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ABSTRACT. Based on a definition for circle in Finsler space, recently pro-
posed by one of the present authors and Z. Shen, a natural definition
of extrinsic sphere in Finsler geometry is given and it is shown that a
connected submanifold of a Finsler manifold is totally umbilical and has
non-zero parallel mean curvature vector field, if and only if its circles co-
incide with circles of the ambient manifold.

Finally, some examples of extrinsic sphere in Finsler geometry, particu-
larly in Randers spaces are given.
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1. Introduction

The concept of a Euclidean sphere has two axiomatic useful extensions in
Riemannian geometry, namely, intrinsic sphere and extrinsic sphere. An in-
trinsic sphere is locally isometric to an ordinary sphere in a Euclidean space.
An n(> 2)-dimensional submanifold of an arbitrary Riemannian manifold is
said to be an extrinsic sphere if it is totally umbilical and has non-zero parallel
mean curvature vector. The notions of intrinsic and extrinsic spheres coincide
in a Euclidean space. However, in general, an extrinsic sphere is not always
an intrinsic sphere, namely, an extrinsic sphere is not always isometric with a
sphere.

Recently the present authors have defined an axiom of sphere as follows.
Axiom of r-spheres. Let (M, F) be a Finsler manifold of dimension n > 3.
For each point x in M and any r-dimensional subspace E,. of T,,M, there exists
an r-dimensional umbilical submanifold S with parallel mean curvature vector
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field such that x € S and T,.S = E,., cf., [13,14]. Next it is proved;

Theorem A. ([13]). If a Finsler manifold of dimension n > 3 satisfies the
axiom of r-spheres for some r, 2 < r < n, then M has constant flag curvature.

Here, following a definition for circles in Finsler geometry given by one of
the present authors in a joint work with Z. Shen, cf., [6], and the notion of an
umbilical submanifold in Theorem A, a natural definition of extrinsic sphere in
Finsler geometry is given and the following theorem is proved.

Theorem 1.1. Let (M, F) be a Finsler manifold. A connected submanifold S
of M is totally umbilical and has non-zero parallel mean curvature if and only
if every circle of S is a circle of M.

Next, some explicit examples of Finslerian spheres, particularly in Randers
spaces are furnished.

2. Notations and preliminaries

Let M be an n-dimensional manifold and F' a Finsler structure and g the
corresponding Finslerian metric. Let ¢ : S — M be an immersion and S a
submanifold of dimension k£ of M. We identify any point « € S by its image
i(x) and any tangent vector X € T,.S by its image i.(X ), where 4, is the linear
tangent mapping. Thus 7,.S becomes a sub-space of T, M. Let T'Sy be the
fiber bundle of non-zero tangent vectors on S. T'Sy is a sub-vector bundle of
T My and the restriction of p : TMy — M to T'Sy is denoted by q : 'Sy — S.
We denote by T'(S) := i*TM, the pull back induced vector bundle of TM by i.
The Finslerian metric of M induces a Finslerian metric on S where we denote it
again by g. At a point x = gz € S, where z € T'Sj, the orthogonal complement
of T,.S in T,.S is denoted by N,.S, namely, T,(S) = T,(S) & N,.S, where
T,(S) N N,.S = 0. We have the following decomposition:

(2.1) ¢TSS =¢*TS® N,

where N is called the normal fiber bundle. If TT'Sj is the tangent vector bundle
to T'Sy, we denote by p, the canonical linear mapping ¢ : TT' Sy — ¢*T'S. Let
X and Y be the two vector fields on T'Sy. For z € TSy, (V4Y). belongs to
T,.S. Attending to (2.1) we have

(2.2) ViV =ViV +a(X,Y), Y=0Y) X=oX),

where V is the covariant derivative of Cartan connection and a(X ,Y) is the
second fundamental form of the submanifold S. It belongs to N and is bilinear
in X and Y. It results from (2.2) that the induced connection V is a metric
compatible covariant derivative with respect to the induced metric g in the
vector bundle ¢*T'S — T'Sy, cf., [2].
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2.1. Shape operator or Weingarten formula in Finsler spaces. Let
(M, F) be a Finsler manifold and S an immersed submanifold of (M, F). For
any X € x(T'Sp) and W € I'(N) we set

(2.3) VW = —AwX + VW,

where Ay X € T'(¢*TS) and v;W € I'(N) and we have partially used nota-

tions of [4]. It follows that V™ is a linear connection on the normal bundle N.
We also consider the bilinear map

AT(N)@T(TTSy) — T'(¢*TS),
AW, X) = Aw X.
For any W € T'(N), the operator Ay : I'(TTSy) — I'(¢*TS) is called the

shape operator or the Weingarten map with respect to W. Finally, (2.3) is said
to be the Weingarten formula for the immersion of S in M.

