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Abstract. In this paper we apply hybrid functions of general block-
pulse functions and Legendre polynomials for solving linear and nonlin-
ear multi-order fractional differential equations (FDEs). Our approach is
based on incorporating operational matrices of FDEs with hybrid func-

tions that reduces the FDEs problems to the solution of algebraic systems.
Error estimate that verifies a convergence of the approximate solutions
is considered. The numerical results obtained by this scheme have been

compared with the exact solution to show the efficiency of the method.
Keywords: Fractional derivatives and integrals, multi-order fractional
differential equations, operational matrix, hybrid functions.
MSC(2010): Primary: 26A33; Secondary: 34A08, 42C05.

1. Introduction

The topic of fractional calculus has been attracted to many scientists, be-
cause of providing more accurate models of systems under consideration such
as measurement of viscoelastic material properties [8], the fluid dynamic [15],
and etc [9, 12]. In this study we consider general form of multi-order FDE

Dα
∗ y(t) =f

(
t, y(t), Dβ1

∗ y(t), Dβ2
∗ y(t), ..., Dβk

∗ y(t)
)
,(1.1)

y(i)(0) = yi, i = 0, 1, . . . , n− 1, n ∈ N,

where n − 1 < α ≤ n, βk < βk−1 < . . . < β1 < α, and for j = 1, 2, · · · , k,
nj ∈ N, nj − 1 < βj ≤ nj , also Dα

∗ denotes the Caputo fractional derivative of
order α. Most FDEs do not have exact analytic solutions and so it motivates
us to develop a numerical scheme for their solutions. For this purpose, several
methods have been proposed in the literature to solve these problems, such as
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Adomian decomposition method [21], He’s variational iteration method [1], op-
erational matrix method [20], homotopy perturbation method [9,11], and other
methods [3, 13]. In this study we will apply the hybrid of block-pulse function
and Legendre polynomials for numerical solution of FDEs. The advantage of
hybrid functions is that the orders of block-pulse functions and Legendre poly-
nomials are adjustable to obtain highly accurate numerical solutions, compared
to the piecewise constant orthogonal function for solution of the various differ-
ential equations. The main characteristic of this technique is that it reduces
these problems to nonlinear system of algebraic equations which are suitable
for computer programming. In this work we consider multi–order FDEs, and
our approach is based upon expanding unknown function as hybrid functions
with unknown coefficients. The properties of hybrid functions together with
the operational matrix of FDE are used to convert the FDE to an algebraic
equation and then, are utilized to evaluate the unknown coefficients. The struc-
ture of this paper is as follows:
In Section 2, we introduce the basic definitions of the fractional calculus the-
ory. In Section 3, some relevant properties of the hybrid functions consisting of
block-pulse functions and Legendre polynomials, and approximation of function
by these basis are presented. Section 4 is devoted to investigate the conver-
gence of the hybrid basis function in order to approximate the solution of FDE,
and the accuracy estimation is rendered. At the end of this section, we will
apply the hybrid method for solving FDEs, by using the operational matrix of
the fractional integration. In Section 5, through the provided examples, our
numerical finding reported and the reliability and performance of the proposed
scheme is demonstrated. Finally, we conclude the result with some remarks.

2. Preliminaries and notations

First we recall some facts concerning fractional calculus theory which will
be used further in this work [6, 22].

Definition 2.1. The operator Iα, defined on L1[0, b] by

Iαy (t) =
1

Γ(α)

∫ t

0

(t− s)
α−1

y (s) ds,

for 0 ≤ t ≤ b, is called the Riemann-Liouville fractional integral operator of
order α. Here Γ(.) denotes the Gamma function and for α = 0, we set I0 = I,
where I is the identity operator.

It may be shown that the fractional integral operator Iα transforms the
space L1[0, b] into itself and has some other properties.

Remark 2.2. Let α, β ≥ 0 and y ∈ L1[0, b]. Then the following hold almost
everywhere on [0, b]:
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1) IαIβy = IβIαy;
2) IαIβy = Iα+βy;

Definition 2.3. Let n = ⌈α⌉ (⌈.⌉ denotes ceiling function, ⌈x⌉ = min{z ∈ Z:
z ≥ x}). The operator Dα, defined by

Dαy = DnIn−αy,

is called the Riemann-Liouville fractional differential operator of order α. For
α = 0, we set D0 = I, the identity operator.

