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Abstract. In the present paper, we study surfaces invariant under the 1-

parameter subgroup in Sol space Sol3. Also, we characterize the surfaces
in Sol3 whose coordinate functions of an immersion of the surface are
eigenfunctions of the Laplacian ∆ of the surface.
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1. Introduction

Let x⃗ : M −→ Em be an immersion from an n-dimensional connected Rie-
mannian manifold M into an m-dimensional Euclidean space Em. Denote the
Laplacian operator of M with the induced metric by ∆. Then, the immersion
x⃗ is of finite type if each component of the position vector field x⃗ of M in Em

can be written as a finite sum of eigenfunctions of the Laplacian operator, that

is, the position vector x⃗ of M can be expressed in the form x⃗ = c +
∑k

i=1 xi,
where c is a constant map and x1, x2, . . . , xk are non-constant maps such that
∆xi = λixi, i = 1, 2, . . . , k. Moreover, if all eigenvalues {λ1, λ2, . . . , λk} are
mutually different, then M is said to be of k-type [4].

For the mean curvature vector field
−→
H of M , it is well known that ∆x⃗ =

−n
−→
H . In [9] Takahashi proved that an n-dimensional submanifold M of Em is

of 1-type (i.e., ∆x⃗ = λx⃗) if and only if it is either a minimal submanifold in
Em or a minimal submanifold of hypersphere of Em and Garay [6] extended it
to submanifolds, that is, he studied submanifolds in Em whose position vector
field x⃗ satisfies the differential equation

(1.1) ∆x⃗ = Ax⃗

for some m×m-diagonal matrix A. Garay called such submanifolds coordinate
finite type submanifolds. Actually coordinate finite type submanifolds are finite
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type submanifolds whose type numbers are at most m. In other words, each
coordinate function of a coordinate finite type submanifold submanifoldM is of
1-type in the sense of Chen [4]. Recently, Bayram, Arslan, Önen and Bulca [3]
studied rotational surfaces in 4-dimensional Euclidean space E4.

Related to Garay condition (1.1), Dillen, Pas and Verstraelen [5] investigated
surfaces in E3 whose immersion satisfies the equation

(1.2) ∆x⃗ = Ax⃗+B,

where A ∈ Mat(3,R) is a 3 × 3-real matrix and B ∈ R3. This equation (1.2)
generalizes Garay condition (1.1) in a coordinate independent way. Several
results were obtained when the ambient space is the Lorentz-Minkowski space
([1, 2, 7]), the pseudo-Galilean space ([12]) and the Heisenberg group ([11]).

In this paper we study invariant surfaces in Sol space Sol3, in particular we
classify invariant surfaces satisfying equation (1.2) with B = 0.

2. Preliminaries

The space Sol3 is a simply connected homogenous 3-dimensional manifold
whose isometry group has dimension 3 and it is one of the eight models of
geometry of Thurston [10]. This is a solvable but not nilpotent Lie group
which can be seen as the subgroup of 3× 3-matrices given by

Sol3 =

{(e−z 0 x
0 ez y
0 0 1

)∣∣∣ x, y, z ∈ R

}
⊂ GL(3,R).

So, we can view Sol3 as R3 and the group operation ∗ is defined by

(x, y, z) ∗ (x̄, ȳ, z̄) =
(
x+ x̄e−z, y + ȳez, z + z̄

)
.

On the other hand, the left-multiplication by p = (x, y, z) in Sol3, Lp : q 7→ p∗q,
has tangent map

(2.1) TqLp =

e−z 0 0
0 ez 0
0 0 1


in the canonical coordinates (x, y, z) of R3. Let { ∂

∂x ,
∂
∂y ,

∂
∂z} denote the canon-

ical frame fields in R3. Then from (2.1) we have that an orthonormal basis of
left-invariant vector fields in Sol3 is given by

E1 = e−z ∂

∂x
, E2 = ez

∂

∂y
, E3 =

∂

∂z
,

and the left-invariant Riemannian metric ⟨ , ⟩ in Sol3 is given by

⟨ , ⟩ = e2zdx2 + e−2zdy2 + dz2.

On the other hand, the Lie brackets are given as follows

[E1, E2] = 0, [E1, E3] = E1, [E3, E2] = E2
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and the Livi-Civita connection ▽̃ of Sol3 is expressed as

(2.2)

▽̃E1E1 = −E3, ▽̃E1E2 = 0, ▽̃E1E3 = E1,

▽̃E2E1 = 0, ▽̃E2E2 = E3, ▽̃E2E3 = −E2,

▽̃E3E1 = 0, ▽̃E3E2 = 0, ▽̃E3E3 = 0.