2.2. Umbilical submanifolds in Finsler spaces. The mean curvature vec-
tor field n of the isometric immersion ¢ : S — M is defined by

1 N
(24) n=—trya("X,Y),
n

where X, Y € I'(¢*T'S) and "X is the horizontal lift of X, cf., [1]. We say that
the mean curvature vector field n is parallel in all directions if ?;277 = 0 for
all X e T(¢*TS9).

Definition 2.1 ([1]). A submanifold of a Finsler manifold is said to be totally
umbilical, or simply umbilical, if it is equally curved in all tangent directions.

More precisely, let i : S — M be an isometric immersion. Then i is totally
umbilical if there exists a normal vector field £ € N along i such that its second
fundamental form « with values in the normal bundle satisfies

(2.5) a("X,Y) = g(X,Y)¢,

for all X,Y € I'(¢*T'S), where hX is the horizontal lift of X. For more details
and examples on totally umbilical Finsler submanifolds one can refer to [8]
and [10]. Clearly by definition we have the following remark.

Remark 2.2. Let ¢ : S — M be an isometric immersion. If S is totally
umbilical, then the normal vector field £ coincides with the mean curvature
vector field 7.
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3. Circle and its development in Finsler space

3.1. Circle on Finsler spaces. Let (M, F') be a Finsler manifold of class C*°,
c: I C R — M a curve parameterized by the arc length s and X := ¢ = %
the unitary tangent vector field at each point ¢(s). Let us denote by ¢ the
horizontal lift of ¢ on TM, and "X its tangent vector field. In fact hX is the

horizontal lift of X on T M.

Definition 3.1 ([5,6]). A curve c in a Finsler space (M, F) is said to be a
circle if there exists a unitary vector field Y along ¢ and a positive constant
such that

VhXX - /QK
Vh,XY = —KX,

where V¢ denotes the Cartan covariant derivative along c¢. The number % is
called the radius of circle.

Lemma 3.2 ([0]). Let ¢ = c(s) be a unit speed curve on an n-dimensional
Finsler manifold (M, F). If ¢ is a circle, then it satisfies the following ODE

(3.1) Vig Vig X 4 9(Vig X, Vig X)X = 0,

where g(.,.) denotes the scalar product determined by Finsler structure F. Con-
versely, if ¢ satisfies (3.3), then it is either a geodesic or a circle.

3.2. Parallel transport and absolute derivative. In order to define notion
of parallelism on a manifold one should identify all tangent spaces at any two
points of a curve joining these two points. This identification has to preserve
the linear structure of tangent spaces. Let ¢(s) be a piecewise differentiable
curve in M parameterized by the arc length s, joining two points p,q € M.
A parallel transport along ¢ from p to ¢ is defined to be a linear isomorphism
o+ T,M — TyM such that 77 o 7! = 7], where r is a point on ¢ and
(t9)~t = 8. A vector field X along a curve c is said to be parallel vector field

P
along ¢ if X, = TESS)XPO, for all s, where X, is a vector field at a point

Do = ¢(80). One can use the notion of parallel transport to define a connection
or an absolute derivative and vice versa in the sense that if a vector field is
parallel along a curve, then its absolute derivative vanishes. Let X := X be
a vector field along c. For h > 0, we denote by 77, , X515 the parallel transport
of Xs4n along ¢ from c(s+h) to ¢(s). Hence the absolute derivative of X along
c at c(s) is defined by

DX Tf+th+h - X

(3.2) == = lim

d S
ds h—0 h = %{Ts+th+h} |h:0 .

A vector field X is parallel along a curve ¢ with parameter s if and only if

%f =0, cf., [3,7].
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3.3. Development of a curve into the tangent space. We recall the clas-
sical definition of development into the tangent bundle of a smooth mani-
fold with an affine connection. Let 7 : x4 be a smooth curve on M and
TQ : Ty ,M — T,,M the parallel transport along 7 from x5 to zo. Devel-
opment of T into the Euclidean tangent space T}, M is the unique curve 79 (x)
in T,, M. Equivalently, if X := 79(X,), where X is tangent to 7 at zg, then
the development T of 7 is the unique curve s in T, M starting at the origin
xo of T, M such that its tangent vector dj; is parallel to X in the Euclidean
sense, cf., [9].