Remark 2.4. Assume that c1, c2 ∈ R, and let y, y1, y2 ∈ L1[0, b]. Then
1) DαIαy = y;
2) Dα(c1y1 + c2y2) = c1D

αy1 + c2D
αy2.

The other type of fractional derivative that is strongly connected to the Riemann-

Liouville fractional derivative is Caputo fractional derivative. Nowadays, this
derivative is frequently used in applications. By using the Caputo derivative
one can specify the initial conditions of FDEs in classical form. Also, this ap-
proach is suitable for real world physical problems, since it requires the initial
conditions for definition of fractional order, which have physically meaning-
ful explanation. Accordingly, in this paper we only concentrate on Caputo
fractional derivative.

Definition 2.5. The Caputo fractional derivative of y(t) ∈ L1[0, b], is defined
as

Dα
∗ y (t) =

{
In−αDny(t), n− 1 < α < n, n ∈ N,
dn

dtn y (t) , α = n.

Note that
IαDα

∗ y (t) = y (t)−
∑n−1

k=0 y
(k) (0+) tk

k! , n− 1 < α ≤ n, n ∈ N.

Lemma 2.6 ([6]). Let α ≥ 0 and n = ⌈α⌉. Assume that y is such that both
Dα

∗ y and Dαy exist. Then, the relation between Caputo and Riemann-Liouville
fractional derivative is as follows:

Dα
∗ y (t) = Dαy (t)−

n−1∑
k=0

Dky(0)

Γ(k − α+ 1)
tk−α.

3. Hybrid functions

A set of block-pulse functions bn(t), n = 1, 2, . . . , N on the interval [0, 1) is
defined as follows [19]:

bn (t) =

{
1, n−1

N ≤ t < n
N ,

0, otherwise.
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These functions are disjoint and have the property of orthogonality on [0, 1).
Hybrid functions hnm(t), n = 1, 2, . . . , N, m = 0, 1, . . . ,M − 1; have three ar-
guments, n and m are the order of block-pulse functions and Legendre polyno-
mials, respectively, and t is the normalized time. Hybrid functions are defined
on the interval [0, 1) as [18]:

hnm(t) =

{
Pm (2Nt− 2n+ 1) , t ∈

[
n−1
N , n

N

)
,

0, otherwise,

where, Pm(t)s are the well-known Legendre polynomials of order m which sat-
isfy the following recursive formula,

P0(t) = 1, P1(t) = t,

Pm+1(t) =

(
2m+ 1

m+ 1

)
tPm(t)−

(
m

m+ 1

)
Pm−1(t), m = 1, 2, . . . .

Since hnm(t) consists of block-pulse functions and Legendre polynomials, which
are both complete and orthogonal, so a set of hybrid functions based on them
is a complete orthogonal set in the Hilbert space.
A function y(t), which is a square integrable function defined over the interval
[0, 1), may be expanded as [19]

y(t) =
∞∑

n=1

∞∑
m=0

cnmhnm(t),

which the hybrid coefficients are

cnm =
⟨y(t), hnm(t)⟩

⟨hnm(t), hnm(t)⟩
,

such that ⟨·, ·⟩ denotes the inner product. Also, the infinite series may be
terminated after µ = NM terms, that is,

y(t) ≈ ỹµ(t) =

N∑
n=1

M−1∑
m=0

cnmhnm(t) = CT
µ Hµ(t),

where vector forms of Cµ,Hµ(t) are

Cµ =
[
c10, . . . , c1(M−1), c20, . . . , c2(M−1), . . . , cN0, . . . , cN(M−1)

]T
,

(3.1)

Hµ(t) =
[
h10(t), . . . , h1(M−1)(t), h20(t), . . . , h2(M−1)(t), . . . , hN0(t), . . . , hN(M−1)(t)

]T
.



311 Maleknejad, Nouri and Torkzadeh

4. Main results

We wish to show that, approximated solution via hybrid functions converges
to the exact solution of FDE. Also, in this section we will show how, for the
general form multi-order FDEs, one can carry out our approach by using oper-
ational matrix of the fractional integration through a relatively simple formula
which will yield improved accuracy.

4.1. Convergence of the Hybrid Basis Functions. In fact, [2, 5] have
proved that the nonlinear FDE subject to the initial conditions, under some
special assumptions, has a unique continuous solution. For more detail about
the theorems of the existence and uniqueness of problem one can see above
references. Thus, we require that to obtain error estimate that verifies a con-
vergence of approximation. In developing convergence theory, we will require
some preliminary results.

