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ABSTRACT. Using the explicit forms of eigenstates for linearized operator
related to a matrix version of Nonlinear Schrodinger equation, soliton per-
turbation theory is developed for the F' = 1 bright spinor Bose-Einstein
condensates. A small disturbance of the integrability condition can be
considered as a small correction to the integrable equation. By choosing
appropriate perturbation, the soliton solution for small deviation from
the integrability condition is found. Numerical simulations exhibit good
agreement with analytical results.
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1. Introduction

Bose-Einstein condensate (BEC) has extensively investigated by several au-
thors in mathematical and physical disciplines (cf. [4,9, 10, 12]; and references
therein). BECs were observed for the first time in lab in 1995, when Eric Cor-
nell and Carl Wieman were observing the results of efforts of Bose and Einstein
to describe bosons with integer spin (F') for dilute vapors of sodium and ru-
bium in ultra cooled temperature. It is well-known that time-evolution of the
system containing bosonic atoms with the hyperfine spin of integer F obeys the
generalized Gross-Pitaevskii (GP) equations in (2F + 1)-dimensions. The 3-
dimensional GP equation when F' = 1 has been the focus of several researches,
due to relative simplicity.

Soliton theory is an important branch of nonlinear science. It not only de-
scribes various kinds of stable phenomena in nature, such as water waves [2],
solitary signals in optical fibres [14], and etc, but also it gives many effective
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methods to obtain exact solutions of nonlinear partial differential equations.

These methods include Inverse Scattering Transform (IST) [14], direct Hirota
method [5], Darboux transformation method [38,11] and Bécklund transfor-
mation method [I1]. It is noted that the most general soliton solutions or
N-soliton solutions can be constructed via IST method.

Wadati and his co-authors [9, 12] constructed the most general soliton solu-
tions for the matrix of Nonlinear Schrodinger (mNLS) equation
(1.1) Q1 + Quz +2QQ'Q =0,

where @ is a square matrix, based on Gel’fand-Levitan-Merchenko integral
equations. As we shall see latter, (1.1) is a matrix member of NLS hierarchy
and the GP equations can be converted to (1.1) under some conditions, called
integrability conditions. The exact or nearly exact integrability conditions are
commonly met in labs, while the former leads to the soliton equation (1.1) and
later leads to the perturbed soliton equation

(1.2) Qi+ Qux +2QQ'Q =€F, || <1

with less important terms as perturbation to (1.1). Here F is a function of Q, QT
and their derivatives. The scalar counterpart of (1.1) is the NLS equation

(1.3) iy + Ugp + 2|ul?u =0,

which describes the modulation of weakly nonlinear wavetrains in deep water
and the evolution of the slowly varying envelope of an optical pulse.

In a recent research on perturbation theory for BECs, Doktorov et.al [1] have
constructed the N-soliton solutions by the formalism based on the Riemann-
Hilbert (RH) problem via IST procedure and as a result both rank-one and
rank-two soliton solutions of 3-dimensional GP equation were obtained. (See
Section 2). They also showed that the rank-two solitons can be categorized in
two ferromagnetic and polar solitons where former is equivalent to rank-one
soliton with familiar hyperbolic secant profile. The categorization is based on
the amount of determinant of the polarization matrix subjected to the nor-
malization condition. More precisely, the ferromagnetic soliton corresponds to
when the determinant is zero and the polar one corresponds to nonzero de-
terminant. Hence it is sufficient to elaborate the soliton perturbation theory
around rank-one solitons. They also consider the small deviation from the
integrability condition as (1.2) (see Section 4) and applied an adiabatic ap-
proximation to determine the BEC soliton dynamics. As a result, they found
temporal dynamical systems for soliton parameters.