For our purpose we prefer to work with a Riemannian connection on T, M,
associated to the Riemannian metric g := g;; (o, y)dy'dy’, defined by the ver-
tical part of Sasakian metric on TM. At the point z = (xg,y) € T, M the
coefficients of Riemannian connection associated to the vertical metric g are
given by C}k(zo,y), where C' is the Cartan torsion tensor, cf., [2]. We denote

the corresponding Riemannian covariant derivative by D 5, Where
(33) Dékéj = le:k(l‘o, y)@l
In the following definition, we extend the definition of development of a curve

in M into the tangent space T,,M with respect to the Riemannian metric g
on T, M arises from the Finsler metric.

Definition 3.3. Let 7 : x; be an arc length parameterized smooth curve on
Finsler space (M,g), and X, the unit tangent vector field at each point .
Denote by 70 : T,.M — T,,M the linear parallel transport along 7 from
Ts to mg. Let X = 70(X,) be the parallel transport of X, along 7 on M.
Development 7 of T is an arc length parameterized curve (i) on (Ty, M, §)
starting from xg, such that its tangent vector % is parallel to X* along T,

. £0, gz 0, . . «
that is, X7 = Ts(df; ). Here, T, is parallel transport along 7 from z4 to zg.

Proposition 3.4. A curve on a Finsler manifold (M, F) is a circle if and only
if its development into the Riemannian tangent space (Ty, M, g) is a circle.

Proof. Let 7 : x5 be a circle on (M, F') parameterized by arc length and X, Y
unitary tangent and normal vector fields at x4, respectively. By definition of a
circle we have

VSXS = HYYS?
(3.4) VsYs = —rXs,
where V, := ths is the Cartan covariant derivative along 7 in M. Let TQ :
T, .M — T,,M be the parallel transport along 7 from zs to xg. We denote
by X = 79(X,) and Y, := 70(Y;) the parallel transport of X, and Y, along
7 from z, to xo, respectively. Let 7 : Z, be the development of 7 on (T, M, g)
and 7 : Vi TogM — Vi Ty M, the parallel transport along the curve T in
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TyoM from Zg to . Putting X = 7o(X¥) and V¥ = 7(Y), by means
of linearity of the mapplng 7-0, the Rlemanman covariant derlvatlve D, X* on
(T, M, g) along the curve 7 is written

8 G % « 8 w8th Y-
szi — lim Ts+h(Xs+h) - Xs — lim Ts+h(TO Xs—l—h) - TOXS
h—0 h h—0 h
70X — To XD _ XS
.5 = lim —MM—— > lim —————>).
(8:5) pm, n Folfim =)

Next, by means of (3.2) for Cartan covariant derivative V along the curve 7
and hneanty of the mapping 70, we have

Xi, — X (7, Xoyn — Xs S Xeotn — Xs
lim s+h 5 _ Jim Ts (T.s-i-h +h ) _ T0(1~m Ts+n<>s+h )
h—0 h h—0 h h—0 h
(3.6) =19(V.X,).
Therefore, from (3.5) and (3.6), we obtain
(3.7) D X7 =770(V.X,).

Similarly, we have

(3.8) DY = 7r)(V,Y,).

By virtue of (3.4), the relation (3.7) and (3.8) imply
D X] = rY{,

(3.9) DY} = —kX}.

Above equations show that 74 : Z4 is a circle in T, M. Conversely, assume
that the development 7 of 7 in T, M is a circle. By definition there is a family
of unit vectors Y;* and a constant k > 0 together with the tangent vectors X
of T : Iy satisfying (3.9) . Using the fact that 70 and 7 are isomorphisms by
means of (3.7) and (3.8) we have

VX, = (7)1 (70) N(DLXD) = w7 (D.XD),

V.Y, = (1) (70) THDY) = (DY),
where V := V¢ is the Cartan covariant derivative along 7 in M. By means
of (3.9), we obtain

VsXs = K:Y:Ga
VsYs = —rX;.
Hence 7 : x4 is a circle in M. This completes the proof. O

Proposition 3.4 has the following consequence.
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Remark 3.5. Let x be an arbitrary point of M. For any orthonormal pair of
vectors X and Y in T, M and for any given constant x > 0, there is a circle
xs of radius %, defined for | s |< € for some € > 0, passing through the point
xo = = and tangent to the vector field X for which its covariant derivative
along c is proportional to Y, that is,

(VhXS XS)S:[) = K/Y,

where X is the tangent vector of x; and hX, is the horizontal lift of X,.