Lemma 4.1. Consider the equation

(4.1) Dα
∗ y(t) = f

(
t, y(t), Dβ

∗ y(t)
)
, y(i)(0) = yi, 0 ≤ i ≤ ⌈α⌉ − 1.

Let f : [0, 1] × R × R → R be a continuously differentiable function, n =
⌈α⌉ , k = ⌈β⌉ and β < α. Then the initial value problem (4.1) is equivalent to
the following integral equation
(4.2)

y(t) =

n−1∑
i=0

yi
ti

i!
+

1

Γ(α)

∫ t

0

(t−s)α−1f

(
s, y(s),

1

Γ(k − β)

∫ s

0

(s− τ)k−β−1y(k)(τ)dτ

)
ds.

Proof. By using definition of the Caputo fractional derivative and applying
operator Iα to both side of Eq. (4.1) it is obvious. □

Lemma 4.2. ( [4]) Assume that y(t) ∈ Hκ(Ω) (Sobolev space), and ỹµ(t), ỹ
′
µ(t)

be the best approximations of y(t), y′(t), respectively, in L2-norm. Then for
Ω = (0, 1) and κ ≥ 2, the following estimates are hold

∥y − ỹµ∥L2(Ω) ≤ C0µ
−κ∥y∥Hκ(Ω),

∥y′ − ỹ′µ∥L2(Ω) ≤ C0µ
1−κ∥y∥Hκ(Ω),

where C0 is a positive constant, which depends on the selected norm and is
independent of y(t) and ỹµ(t), where

∥y∥L2(Ω) =

(∫ 1

0

y2(t)dt

) 1
2

,

∥y∥Hκ(Ω) =

(
κ∑

i=0

∫ 1

0

|y(i)(t)|2dt

) 1
2

.
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Theorem 4.3. Let f(t, ·, ·) be satisfied in the Lipschitz condition respect to the
last two components, with Lipschitz constants l1 and l2, respectively. Assume
that for 0 < β < 1

2 , α > 1
2 , ỹµ(t) is the numerical solution of Eq. (4.1). Then,

in the view of the previous lemma assumptions, we have

sup
t∈Ω

|y(t)− ỹµ(t)| ≤ C0

(
l1√

2α− 1 Γ(α)
+

l2µ√
1− 2β

)
µ−κ∥y∥Hκ(Ω).

Proof. Consider the Eq. (4.1) and its transformed fractional integral Eq. (4.2).
Assume that the exact solution of Eq. (4.2) is

y(t) =
n−1∑
i=0

yi
ti

i!
+

1

Γ(α)

∫ t

0

(t− s)α−1f
(
s, y(s), Dβ

∗ y(s)
)
ds.

If we define the numerical solution of Eq. (4.1) by ỹµ(t), then

ỹµ(t) =
n−1∑
i=0

yi
ti

i!
+

1

Γ(α)

∫ t

0

(t− s)α−1f
(
s, ỹµ(s), D

β
∗ ỹµ(s)

)
ds,

and we have

|y(t)− ỹµ(t)| =
1

Γ(α)

∫ t

0

(t− s)α−1
∣∣∣f (

s, y(s), Dβ
∗ y(s)

)
− f

(
s, ỹµ(s), D

β
∗ ỹµ(s)

)∣∣∣ ds.
Since f satisfies in the Lipschitz condition with respect to the second and third
components, by using the Cauchy-Schwarz inequality, we get

sup
t∈Ω

|y(t)− ỹµ(t)| ≤
l1

Γ(α)

∫ t

0

(t− s)α−1 |y(s)− ỹµ(s)| ds+

l2
Γ(α)Γ(1− β)

∫ t

0

(t− s)α−1

(∫ s

0

(s− τ)−β
∣∣y′(τ)− ỹ′

µ(τ)
∣∣ dτ) ds

≤
l1 ∥y − ỹµ∥L2(Ω)

Γ(α)

(∫ t

0

(t− s)2α−2ds

) 1
2

+

l2
∥∥y′ − ỹ′

µ

∥∥
L2(Ω)

Γ(α)Γ(1− β)

∫ t

0

(t− s)α−1

(∫ s

0

(s− τ)−2βdτ

) 1
2

ds

=
l1 ∥y − ỹµ∥L2(Ω)

Γ(α)

(
t2α−1

2α− 1

) 1
2

+
l2t

1
2
+α−β

∥∥y′ − ỹ′
µ

∥∥
L2(Ω)√

1− 2β Γ(α)Γ(1− β)
B(α,

3

2
−β)