Soliton perturbation method is a strong tools to obtain perturbed solutions
to a nearly integrable system. For scalar integrable equations, the theory is well
applied due to relatively simple forms of eigenfunctions of linearized operator
and the Zakharov-Shabat eigenstate closure [6]. This requires that the com-
plete set of eigenfunctions for the linearized problem, related to the nonlinear
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wave equation, be determined. Yang [13] constructed this set for a large class
of integrable nonlinear wave equations such as the Kortewegde Vries (KdV),
NLS and modified KdV equations. The same procedure can be exploited to
find the eigenstates of the adjoint linearization operator. He found that the
eigenfunctions for these hierarchies are the squared Jost solutions. Chen and
Yang [3] developed direct soliton perturbation theory for the derivative NLS
and the modified NLS equations. Using the similarity between the KdV and de-
rivative NLS hierarchies they showed that the eigenfunctions for the linearized
derivative NLS equation are the derivatives of the squared Jost solutions. This
is in contrast to the counterpart for NLS, Hirota and mKdV hierarchies, where
the eigenfunctions are just the squared Jost solutions. Suppressing the sec-
ular terms, they also found the slow evolution of soliton parameters and the
perturbation induced radiation.

Hoseini and Marchant [7] examined bright solitary wave interaction for a
focusing version of the higher order Hirota equation. A family of higher-order-
embedded solitons was found by using an asymptotic transformation. When
embedded solitons did not exist, soliton perturbation theory was used to deter-
mine the details of a single evolving solitary wave to first order. In particular,
an integral expression was found for the first-order correction to the solitary
wave profile. They also asymptotically analysed the integral expression to de-
rive an analytical form for the tail of the solitary wave. It was shown that
for the right-moving solitary wave, a steady-state tail forms, while for the left-
moving wave, some transients propagate on the steady-state tail. For matrix
integrable versions, the procedure is quite complicated. Recently, we developed
the theory for a 2 x 2 matrix version of complex modified Korteweg-de Vries
(CmKdV) equation

and established the IST procedure to find its most general N-soliton solu-
tions [1]. (1.4) belongs to NLS hierarchy and can be constructed via AKNS
procedure. Lax pair of (1.4) and the one related to (1.1) are the same, which
enables us to apply a similar procedure to find the continuous and discrete
eigenfunctions for linear operator related to (1.1). More importantly, the clo-
sure relation for the corresponding eigenfunctions for (1.4) was proved and
hence it can, in a similar manner, be shown that the closure set corresponding
to (1.1) also contains 8 continuous and 6 discrete eigenstates.

This paper is organized as following. In Section 2 we review the connections
between GP equation and (1.1) and GP’s one- and two-soliton solutions are
outlined. The categorization of rank-two solitons based on the polarization
matrix is also argued. In Section 3, we develop the soliton perturbation theory
for (1.2) using the explicit forms of the eigenfunctions. In Section 4, we find
the first-order solution for a perturbed equation describing a small disturbance
of the integrability condition by applying the results for soliton perturbation
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theory found in Section 3. In Section 5 we will show that there is a good
agreement between the numerical and analytical results and finally Section 6
concludes the results of the paper.

2. Gross-Pitaevskii (GP) equation and its soliton solutions

Here in the present section, we review the connection between GP equations
and the soliton equation (1.1). We consider the system of GP equation (i.e.,

[1,9]) as
. ﬁ2 2 2 2
tho; &L = 7%6&1& + (co + e2)(|Px]” + [@o]7) P
+(co — €2)| P PP + 2L D,
ﬁ2
1h0;®g = —%62@0 + (Co + Cg)(|q)+|2 + |‘I)_|2)(I)0
(2.1) +co|@o[*Po + 2c0P L DD},

where the vector ® = (&, &g, ®_)7 describes the hyperfine spin F' = 1 spinor
BEC. It is noted that (2.1) is applied to describe the BEC trapped in a cigar-
shape region in z-direction, where a tight confinement is considered in transver-
sal directions. We adopt the notations in [4] and [9] where ¢o = (go+2g2)/3 and
¢1 = (g2 — go)/3 control the spin-independent and spin-dependent interactions,
respectively. The coupling factors gy are determined as

4ﬁaf
= 2

(2.2) g = —F (1 -cLy-y

ma; al
where ay is the length of s-wave scattering in the channel with the total hyper-
fine spin f = 0,2. Meanwhile, a; and m are the size of the transverse ground
state and the atom mass, respectively and C is a constant.

