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Abstract. In this article we consider the sequences of sample and popu-
lation covariance operators for a sequence of arrays of Hilbertian random
elements. Then, under the assumptions that sequences of the covari-
ance operators norm are uniformly bounded and the sequences of the

principal component scores are uniformly summable, we prove that the
convergence of the sequences of covariance operators would imply the
convergence of the corresponding sequences of the sample and population

eigenvalues and eigenvectors, and vice versa. In particular we prove that
the principal component scores converge in distribution in certain family
of Hilbertian elliptically contoured distributions.
Keywords: Hilbertian random elements, functional data analysis, func-

tional principal component analysis, covariance operators, operator con-
vergence.
MSC(2010): Primary: 46S50; Secondary: 62H25, 46A32.

1. Introduction

We let H denote a (real) separable Hilbert space. We consider a sequence
of arrays of Hilbertian, H-valued, random elements X(ℓ) = [X1(ℓ), . . . ,Xn(ℓ)],

ℓ = 1, 2, 3, ...., n. We also let CX(ℓ) and ĈX(ℓ), ℓ = 1, 2, 3, ... denote the corre-
sponding sequences of the population and sample covariance operators. In this
article we provide sufficient conditions under which the convergence in norm
of the sample and the population covariance operators gives rise to the con-
vergence of the corresponding sequences of the principal values and principal
components, these terms are defined in the next section.

In theory, the convergence of eigenvalues and eigenvectors of sequences of
operators is addressed in functional analysis and perturbation theory. Kato
in [9] gave a counter example exhibiting that weak convergence of the bounded
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operators does not necessarily leads to the convergence of the corresponding
eigenvalues and eigenvectors. An interesting example was also given in [2]
for sequences of variance-covariance matrices, see also [15]. In the infinite
dimensional case this issue is more complicated. There is also variety in the
type of convergence.

In application, specially in dealing with longitudinal data and repeated mea-
surement, the convergence of sequences of certain statistics appear to be infor-
mative in [1]. The sequences of arrays of Hilbertian random elements are used
to model repeated measurements functional data. The index ℓ stands for the
number of measurements in time, while n stands for the number of subjects.
The convergence of the eigenvalues and eigenvectors shows eventual consistency
in direction and magnitude of variation in data. This is important in analysis
of repeated measurements.

In this article we mostly consider the theoretical aspect of the problem. The
key tool in our analysis is the Bosq inequalities concerning the norm deviations
between corresponding eigenvalues and eigenvectors of two nuclear operators,
Lemma 3.1 and Lemma 3.2, and the following key assumptions that are intro-
duced in this article.
Let {Cℓ} be a sequence of nuclear operators, ∥Cℓ∥N the nuclear norm, and
{λj(ℓ)}j ,
ℓ = 0, 1, 2, ... the corresponding sequences of eigenvalues.

Assumption (A): The sequence {∥Cℓ∥N}ℓ≥0 is uniformly bounded, i.e., there
is a constant M such that

∥ Cℓ ∥< M, for ℓ = 1, 2, ...

Assumption (B): The sequences of eigenvalues {λj(ℓ)}j , ℓ = 1, 2, 3, ... are
uniformly sumable, i.e., for given ϵ > 0 there is N depending only on ϵ such
that

∞∑
j=N

|λj(ℓ)| < ϵ, for every ℓ ≥ 1.

Then we prove that the under conditions (A) and (B), {Cℓ} → C0 weakly
if and only if the convergence takes place in every pair of the corresponding
eigenvalue eigenvectors. More details are given in Sections 3 & 4.
The Condition (B) is of practical interest. It concerns two important issues in
the principal component analysis in repeated measurements, PCA in abbrevi-
ation, namely, reduction of dimension and measurements repeats. This issue
is even more important in FDA. Condition (B) states that among infinite in-
dependent factors that produce a random element, only finite number of them
are significant, and the number of significant factors remains to be uniformly
the same when the number of repeated measurements exceeds certain level for
each subject. Customary, among other techniques, the Fraction of Variation
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Explained (FVE) is a reliable statistical method to detect significant underly-
ing factors in a single Hilbertian random element. To be more precise, FVE
states that when the eigenvalues are in decreasing order, then the minimum

numberm satisfying
m∑
i=1

λi/
∞∑
i=1

λi ≥ α, gives the sufficient number of significant

factors, where α is a positive number less than but close to one. Equivalently,

(1.1)

∞∑
i=m+1

λi(ℓ)

∞∑
i=1

λi(ℓ)
< 1− α, ℓ = 1, 2, 3, ...,

which, under (A), is equivalent to (B).
As an application of our derivations, We deduce that the principal compo-

nent scores converge in distribution in certain family of Hilbertian elliptically
contoured distributions, discussed in [10].