The following properties are well-known and can be found in [8], for exam-
ple. Equipped with the left-invariant Riemannian metric, the Sol space Sol3 is
a homogenous Riemannian manifold whose group of isometrics I(Sol3) has di-
mension 3. Also, the connected component I0(Sol3) of the identity is generated
by the following three families of isometrics:

T t
1(x, y, z) = (x+ t, y, z) ,

T t
2(x, y, z) = (x, y + t, z) ,

T t
3(x, y, z) = (e−tx, ety, z + t),

where t ∈ R is a real parameter. These isometrics are left multiplications by
elements in Sol3 and they are left-translations with respect to the structure of
Lie group.

The corresponding Killing vector fields associated to these families of iso-
metrics are given by

F1 =
∂

∂x
, F2 =

∂

∂y
, F3 = −x

∂

∂x
+ y

∂

∂y
+

∂

∂z
.

A surface in Sol3 is said to be a Ti- invariant surface if it is invariant under
the action of 1-parameter subgroups T t

i of isometries generated by the Killing
vector fields Fi with i = 1, 2, 3.

By the isometry ϕ(x, y, z) = (y, x,−z) in Sol3, an invariant surface under
the 1-parameter subgroup T t

1 is congruent to an invariant surface under the
1-parameter subgroup T t

2 . Thus, for the study of invariant surfaces in Sol3, we
may restrict our attention to surfaces invariant under the 1-parameter subgroup
T t
1 or T t

3 [8].
It is well known that in terms of local coordinates {u1, u2} and the coeffi-

cients gij of the first fundamental form of a surface M the Laplacian operator
∆ is defined by

(2.3) ∆ =
1√
|g|

2∑
i,j=1

∂

∂ui
(
√
|g|gij ∂

∂uj
),

where g = det(gij) and (gij) = (gij)−1.

3. Coordinate finite type T1-invariant surfaces

In this section, we investigate coordinate finite type T1-invariant surfaces in
Sol3. We must also deal with T3- invariant surfaces. However we have not been
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able to obtain reliable results due to the fact that the computations are very
complicated and difficult to manage for this type of surfaces.

Let M be a surface invariant under the 1-parameter subgroup T t
1 . Then the

parametrization of M is given by

(3.1)
x⃗(s, t) = (t, 0, 0) ∗ (0, y(s), z(s))

= (t, y(s), z(s)) .

We assume that a curve α(s) = (0, y(s), z(s)), s ∈ I is a unit speed curve. Then
we have

(3.2) y′(s) = ez(s) cos θ(s), z′(s) = sin θ(s),

where θ is a smooth function.
From (3.1) and (3.2) we obtain an orthogonal basis

e1 :=
∂x

∂s
= cos θE2 + sin θE3, e2 :=

∂x

∂t
= ezE1,

which implies the coefficients of the induced metric of the surface to be

g11 = 1, g12 = 0, g22 = e2z.

Let U be a unit normal vector field of M . Then U is given by

U = sin θE2 − cos θE3.

The values of ▽̃eiej (for i = 1, 2)

▽̃e1e1 = − sin θ(θ′ + cos θ)E2 + cos θ(θ′ + cos θ)E3,

▽̃e1e2 = sin θezE1,

▽̃e2e2 = −e2zE3,

which imply the coefficients of the second fundamental form of M to be

h11 = ⟨▽̃e1e1, U⟩ = θ′ + cos θ,

h12 = ⟨▽̃e1e2, U⟩ = 0,

h22 = ⟨▽̃e2e2, U⟩ = −e2z cos θ.

Thus, the Gaussian curvature K and the mean curvature H of M are given by,
respectively

K = − cos θ(θ′ + cos θ), H =
1

2
θ′.

By (2.3), the Laplacian operator ∆ of M can be expressed as

∆ = −z′
∂

∂s
− ∂2

∂s2
− e−2z ∂2

∂t2
.

By a straightforward computation, the Laplacian operator ∆x⃗ of x⃗ with the
help of (2.2) and (3.2) turns out to be

(3.3) ∆x⃗ = θ′ sin θE2 − θ′ cos θE3.
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First of all, we consider a harmonic surface in Sol3, that is, a surface M which
satisfies the equation ∆x⃗ = 0. In this case, we have from (3.3) that θ′ = 0,
which implies that M is a minimal surface.

Consequently, by [8, Theorem 3.1] we have

Theorem 3.1. Let M be a T1-invariant surface in Sol space Sol3. If M is
a harmonic surface if and only if it is a plane or the surface generated by
z = ln((tan θ0)y).

Now, we consider coordinate finite type T1-invariant surface in Sol3, that is, a
surface M which satisfies the equation ∆x⃗ = Ax⃗ for some diagonal matrix A
with diagonal entries a1, a2 and a3. Then from (3.3) we have the following

(3.4) a1e
zt = 0,

(3.5) a2y = θ′ sin θez,

(3.6) a3z = −θ′ cos θ.