<
l1 ∥y − ỹµ∥L2(Ω)√

2α− 1 Γ(α)
+

l2
∥∥y′ − ỹ′

µ

∥∥
L2(Ω)√

1− 2β
,

where B(., .) denotes Beta function. By using Lemma 4.2, we have

sup
t∈Ω

|y(t)− ỹµ(t)| ≤
(

l1√
2α− 1 Γ(α)

+
l2µ√
1− 2β

)
C0µ

−κ∥y∥Hκ(Ω),

and this completes the proof. On the other word, since κ ≥ 2, we can see
for y(t) ∈ Hκ(Ω), as µ trends to infinity implies ỹµ(t) → y(t). For generic
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FDE 1.1, by applying the appropriate Riemann-Liouville fractional integration
operator on it, we can often use the result of this theorem. □

4.2. Operational matrix and implementation method. In order to ob-
tain the hybrid function operational matrix of the fractional integration, let

(4.3) IαHµ(t) ≈ Pα
µ×µHµ(t).

Pα
µ×µ is called the operational matrix of the fractional integration for hybrid

function and is obtained by the following formula:

(4.4) Pα
µ×µ = Φµ×µF

α
µ×µΦ

−1
µ×µ,

where matrix Φµ×µ is an invertible matrix and define by using vector Hµ(t) in
collocation points ti =

2i−1
2µ , i = 1, 2, . . . , µ, as following

Φµ×µ =

[
Hµ

(
1

2µ

)
Hµ

(
3

2µ

)
. . . Hµ

(
2µ− 1

2µ

)]
,

and

Fα
µ×µ =

1

µα

1

Γ(α+ 2)


1 ε1 ε2 . . . εµ−1

0 1 ε1 . . . εµ−2

0 0 1 . . . εµ−3

...
. . .

...
0 0 0 0 1

 ,

with εk = (k + 1)α+1 − 2kα+1 + (k − 1)α+1, for k = 1, 2, · · · , µ− 1.
On the other hand by taking Bµ(t) = [b1(t), b2(t), ..., bµ(t)]

T , that bis are block-
pulse functions, hybrid functions may be expanded into µ-term block-pulse
functions, as

(4.5) Hµ(t) = Φµ×µBµ(t),

and since Fα
µ×µ is the block-pulse operational matrix of the fractional integra-

tion we get [14],

(4.6) IαBµ(t) ≈ Fα
µ×µBµ(t).

Finally from Eqs. (4.4)-(4.6), one can conclude that
(4.7)
IαHµ(t) = IαΦµ×µBµ (t) = Φµ×µI

αBµ(t) ≈ Φµ×µF
α
µ×µBµ(t) = Pα

µ×µΦµ×µBµ(t).

At the end of this section, we show that how one can implement this approach
for solving linear and nonlinear multi-order FDEs in general case. To solve
FDE 1.1, we approximate Dα

∗ y(t) by the hybrid functions as

(4.8) Dα
∗ y(t) = CT

µ Hµ(t),
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where Cµ is an unknown vector. Accordingly, by applying the fractional inte-
gral operator to both sides of the above equation, we get

IαDα
∗ y(t) = CT

µ I
αHµ(t) =⇒ y(t) = CT

µ I
αHµ(t) +

n−1∑
i=0

yi
i!
ti,

and by relatin (4.7)

(4.9) y(t) = CT
µ P

α
µ×µΦµ×µBµ(t) +

n−1∑
i=0

yi
i!
ti

and

(4.10) D
βj
∗ y(t)=CT

µ P
α−βj

µ×µ Φµ×µBµ(t) +
n−1∑
i=nj

yi
(i− nj)!

ti−nj ,

where nj − 1 < βj ≤ nj . By substituting Eqs. (4.8)-(4.10) in Eq. (1.1), we
obtain a system of algebraic equations, which can be solved to find unknown
function. Implementation of this approach is given in the next section via
numerical experiments.

5. Applications and results

In this section we illustrate the applicability of the presented numerical
scheme in previous section to solve multi-order FDEs. For this purpose, we
consider some linear and nonlinear multi-order FDEs and compare the results
obtained by using our approach with the analytical solution or the estimated
solutions by using the other methods.

Example 5.1. Let us consider the Bagley-Torvik equation that governs the
motion of a rigid plate immersed in a Newtonian fluid,

(5.1) aD2
∗y(t) + bD1.5

∗ y(t) + cy(t) = h(t), t ∈ [0, T ].