The literature on principal values, principal components and their applica-
tions is quite rich. For more information and related references, we refer the
readers to [4, 5, 8, 11–13].

This article is organized as follows. In Section 2, we provide basic notations
and preliminaries. In Section 3, we consider the convergence of the sample
eigenvalues and eigenvectors. In Section 4, we provide sufficient conditions for
the continuity of the population eigenvalues and eigenvectors. We conclude
this section by proving that the PC scores of sequences of certain Hilbertian
elliptically contoured distributed random elements converge in distribution,
Theorem 4.4.

2. Notations and preliminary

We let (Ω,A, P ) denote a probability space and H denote a (real) separable
Hilbert space. A random element X is a Borel measurable mapping defined on
(Ω,A, P ) taking its values in H. We say a random element is weakly second

order if E |⟨X,x⟩|2 < ∞, for every x ∈ H, where ⟨., .⟩ is the inner product of H,

and strongly second order if E ∥X∥2 < ∞, where ∥x∥2 = ⟨x,x⟩ for all x ∈ H.
We let N,HS and B stand for nuclear, Hilbert Schmidt and bounded linear

operators on H, equipped with the corresponding norms, respectively.
It is well known that a nuclear operatorC onH admits the spectral represen-

tation C(x) =
∞∑
j=1

λj ⟨x, ej⟩ ej , x ∈ H , where (ej) is an orthonormal bases for

H, called eigenvectors ofC, and (λj) is a sequence of real numbers, called eigen-

values of C, such that
∞∑
j=1

|λj | < ∞. The nuclear norm of C is ∥C∥N =
∞∑
j=1

|λj |.

If C is self adjoint and positive, i.e., ⟨C(x),x⟩ > 0, then λj > 0 for every j .
A Hilbert Schmidt operator C admits similar spectral representation, but the
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coefficients λj are square sumable; then ∥C∥HS =
∞∑
j=1

λ2
j < ∞. It is well known

that N ⊂ HS, Gelfand and Vilenkin [7].
For an H-valued random element X, the population covariance operator CX

is defined by

(2.1) CX(x) = E(X⊗X)(x) = E⟨X,x⟩X, x ∈ H.

A population covariance operator is nuclear and positive; CX =
∞∑
j=1

λjπ [ej ],

π [e] : H → {αe, α ∈ R} is the one dimensional projection on H onto the one
dimensional subspace generated by e. For a random elementX, the expectation
is defined in the sense of Bochner, EX =

∫
XdP .

Throughout this paper, we assume that X is a centered H-valued strongly
second order random element and any finite number of random elementsX1, . . . ,
Xn are linearly independent with probability one. This will be true ifX1, . . . ,Xn

are independent.
If {X1, . . . ,Xn} is a finite set of random elements, in particular a random

sample for a random elementX, a natural estimator for the covariance operator

CX is the so-called empirical covariance operator denoted by Ĉ and is given
by

(2.2) Ĉ =
1

n

n∑
i=1

Xi ⊗ Xi.

The sample covariance operator is finite with probability one, w.p.1 in ab-
breviation, in the sense that its range has finite dimension. Under the lin-
ear independence assumption, the dimension of the range, R [X1, . . . ,Xn] =

spanclosure[X1, . . . ,Xn] in H, is constant w.p.1; Ĉ : H → R [X1, . . . ,Xn].

The sample covariance operator Ĉ admits the representation

(2.3) Ĉ =
n∑

j=1

λ̂jπ [êj ] .