From (3.4) we get a1 = 0. If cos θ = 0 on an open interval I, then y is a
constant function, it follows that M is a vertical plane. We consider cos θ ̸= 0
on an open interval. Then from (3.2) we have

(3.7) θ′ = ± z′′√
1− (z′)2

,

because cos θ = ±
√

1− (z′)2. From here, we have two values for θ′. Without
loss of generality, we take the sign + in the above expression. The reasoning is
analogous with the choice −.)

We discuss four cases according to the constants a2 and a3.
Case 1. a2 = a3 = 0.

In such case, θ′ = 0, that is, M is a minimal surface.
Case 2. a2 = 0 and a3 ̸= 0.

From (3.2) and (3.7), equation (3.5) becomes z′z′′√
1−(z′)2

ez = 0, it follows that

z′ = 0. This means that M is a horizontal plane.
Case 3. a2 ̸= 0 and a3 = 0.

From (3.6), we have z′′ = 0, that is z = as + b, a, b ∈ R. In this case, θ′ = 0
and y = 0. So, M is a vertical plane.

Case 4. a2 ̸= 0 and a3 ̸= 0.
From (3.7), equation (3.6) becomes

z′′ + a3z = 0,

whose general solution is

z(s) = c1 cos(
√
a3s+ d1), if a3 > 0

or
z(s) = c2 cosh(

√
−a3s+ d2), if a3 < 0,
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where c1, c2, d1, d2 ∈ R. Therefore, from (3.5) the function y(s) is given by

y(s) =
c21a

3
2
3 sin(

√
a3s+ d1) cos(

√
a3s+ d1)

a2

√
1− c21a3 sin

2(
√
a3s+ d1)

ec1 cos(
√
a3s+d1)

or

y(s) =
c22(−a3)

3
2 sinh(

√
−a3s+ d2) cosh(

√
−a3s+ d2)

a2

√
1 + c22a3 sinh

2(
√
−a3s+ d2)

ec2 cosh(
√
−a3s+d2).

We conclude with the following:

Theorem 3.2. Let M be a T1-invariant surface in Sol space Sol3. Then M is
a coordinate finite type surface, that is, it satisfies the equation

∆x⃗ = Ax⃗, A =
( a1 0 0

0 a2 0
0 0 a3

)
∈ Mat(3,R)

if and only if M is a minimal surface or parametrized as

x⃗(s, t) = (t, y(s), z(s)),

where
(1) either

y(s) =
c21a

3
2
3 sin(

√
a3s+ d1) cos(

√
a3s+ d1)

a2

√
1− c21a3 sin

2(
√
a3s+ d1)

ec1 cos(
√
a3s+d1), and

z(s) = c1 cos(
√
a3s+ d1) with c1, d1 ∈ R, a3 > 0

(2) or

y(s) =
c22(−a3)

3
2 sinh(

√
−a3s+ d2) cosh(

√
−a3s+ d2)

a2

√
1 + c22a3 sinh

2(
√
−a3s+ d2)

ec2 cosh(
√
−a3s+d2), and

z(s) = c2 cosh(
√
−a3s+ d2) with c2, d2 ∈ R, a3 < 0.

4. T1-invariant surfaces satisfying ∆x⃗ = Ax⃗ for some matrix A

In this section we study T1-invariant surfaces in Sol3 satisfying

(4.1) ∆x⃗ = Ax⃗,

where A is a general matrix, that is, A = (aij) with i, j = 1, 2, 3.
From (3.3) and (4.1), we have

a11t+ a12y + a13z = 0,

a21t+ a22y + a23z = ezθ′ sin θ,

a31t+ a32y + a33z = −θ′ cos θ,
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which implies a11 = a21 = a31 = 0.

(4.2) a12y + a13z = 0,

(4.3) a22y + a23z = ezθ′ sin θ,

(4.4) a32y + a33z = −θ′ cos θ.

Case 1. Suppose a12a13 ̸= 0. Differentiating (4.2) with respect to s and
using (3.2) we get

(4.5) ez = −a13
a12

z′√
1− (z′)2

.

By using (3.7) and (4.2), equation (4.4) becomes

(4.6) z′′ −
(
a13a32 − a12a33

a12

)
z = 0.

On the other hand, from (3.2), (3.7) and (4.5) equation (4.3) can be rewritten
as the form:

(4.7) (z′)2z′′ =

(
a13a22 − a12a23

a13

)
(z − z(z′)2).

Combining (4.6) and (4.7) we have(
a13a32 − a12a33

a12
+

a13a22 − a12a23
a13

)
(z′)2 =

a13a22 − a12a23
a13

,

whose general solution is given by

z(s) = a1s+ b1

for some constants a1 and b1. In such case θ is a constant function. From (4.2)
we also get

y(s) = a2s+ b2

for some constants a2 and b2. Thus, a surface M is generated by z = ay + b
with a, b ∈ R.