4. Extrinsic sphere in Finsler spaces

Extrinsic spheres in Riemannian geometry have been geometrically charac-
terized by K. Nomizu and K. Yano, cf., [11,12]. Now, we are in a position to
define an sphere in Finsler spaces.

Definition 4.1. A submanifold S of an arbitrary Finsler manifold (M, F) is
said to be an extrinsic sphere if it is umbilical and has non-zero parallel mean
curvature in all directions.

That is, for all X € I'(¢*T'S), we have ?;zn = 0, where "X is the horizontal
lift of X.
Here, as well as in Riemannian geometry we use the expression “extrinsic” for a
sphere because of its dependence to the extrinsic properties of the submanifold.
To prove Theorem 1.1 we need the following lemma.

Lemma 4.2. Let S be a submanifold of a Finsler manifold M. If o("X,Y) =0
for any orthonormal pair of vectors X,Y € T'(¢*TS) at a point x = gz € S,
where "X is the horizontal lift of X, then the following statements hold;
(1) For any orthonormal X,Y € T'(¢*TS) at a point x = gz € S we have

(4.1) a"X, X) = a("V,Y),

where 'Y is the horizontal lift of Y.
(2) At an arbitrary point x = gz € S we have

(4.2) n= a(hX7X),

where X € T'(¢*TS) is an arbitrary unit vector field in T,S.
(3) S is umbilical at © = qz.

Proof. Case (1). Let X and Y be two orthonormal sections of ¢*T'S with
respect to the induced Finsler metric g on S, one can easily check that %(X +

Y) and %(X —Y) are orthonormal too. Using the fact that the horizontal lift

of a vector field is a bundle isomorphism and the assumption a(hX ,Y) =0, we

have . )

hyv | hv
— ("X +"Y),—=(X-Y))=0.
UK, (X -Y))

af
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By bilinearity of a, we have
o™X, X) + (", X) —a("X,Y) —a("V,Y) =0.
Dropping zero terms we obtain
a"X, X) = a("Y,Y).

Case (2). Consider an orthonormal basis {X;, Xs,..., X} on T,.S as a fiber
of ¢*TS. By means of (4.1), we have a("X1,X;) = a("X3,X3) = ... =
a("X,,X,). Thus by definition, the mean curvature vector 7 at a point
x =qz € S is given by

I , A

n= E Z;a(hXi,Xi) = Oé(th,Xl).

Case (3). Again let {X1, Xo,..., X} be an orthonormal basis for 7,5 as a
fiber of ¢*T'S and X,Y € I'(¢*TS), hence we have X = >0  a;X;,Y =
Z?zl b; X;. Since the horizontal lift of a vector field is a bundle isomorphism
and by definition, restriction of a bundle isomorphism to each fiber is a linear
map and we have "X = 3"  a;("X;). By means of bilinearity of o and (4.2),
we obtain

n

Oé(hX,Y) = Oé(z ai(hf(i), ijXj) = Z aibja(hXi,Xj)
i=1 7j=1

ij=1
n R n R
= aibia("X;, Xi) = (O aibi)a("X1, X1)
i=1 i=1
=g(X,Y)n.
This completes the proof. O

Now, we are in a position to prove Theorem 1.1.

Proof of Theorem 1.1. Let = be an arbitrary point of S and X and Y or-
thonormal vectors in T, S. By means of Remark 3.5, there is a circle x, | s |< €,
of radius % passing through the point xy = x and tangent to the vector field
X such that

(4.3) (Vig, X, )sm0 = KY,

where V is the induced connection for S, X, the tangent vector of =, and hX,
the horizontal lift of X,. By means of Lemma 3.2, we have the differential
equation

(44) thsvh,XsXs +g(v;LX5XS,?thXS)XS = 0
By assumption, z is a circle in M too and satisfies the differential equation

(4.5) V’LXSV’LXSXS + g(VhXSXs, V}LXSXs)Xs =0,
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where V denotes the Cartan covariant derivative on (M, F). Let a be the
second fundamental form of S in M. Then we have

(46) V;LXSXS = thSXs + a(thvXS)'

By operating V,; on (4.6) and using the Wiengarten formula (2.3), we have

Vg, Vig Xs = Vig, (Vg Xo) + Vig (a("X,, X,))
= v}LXSthSXs + Oé(thy vhj(sXs) - Aoz(th,Xs)hXS

(4.7) +V, a("X,, X,).