Interesting, random elements êj , j = 1, ..., n form a basis for R [X1, . . . ,Xn];

moreover λ̂j are distinct w.p.1.
Let us denote X1(ℓ), . . . ,Xn(ℓ), ℓ = 1, 2, ..., L, repeated samples as in re-

peated measurements or in analysis of variance; L, number of measurements,
could be finite or infinite. For fix ℓ, X1(ℓ), . . . ,Xn(ℓ) are readings for n sub-
jects; for fix j, Xj(1), . . . ,Xj(ℓ) are repeated measurements for the subject
j.

In the next section we investigate the convergence of Ĉℓ (introduced in The-

orem 3), as ℓ increases. Upon the convergence of Ĉℓ, repeats of measurements
become less informative in time, and the experimenter may decide stop further
sampling at a certain time epoch ℓ.
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3. Sample covariance behavior

In this section we provide proofs for the convergence of sequence of the
sample covariance operator and corresponding principal values and principal
components. Let us first provide the following two basic approximation results
that are of independent interests, as well.

Lemma 3.1 ([4, p. 103]). Let A and B be two compact linear operators on H
with spectral decompositions

A =
∞∑
j=1

λj(A)ej(A)⊗ ej(A);

B =

∞∑
j=1

λj(B)ej(B)⊗ ej(B).

Then we have
|λj(B)− λj(A)| ≤ ∥A−B∥ , j ≥ 1.

Bosq [4] gives the lemma for the population covariances operators. It is
indeed true for positive nuclear operators. The proof is similar to the proof of
Bosq [2, P. 103].

Lemma 3.2. If (ej(A), λj(A)) and (ej(B), λj(B)) are corresponding pairs of
eigenvectors and eigenvalues of A and B as in Lemma 3.1, respectively, and if
ej(A) and ej(B) are one dimensional, then

∥ej(B)− ej(A)∥ ≤ αj(A,B) ∥A−B∥ , j ≥ 1,

where

αj(A) = 2
√
2max

[
(λj−1(A)− λj(A))

−1
, (λj(A)− λj+1(A))

−1
]
, j ≥ 2,

αj(B) = 2
√
2max

[
(λj−1(B)− λj(B))

−1
, (λj(B)− λj+1(B))

−1
]
, j ≥ 2,

and
α1(A) = 2

√
2 (λ1(A)− λ2(A))

−1
,

α1(B) = 2
√
2 (λ1(B)− λ2(B))

−1
,

αj(A,B) = max [αj(A), αj(B)] , j ≥ 1.

The following theorem is the main result of this section that shows the
convergence for the sample eigenvalues and eigenvectors is induced from the
convergence of the sample covariance operators and vice versa.

Theorem 3.3. Let X = [X1, . . . ,Xn] and X(ℓ) = [X1(ℓ), . . . ,Xn(ℓ)], and let

Ĉ and Ĉℓ denote corresponding sample covariance operators, respectively, ℓ =

1, 2, ...L. Also let
{
λ̂j , êj

}
and

{
λ̂j(ℓ), êj(ℓ)

}
be the corresponding {eigenvalue,

eigenvector} pairs for Ĉ and Ĉℓ, respectively. Then the followings are satisfied:
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(i) If X(ℓ) converges to X in norm w.p.1, then Ĉℓ converges to Ĉ in norm
w.p.1.

(ii) If Ĉℓ converges to Ĉ in norm w.p.1, then λ̂j(ℓ) → λ̂j; if λ̂j’s are distinct
then êj(ℓ) → êj in norm w.p.1.

(iii) Assume for j = 1, ..., n, λ̂j(ℓ) → λ̂j and êj(ℓ) → êj in norm w.p.1,

as ℓ → L, and every λ̂j > 0 w.p.1. Then Ĉℓ converges to a nuclear operator,

say Ĉ, in norm, w.p.1. which is a sample covariance operator with eigenvalue,

eigenvector pairs
{
λ̂j , êj

}
.

Proof. (i) This is immediate due to the fact that the projection operator π [x]
is continuous in x. (ii) Every empirical covariance operator is a compact linear
operator. It follows from Lemma 3.1 that

(3.1)
∣∣∣λ̂j(l)− λ̂j

∣∣∣ ≤ ∥∥∥Ĉl − Ĉ
∥∥∥ ; j ≥ 1,

giving that the convergence of eigenvalues follows from the convergence of the

corresponding covariance operators. If the eigenvalues of Ĉ are distinct w.p.1,
then the eigenspace for each eigenvector will be one dimensional. Therefore by
using Lemma 3.2, we obtain

(3.2) ∥êj(l)− êj∥ ≤ αj

∥∥∥Ĉl − Ĉ
∥∥∥ ; j ≥ 1,

where

αj = 2
√
2max

[(
λ̂j−1 − λ̂j

)−1

,
(
λ̂j − λ̂j+1

)−1
]
; j ≥ 2

α1 = 2
√
2
(
λ̂1 − λ̂2

)−1

.