Following [7, 10, 17], we consider the case h(t) = c(1 + t) and a = b = c = 1,
subject to the initial states: y(0) = y′(0) = 1.
The exact solution of this problem is y(t) = t + 1. Here we use the hybrid
operational matrices of the fractional integration to solve it. Let D2

∗y(t) =
CT

µ Hµ(t), together with the initial conditions and using Eq. (4.9), then we
have

(5.2) y(t) = CT
µ P

2
µ×µHµ(t) + t+ 1.

By substituting the above equation into Eq. (5.1), we get

(5.3) CT
µ

[
Iµ + P 0.5

µ×µ + P 2
µ×µ

]
Hµ(t) = 0.

As respects, Iµ + P 0.5
µ×µ + P 2

µ×µ and Hµ(t) are the nonzero matrices, thus the
solution of Eq. (5.3) is Cµ = 0, which by using Eq. (5.2) we achieve the exact
solution.
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Example 5.2. Conforming [10, 17], we consider the fractional order variable
coefficient linear differential equation
(5.4){

aD2
∗y(t) + b(t)Dβ1

∗ y(t) + c(t)D∗y(t) + e(t)Dβ2
∗ y(t) + k(t)y(t) = h(t),

0 ≤ t ≤ 1, 0 < β2 < 1, 1 < β1 < 2, y(0) = 2, y′(0) = 0,

where

h(t) = −a− b(t)

Γ(3− β1)
t2−β1 − c(t)t− e(t)

Γ(3− β2)
t2−β2 + k(t)(2− t2

2
),

and the exact solution is y(t) = 2− t2

2 .

Let D2
∗y(t) = CT

µ Hµ(t) and using initial states, we have

(5.5) Dβ
∗ y(t) = CT

µ P
2−β
µ×µHµ(t), for β = β2, 1, β1,

also, y(t) = CT
µ P

2
µ×µHµ(t) + 2.

Therefore, the corresponding algebraic system for representation FDE (5.4), is

CT
µ

[
aIµ + b(t)P 2−β1

µ×µ + c(t)P 1
µ×µ + e(t)P 2−β2

µ×µ + k(t)P 2
µ×µ

]
Hµ(t) = h(t)−2k(t).

We apply the collocation method with taking the collocation points ti =
2i−1
2µ , i = 1, 2, . . . , µ, for processing the above system. By solving this sys-

tem, we can find the numerical results for different values of coefficients, µ and
βi, i = 1, 2. Likely [10, 17], we present numerical solution of Eq. (5.4) by our

method for a = 1, b(t) =
√
t, c(t) = t

1
3 , e(t) = t

1
4 , k(t) = t

1
5 , β2 = 0.333 and

β1 = 1.234. Table 1 shows the absolute errors of the numerical solutions for
µ = 8, 24, 72. It is evident from the Table 1 that, the numerical solution by pre-

Table 1. Absolute errors with M = 4, N = 2, 6, 18 in different values of t
for Example 5.2.

t Values N = 2 N = 6 N = 18

0.1 6.52451× 10−4 7.29339× 10−5 8.13767× 10−6

0.2 6.52338× 10−4 7.33444× 10−5 8.20893× 10−6

0.3 6.47673× 10−4 7.30876× 10−5 8.20212× 10−6

0.4 6.37365× 10−4 7.21244× 10−5 8.11286× 10−6

0.5 6.21304× 10−4 7.05097× 10−5 7.94738× 10−6

0.6 6.00712× 10−4 6.83381× 10−5 7.71643× 10−6

0.7 5.76486× 10−4 6.57189× 10−5 7.43254× 10−6

0.8 5.49523× 10−4 6.27639× 10−5 7.10847× 10−6

0.9 5.20722× 10−4 5.95782× 10−5 6.75633× 10−6

sented hybrid method in Section 4, converges to the exact solution. Moreover,
the absolute errors decrease as the step size is decreased. The same trend is
observed for other values of variable coefficients, µ and βi, i = 1, 2. Clearly, the
approximations obtained by the hybrid method are in agreement with those
obtained with other mentioned numerical methods in [10,17].