L
hX
Substituting (4.6) and (4.7) into (4.5) and taking into account (4.4), we obtain
Oé(th, ?thXS) — Aa(hXNXS)hXS + ?tha(th Xs)
+g(a("Xs, X,), a("X,, X)) X, = 0.

For the tangent components of S on the above equation, by dropping normal
components we have

(48) Aa(}LXMXS)th = g(a(hX57 Xs)a Oz(th, Xs))Xs-
For the normal components of S, we have

(4.9) a("X, Vig X,) + Vg a("X,, X,) = 0.

Denoting X, |s—o= X and "X, |,—o= "X at s = 0, by means of (4.3), we may
rewrite (4.9) in the following form:

N 1 -1 N
(4.10) a("X,Y) = fEVth(hX,X).

The last equation shows that, for a given unit vector X € T,5S, a(hf( JY) is
independent of the unit vector Y € T, S, provided Y is orthogonal to X. In
particular, changing Y into —Y we see that a(hX ,Y) =0, provided X and Y
are orthonormal. By virtue of the third part of Lemma 4.2, we know that .S
is umbilical in # € S. Since z is arbitrary, S is umbilical in M. By means of
metric compatibility, i.e. Vg = 0, we have g(Xj, thgXS) = 0 and since S is
totally umbilical, we have a("X,, thSXS) = 0. Thus (4.9) gives

(4.11) Vg a"X,, X,) = 0.

By the second part of Lemma 4.2, a("X,, X,) is equal to the mean curvature
vector n along the curve zs. At s =0, (4.11) leads to v:j{n = 0. Since z and
X € T,S are arbitrary, the mean curvature vector n of S is parallel and S is
by definition an extrinsic sphere.
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Conversely, assume that S is an extrinsic sphere in M and z is a circle in S.
Hence the equation (4.4) holds. Since S is umbilical, we have
a(hXSa Xs) = g(X57 Xs)nzs = Nzg>
and (4.6) shows that
g(vh)”(sXsa V’LXSXS) - g(thng + Nxss thSXS + 7115)
= g(vh)“(sXsa vhj(sXs) + g(nxsﬁhxsXs)
+9(Vig, Xs:02,) + 905 M2,
(4.12) = 9(Vig, Xs, Vg Xs) + 9(n, s 1a,)-
By the fact that S is totally umbilical and 7 is parallel, we have
a(tha thSXs) = g(Xs, thSXs)nzcs =0,
- L h - L
vhj(sa( Xs, Xs) = V;Llexs =0.
By means of (4.8), we have
Aa(hf(s,Xs)th = AZzSXS = 9Nz, M) Xs-
Thus (4.7) reduces to

(4.13) thSVhXSXS = vh,)‘(svh)”(sxvs - 9(77:1357775175))(8'
The equation (4.5) is satisfies as a consequence of (4.4), (4.12) and (4.13). Thus
Zs is a circle in M and the proof is complete. O

Example 4.3. As a 1-dimensional example we show, in the following propo-
sition, every circle in (M, F) is an extrinsic sphere.

Proposition 4.4. Let (M, F) be an n-dimensional Finsler manifold. Every cir-
cle in (M, F) as a 1-dimensional immersed submanifold is an extrinsic sphere.

Proof. By definition of circle in Finsler spaces, there exists a unitary vector
field Y along ¢ and a positive constant x such that

(4.14) Vg X = KY,

(4.15) VgV = —kX,

where X = ¢ = % is the unitary tangent vector field at each point ¢(s) and

"X the horizontal lift of X. Then (2.2) and (4.14) show that
(4.16) a("X,, X,) = kY, = g(X,, X,)kYs,

where o is the second fundamental form of the 1-dimensional submanifold ¢
of M. By means of (4.16) and definition of totally umbilical submanifold, we
conclude that c is totally umbilical. On the other hand by Remark 2.2, the
mean curvature vector 7 is kY;. Then (4.15) and Weingarten formula (2.3)
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show that 7 is parallel relative to the normal connection V™. Therefore c is an
extrinsic sphere in M. O

Example 4.5. To give another example of an extrinsic sphere in Finsler space,
we use a theorem on totally umbilical submanifolds given in [3]. There is shown
that if (M™*1, o + ) is a Randers space, where « is a Euclidean metric and
B is a closed 1-form, then any complete and connected n-dimensional totally
umbilical submanifold of (M™*!, o+ 3) must be either a plane or an Euclidean
sphere. Excluding the trivial case of plane, since the Euclidean sphere is of non-
zero constant sectional curvature by means of Definition 4.1, it is an extrinsic
sphere in Randers space (M"+1, o + B).
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