But Ĉ has finite number of distinct eigenvalues, therefore αj is bounded from
below. Consequently, the convergence of the covariance operators implies the
convergence of the corresponding eigenvectors. (iii) {êj} is an orthonormal
basis. Indeed δjk = ⟨êj(l), êk(l)⟩ → ⟨êj , êk⟩ as l converges to L. Therefore

⟨êj , êk⟩ = δjk . On the other hand Ĉl → Ĉ in norm, because∥∥∥Ĉl(x)− Ĉ(x)
∥∥∥2

=

∥∥∥∥∥
n∑

j=1

λ̂j(l)⟨x,êj(l)⟩êj(l)−
n∑

j=1

λ̂j⟨x,êj⟩êj

∥∥∥∥∥
2

=

n∑
i=1

λ̂2
i ⟨x,êi⟩2 +

n∑
i=1

λ̂2
i (l)⟨x,êi(l)⟩2

−
n∑

j=1

n∑
i=1

λ̂j(l)λ̂i⟨x,êj(l)⟩⟨êi,x⟩⟨êj(l), êi⟩

−
n∑

j=1

n∑
i=1

λ̂j(l)λ̂i⟨x,êi⟩⟨x,êj(l)⟩⟨êi, êj(l)⟩

→ 0.
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Since Ĉl− Ĉ is of finite dimension, it follows that
∥∥∥Ĉl − Ĉ

∥∥∥ → 0 as well. Note

that the resulting operator Ĉ is symmetric and positive, so Ĉ is a covariance
operator, Gelfand and Vilenkin [(1964), Theorem 10 page 50]. □

4. Population covariance behavior

In this section we investigate whether the convergence of the sequence of
population covariance operators implies the convergence of the corresponding
sequences of the eigenvalues and eigenvectors. The following theorem is the
main result of this section.

Theorem 4.1. Let X and X(ℓ), l = 1, 2, ... be random elements in H. Also
let C and Cℓ denote the corresponding covariance operators, respectively, and
{λj , ej} and {λj(ℓ), ej(ℓ)} be the corresponding {eigenvalue, eigenvector} pairs
for C and Cℓ. Then the followings are satisfied

(i) Assume the assumption (A), given in the Introduction, is satisfied and
Cℓ converges in norm to C. Then C is a covariance operator; moreover if
λj(ℓ)→λj, as ℓ → L, and if λjs are distinct, then ej(ℓ) → ej in norm.

(ii) Assume the assumption (B) is satisfied, and λj(ℓ) → λj > 0, and
ej(ℓ)→ej in norm. Then C =

∑
j λj π[ej ] will be a covariance operator, and

Cℓ converges to C weakly.

Proof. (i) Let C =
∑

j λjπ[ej ]. Then the resulting operator C is symmetric

and positive, therefore by Gelfand and Vilenkin [7, Theorem 10 page 50], C is
a covariance operator. Every empirical covariance operator is a compact linear
operator. It follows from Lemma 3.1 that

(4.1) |λj(ℓ)− λj | ≤ ∥Cℓ −C∥ ; j ≥ 1,

giving the result. For the eigenvectors, by Lemma 3.2,

(4.2) ∥ej(ℓ)− ej∥ ≤ αj ∥Cℓ −C∥ ; j ≥ 1,

where

αj = 2
√
2max

[
(λj−1 − λj)

−1
, (λj − λj+1)

−1
]
; j ≥ 2

α1 = 2
√
2 (λ1 − λ2)

−1
.