Study on multi-order FDEs via operational matrix of hybrid functions 316

Example 5.3. Lastly, in order to assess the advantages and the accuracy of
the hybrid method presented in this article for solving nonlinear multi-order
FDEs, we consider the following initial values problem

(5.6)

{
aDα

∗ y(t) + bDβ1
∗ y(t) + c

(
Dβ2

∗ y(t)
)i

+ e (y(t))
3
= h(t), 0 ≤ t ≤ 1,

0 < β2 < 1, 1 ≤ β1 < 2, 2 ≤ α < 3, y(0) = y′(0) = y′′(0) = 0,

with

h(t) =
2a

Γ(4− α)
t3−α +

2b

Γ(4− β1)
t3−β1 + c

(
2

Γ(4− β2)
t3−β2

)i

+ e

(
t3

3

)3

,

and the exact solution y(t) = t3

3 in three cases:
Case I ( [16]): a = b = c = e = 1, i = 1, β2 = 0.333, β1 = 1.234, α = 2.
Case II( [17]): a = b = c = e = 1, i = 1, β2 = 0.75, β1 = 1.25, α = 2.2.
Case III( [10]): a = 1, b = c = e = 0.5, i = 2, β2 = 0.276, β1 = 1.999, α = 2.
Implementation of our method is utterly similar in above cases. Let Dα

∗ y(t)
= CT

µ Hµ(t), using Eq. (4.9) we have

y(t) = CT
µ P

α
µ×µΦµ×µBµ(t).

By letting
CT

µ P
α
µ×µΦµ×µ = [d1, d2, . . . , dµ] ,

and use the properties of block-pulse function, we have

y3(t) =
[
d31, d

3
2, . . . , d

3
µ

]
Bµ(t) = DTBµ(t).

Substituting these equations into FDE (5.6), we attain the following system of
nonlinear algebraic equations

aCT
µ Hµ(t) + bCT

µ P
α−β1

µ×µ Hµ(t) + c
(
CT

µ P
α−β2

µ×µ Hµ(t)
)i

+ eDTBµ(t) = h(t).

By solving the above system, we can find the vector Cµ and subsequently,
solution of FDE (5.6) is obtained. In Table 2, the absolute errors for Example
5.3 with µ = 64, 96, 100, obtained by the hybrid method in some points t ∈
(0, 1), are given. Also, this outcomes comparison with Refs. [16, 17]. About
Case III, in [10] the absolute errors in collocation points is not available, and
we only known that, the maximal error is 5.76168× 10−4 for m = 1000.

6. Conclusions

Hybrid methods have different resolution capability for expanding of differ-
ent functions. In this paper, the hybrid method of block-pulse function and
Legendre polynomials has been adopted for numerical solution of the initial
value problems for linear and nonlinear multi-order FDEs. Our approach in
this study is more generalized and unproblematic to implement. Also, the pre-
sented method yields to very accurate results. Another important advantage
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Table 2. Absolute errors of Example 5.3, in comparison with the Refs. [17]
and [16]

CaseI CaseII CaseIII

t [16] Our approach [17] Our approach Our approach
(m = 96) (µ = 64) (m = 128) (µ = 96) (µ = 100)

0.1 5.25376× 10−6 5.49976× 10−6 4.79× 10−6 3.291× 10−6 2.49667× 10−6

0.2 1.26534× 10−5 1.01598× 10−5 8.11× 10−6 6.614× 10−6 4.99209× 10−6

0.3 1.85804× 10−5 1.41604× 10−5 1.189× 10−5 9.672× 10−6 7.48669× 10−6

0.4 1.89244× 10−5 1.75918× 10−5 1.835× 10−5 1.241× 10−5 9.97956× 10−6

0.5 3.17167× 10−5 2.05188× 10−5 2.357× 10−5 1.481× 10−5 1.24684× 10−5

0.6 2.69467× 10−5 2.29932× 10−5 2.608× 10−5 1.688× 10−5 1.49488× 10−5

0.7 3.97022× 10−5 2.50581× 10−5 2.442× 10−5 1.865× 10−5 1.74134× 10−5

0.8 4.45965× 10−5 2.67483× 10−5 2.689× 10−5 2.014× 10−5 1.98503× 10−5

0.9 3.74835× 10−5 2.80885× 10−5 3.577× 10−5 2.136× 10−5 2.22416× 10−5

is that, hybrid method is capable of greatly reducing the size of computational
work while accurately providing the series solution with fast convergence rate.
To highlight the convergence, the numerical results are presented for different
values of µ = MN . The solutions obtained by using hybrid method are in
perfect agreement with the exact solutions and as observed, we get good ap-
proximation with low terms of basis. Another direction for further research
would be to extend the presented method to the systems of FDEs. This work
is currently in progress.
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