Case 2. If a12 = 0, a13 ̸= 0 or a12 ̸= 0, a13 = 0, a surface is a vertical or
horizontal plane.

Case 3. Assume a12 = 0, a13 = 0.
Subcase 1. If a32 = 0, then equation (4.4) maybe written as

z′′ + a33z = 0

which has the general solution

z(s) = c1s+ d1, if a33 = 0,

z(s) = c2 cos(
√
a33s+ d2), if a33 > 0

or
z(s) = c3 cosh(

√
−a33s+ d3), if a33 < 0,
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where ci, di ∈ R (i = 1, 2, 3). In this case, the function y(s) corresponding to
z(s) is given by

y(s) = −a23
a22

(c1s+ d1),

y(s) = −c2a23
a22

cos(
√
a33s+ d2)

+
c22a

3
2
33 sin(

√
a33s+ d2) cos(

√
a33s+ d2)

a22

√
1− c22a33 sin

2(
√
a33s+ d2)

ec2 cos(
√
a33s+d2)

or

y(s)=−c3a23
a22

cosh(
√
−a33s+ d3)

+
c23(−a33)

3
2 sinh(

√
−a33s+ d3) cosh(

√
−a33s+ d3)

a22

√
1 + c23a33 sinh

2(
√
−a33s+ d3)

ec3 cosh(
√
−a33s+d3).

Subcase 2. Suppose a32 ̸= 0. From (4.4) we obtain

(4.8) y = − 1

a32
(z′′ + a33z).

Differentiating (4.8) with respect to s and using (3.2) and (3.7) we get

ez = − 1

a32
√
1− (z′)2

(z′′′ + a33z
′).

From this, equation (4.3) can be rewritten as the following ODE

(4.9)
z′z′′z′′′ + (a22 + a33)(z

′)2z′′

− a22z
′′ + (a22a33 − a23a32)(z(z

′)2 − z′) = 0.

If z′ = 0, then from (4.8) y is also a constant. This contradicts the regularity
of M .

We assume that z′ ̸= 0 on an open interval. Then equation (4.9) becomes

z′′z′′′ + (a22 + a33)z
′z′′ − a22

z′′

z′
+ (a22a33 − a23a32)(zz

′ − 1) = 0,

or equivalently

d

ds
(z′′)2 + (a22 + a33)

d

ds
(z′)2 − 2a22

z′′

z′
+ (a22a33 − a23a32)(

d

ds
(z2)− 2) = 0.

From this we have

(4.10)
(z′′)2 + (a22 + a33)(z

′)2 − 2a22 ln |z′|
+ (a22a33 − a23a32)(z

2 − 2s) + c1 = 0,

where c1 ∈ R.
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Theorem 4.1. A T1-invariant surface in Sol space Sol3 satisfies the equation

∆x⃗ = Ax⃗, A = (aij) ∈ Mat(3,R)

if and only if it is a vertical or horizontal plane or can be parameterized as

x⃗(s, t) = (t, y(s), z(s)),

where
(1) either y(s) = as+ b and z(s) = cs+ d,

(2) or y(s) = − c2a23

a22
cos(

√
a33s+ d2)

+
c22a

3
2
33 sin(

√
a33s+d2) cos(

√
a33s+d2)

a22
√

1−c22a33 sin
2(
√
a33s+d2)

ec2 cos(
√
a33s+d2)

and z(s) = c2 cos(
√
a33s+ d2),

(3) or y(s) = − c3a23

a22
cosh(

√
−a33s+ d3)

+
c23(−a33)

3
2 sinh(

√
−a33s+d3) cosh(

√
−a33s+d3)

a22
√

1+c23a33 sinh
2(
√
−a33s+d3)

ec3 cosh(
√
−a33s+d3)

and z(s) = c3 cosh(
√
−a33s+ d3),

(4) or the functions y(s) and z(s) satisfies equations (4.8) and (4.10), re-
spectively.

Remark 4.2. To find special solution of (4.9) we take a22 = 0, a23 = 0 and
c1 = 0. Then we have the ODE (z′′)2 + a33(z

′)2 = 0 and its solution is

z(s) = ± 1√
−a33

e±
√
−a33(s+c1) + c2 with a33 < 0 and c1, c2 ∈ R. Thus, from

(4.8) the function y(s) is given by y(s) = ± 2
√
−a33

a32
e±

√
−a33(s+c1) + c2. In such

case, a matrix A is of the form A =
(

0 0 0
0 0 0
0 a32 a33

)
with a32, a33 ̸= 0.
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