the natural ordering
cone could be extended to solve MOPs ordered by specific unnatural order-
ing cones. Extensions of the ε-constraint method [13] and the convexification
method of [18] were presented.
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