If the eigenvalues of C are distinct, then α1 > 0 and αj > 0. Therefore the con-
vergence of operators will imply the convergence of corresponding eigenvectors.
(ii) Under the assumption (B), by using a classical argument, it can be proved

that
∞∑
j=1

λj(ℓ) →
∞∑
j=1

λj and
∞∑
j=1

λj < ∞. Also since every {ej(ℓ), j = 1, 2, ...} is

orthonormal, the {ej , j = 1, 2, ...} is orthonormal as well. Thus C =
∑

λjπ [ej ]
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is a covariance operator. We proceed on to show Cℓ → C weakly. Fix f ∈ H,
then Cℓf =

∑
j=1

λj(ℓ)⟨f, ej(ℓ)⟩ej(ℓ). Since

∥λj(ℓ)⟨f, ej(ℓ)⟩ej(ℓ)∥ ≤ ∥f∥λj(ℓ); j, ℓ = 1, 2, ...

it follows that under (B), {xj(ℓ)}j , ℓ = 1, 2, ...,where xj(ℓ) = λj(ℓ)⟨f, ej(ℓ)⟩ej(ℓ)
is uniformly sumable, i.e., for ε > 0 there is Nε such that

∞∑
j=N

∥λj(ℓ)⟨f, ej(ℓ)⟩ej(ℓ)∥ < ε.

Also xj(ℓ) → xj = λj⟨f, ej⟩ej , as ℓ → ∞. Therefore Cℓf → Cf . □
Remark 4.2. The convergence of a sequence of covariance operators, in gen-
eral, does not imply the convergence of its eigenvectors in B(H). In fact the
distinction of λj is necessary. There are counter examples in Kato (1995) page
111 and in Alqallaf, Soltani and Alkandari (2011).

Remark 4.3. For fix ℓ, the random elements X1(ℓ), . . . ,Xn(ℓ), ℓ = 1, 2, ..., L
in H can be considered as a random element Xn

ℓ = [X1(ℓ), . . . ,Xn(ℓ)] in
Hn = H×H× ....×H, the Hilbert space formed by the n-fold Cartesian prod-
uct of H by itself. Therefore under the assumptions (A) and (B) for every
u = 1, ..., n, the implications in Theorem 4 are easily extended to the sequences
of random elements [X1(ℓ), . . . ,Xn(ℓ)].

Let us conclude this section with an interesting application of Theorem 4. A
random element X is said to have a Hilbertian elliptically contoured distribu-
tion, X ∼ HECH(µ,C, ϕ), if the characteristic function of X − µ assume the
form ϕX−µ(x) = ϕ0(⟨x,Cx⟩), x ∈ H, where ϕ0 : R+ → R, and ϕ0(⟨x,Cx⟩) is
positive on H. Equivalently, X ∼ HECH(µ,C, ϕ), if and only if X

d
= µ+RU,

where U ∼ HECH(0,C) and R is a nonnegative random variable independent
of U, [10].

Let X be a random element in H, and let {λj , ej}j be the corresponding
sequence of its principal component score-value pairs. Let ξ[j] = ⟨ej ,X⟩ be
the jth PC score of X. The following theorem concerns the convergence in
distribution of PC scores.

Theorem 4.4. Assume X1,X2, ... are random elements in H with covari-
ance operators C1,C2, ...., respectively. Assume X1 ∼ HECH(0,C1, ϕ0),X2 ∼
HECH(0,C2, ϕ0), ..., and ϕ0 is continuous.

(i) If Cℓ converges weakly to an operator C and condition (A) is satisfied,
then Xℓ converges in distribution to a random element X ∼ HECH(0,C, ϕ0).

(ii) If Cℓ converges weakly to an operator C and condition (A) is satisfied,
then (ξℓ[j1], ..., ξℓ[jn]) converges in distribution to (ξ[j1], ..., ξ[jn]).

(iii) Assume the assumption (B) is satisfied, and λj(ℓ) → λj, ej(ℓ)→ej in

norm. Then Xℓ
d→ X.
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Proof. (i) Apply Theorem 4.1(i) and the continuity theorem. (ii) Apply The-
orem 4.1(i) and the result of Li in the cited reference that (ξℓ[j1], ..., ξℓ[jn]) ∼
HECH(0, diag(λℓ[j1], ..., λℓ[jn]), ϕ0) and (ξ[j1], ..., ξ[jn]) ∼HECH(0, diag(λ[j1]
, ..., λ[jn]),
ϕ0). (iii) Apply Theorem 4.1(ii) and then part (i). The proof is complete. □
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