The system (2.1) is not integrable in the sense that is not adjusted in IST
method for all ranges of the parameters. When the condition

(2.3) co=c2=-c>0, (290 =—g2>0),

is imposed, (1.1) appears as a compatibility condition of a system of linear
equation, so-called Lax pair, i.e., (1.1) is integrable. Utilizing the independent

variables « and ¢ and the components ®4 o, as in [9] and in presence of the
integrability condition, GP equation (2.1) is arranged to (1.1) where

_( P+ o
o) o= (% ™)

We develop the bright soliton perturbation theory for (1.1) when ¢ < 0. Tt is
noted that the situations ¢y < 0 and c2 < 0 correspond to attractive mean-
field and ferromagnetic spin-exchange interactions, respectively. The matrix
NLS equation (1.1) admits N-soliton solutions which have been constructed by



669 Ahmadi Zeidabadi and Hoseini

applying IST based on RH problem in [4]. Here we review the forms of the
one- and two-soliton solutions; Rank one soliton solution can be simplified as

e ™ cos2f cos 6 sin 6 ,
_ > i
(2.5) Q=r ( cos fOsin 6 eXsin?0 ) e'®sech 7z,
where
- P
z=x—vt+29, 2=—-—,
r
1 1
(2.6) ¢ = vr + (r? — 1v“‘)t + o,
and
|n1] n3|

cosf = , X = arg(ng) — arg(n4),

VInP +1ne? /Ins? + [naf?
(2.7) 09 = arg(n1) — arg(n4) = arg(ng) — arg(ns).

The amplitude and velocity are r and v, while 2y and ¢¢ determine the initial
position of the soliton and its initial phase, respectively. The parameters 6
and x are constants with physical meanings that determine the normalized
population of atoms in different spin states and the relative phases between the
components. The complex number n; are constant also. A rank-two soliton
has the explicit representation based on the polarization matrix II?) as

(2.8) Q = 4w (MPe* + UgH(Q)TagDe*z)Zfl,
Z=14¢**+|D|?e*, D =det II?,

I _(a 'y)’ U2_<—I 0/’

and z and ¢ are determined in (2.6) and where «, 8 and v are complex numbers
which satisfy in normalization condition 2|a|? + |B]? + |v|> = 1. Now, the
ferromagnetic state is determined when D = 0 which is equivalent to one-
soliton solution (2.5) after some simplifications. It is noted when D # 0, the
state is called polar state. For details for two-soliton derivation, we refer the
reader to [4]. When the integrability condition (2.3) is not exactly valid, the
soliton solutions (2.5) and (2.8) is no longer available, and hence the soliton
perturbation theory can be a tool to determine the perturbed solutions.

3. Soliton perturbation theory

The application of the soliton perturbation theory for non-dimensional nearly
integrable equations is well-known in soliton theory, see e.g. [6] and the refer-
ences therein. The standard and popular approach is to convert the problem
to a linear differential operator problem and then to expand the solution of
resulting problem based on the continuous and discrete eigenfunctions of the
operator. Suppression of the secular growth then allows the slow variations
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in the soliton parameters to be determined. In this section, we shall apply
a similar procedure to the scalar counterpart to construct the linear operator
problem related to (1.1).

We consider the perturbed matrix NLS equation
(3.1) Qi+ Qua +2QQ'Q = ¢F, e < 1,

where F' is a function of (Q and its derivatives.

According to soliton perturbation theory, we let all soliton parameters to be
T-dependent, where T' = et. Hence, we can define the solitary solution of (3.1)
as

(3:2) Q(x,1) = e?(B(2) + €@ (2) + £ (2) + --),
where
e X cos?f cosfsinb
®(z) =r ( cosfsin®  eXsin?f ) sech rz,
and
1 t t ) 1 )
(3.3) ¢:§vz+0,z:x—y,uz vdr + 29, o= [ (r +Zv )dT + ¢g.
0 0
When the parameters do not depend on T, i.e., ¢ = 0, the perturbed solution
(3.2) recover the one-soliton solution (2.5).
(3.4) (10 + L)YA=W,
where W = (@11, @y 0, ®o1, B22) and ¥V = ({!), a{") @) &f1)),
A= (D gOIYT W — (W, —w)T,
1 1
W =Fy—iV,rp +ixgr ¥V, — iWely — i\I’XXT — (51}.’17071 - §’UTZ - ¢0T)\I’,
(3.5) Fo = e F(Te?),
and finally, the explicit form of the differential operator L around @) = @(z)eirgt
is determined as
A B
(3.6) L= ,
-B* A
where
A=0..+ 2000+ 00'0) — 2, B =2000.

The “0J” stands for the positions of the function ®) in (3.4). It is noted that,
the relations (3.4)—(3.5) are exactly the same as the scalar counterparts [14].

As the main result of the paper, we find the eigenfunctions of the operator L
in (3.6) and their relations. The explicit forms of the eigenfunctions Z; are given
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in Appendix A. These eigenstates are squared Zakharov-Shabat eigenfunctions.
Their closure relationship has also been proved in [1]. A short discussion of the
derivation of the eigenstates has been given in [1]. The eigenstates satisfy

(3.7) LZ;(z,k) = ANk)Z;(z,k), 1<j<4,
LZi(z,k) = —\k)Z;(2, k), 5<j<8,

where

(3.8) k) =r*(k* +1).

It is also noted that these relations are similar to the scalar NLS equation, and
the localized (discrete) eigenstates of L are

Wy = (U, 07T Wy = (U, —0)T
Wy = (U, ¥5)7, Wy = (T, 937,
(3.9) Wy = %z(\ll, ~UT 0 W = (T, 057,
where
LWy = LWy = LW3 = LW, = 0,
(3.10) LWs =Wy, LWs = 2rWs.

The number of the localized eigenstates (3.9) is different from non-dimensional
NLS counterpart, as the parameters x, 6 are T-dependent. We define the
inner-product

(3.11) o= [ T @)g(x)de

Under this inner product, L4 = —oLo~ !, and ¢ = ( OI 161 ) It is not
—1y

difficult to show that

(3.12) (k) = 0 Bpa( ) G =14,

(3.13) vita(z, k) = 0Z;(z, k), j=5,...,8

are L’s eigenstates with

(3.14) LA(2, k) = Ak (=,k), G =1,-.0.4,

(3.15) LA (2, k) = = X(k)vi(z, k), j=5,...,8

Here A(k) is given in (3.8). The discrete eigenfunctions

(3.16) Vi(2) = 07 Wi(2), Wa(z) = 07 Wa(2),
Va(2) = 07 Ws(2), Valz )—0 Wa(2),
Vs(z) =oWs(2),  Vs(z) = oWs(2),
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with
(3.17) LAV (2) = LMV,(2) = LVs(2) = LVy(2) = 0,
LAVs(2) =Vi(2),  LVs(2) = 2rVa(2).

Now, the inner product relations between L’s and L4’s eigenfunctions can be
shown

(3.18) (Zj(2,k),vj(z, k) = 27”(/@2 +1)2%5(k k), j=1,...,8,
?2-19) Wi(2),V5(2)) = Ws(2),V1(2)) =1,

(3.20) Wa(2), Vs(2)) = We(2), Va(2)) = 2,

(3.21) (Ws(2), Va(2)) = —(Wi(2), V3(2)) = 4ir sin 26),

(3.22) (Wa(2),Ve(2)) = Wa(2), V3(z)) = —2i cos 26,

where other inner products are all zero.

4. Solution for the perturbed equation

Now, in this section, we shall apply all results in previous sections in the
case when the integrability conditions (2.3) are not exactly met.
To solve (3.4), we first expand the forcing term W and the solution A, into the
complete set of L’s eigenfunctions,

6 8 Jo%s)
(4.1) W= Wi+, / o (k) Zi (2, k)dk,
i=1 i=1"7 ">

6 0o 8
(4.2) A= "hi(t)Wi(z) + / > gilk,t) Zi(z, k)dk.
i=1 T =1

Now, we can find that

1 1
(4.3) c1 = ;(W,V5>, co = §<W’V6> + icy cos 20,
(4.4) W+ Bot20, e = — (W, V)
' BT Yirsinog T T OV A g eg VT V3
1 1
(45) C5 = ;<WvV1>7 Ce = §<Wav2>7
T .
(4.6) (k) (Fovi), J=1,...,8,

T 2n(k2 4 1)2
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where
(4.7) F = (Fo,—F)", Fo=(f1,f2, f3, f)".

Suppressing the secular terms given

(48) hi(t) =0, 1<j<6,

where the following dynamical equations for the soliton parameters are deter-
mined:

CCZL; = /_Oo r[00529 Im{eix(fl + f4)} — %sinZG Re{fs + f3}

(4.9) —Im{e™X f4}] sechrz dz,

dv — /Do r[2i cos? 0 Im{e™(f1 — f1)} +sin20 Re{fs + f3}

ar ~ | ..
(4.10) +2 Re{e™ f,}]sechrz tanhrz dz,
dx 1 [ ix -

(4.11) T =3 [Re{e*X(f1 — fa)} — cot 20 Re{fs + f3})]sechrz dz,
=t e I — o} + I sechrad
T~ Trsnogt) rlcos® 0Im{e™X(f1 — fa m{e'™X f4}] sechrzdz

(4.12) +2cos20 rr},

% = / [cos? O Im{eX(f1 + f1)} + cosOsin@ Im{fs + f3}

(4.13) — Im{e™X f1}]z sechrz dz,
d¢0 _ 1 dZO < 2 ix r .
T = 3VaT + cos 20xT — [w[zcos 0 Im{e™*(f1 — fa)} + cosfsind

(4.14) Re{fy + f3} + Re{e’Xfy}]sechrz(1 — rztanhrz)dz.

Here, “Re” and “Im” are real and imaginary parts, respectively, and f repre-
sents the complex conjugate of f.
Evolution equations for the position v and phase o are also found as

d
(4.15) d—::v+eon,

do 1
= 7"2 + 71}2 + 6¢0T7

(4.16) o 1
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aj(t)(1 — e?™r)

4.1 L= =1,...4
( 7) gj )\(k) 9 .] Y PR
a;(t)(1 — e~ AR
4.1 = =35,..
( 8) g] )\(k) ) J 53 38)
0 1 _ girt(k*+1) A4
A= / ST Do db
oo =
419 Tl M 2 g
() _/—oo27”'(k2+1)3._5< a’Yj>j :

J

Using (4.9)—(4.14) and (3.3) the asymptotic solution for a long time, when all
the energy radiation has dispersed and the shape oscillation of the perturbed
soliton stopped, can be determined as

4 8
(4.20) A*}/MW;<-777J'>Z]' *mé(ﬁ’m%dk.

As an example, here we consider (1.1) with an initial nearly soliton. In other
words, we consider the following initial condition:

e~ X cos?f cosfsinb

. . h 1
cosfsind eXsin?6 ) sechz, e< 1,

(4.21) Q(z,0)=(1+¢) <

which is a slightly amplified matrix NLS soliton. Define

|
(4.22) Q=191

which satisfies the perturbed mNLS equation

(4.23) iQ1 + Qua +20Q'Q = —6:QQ"Q.
Here the O(e?) term has been neglected. The initial condition for Q is

cosfsinf  eXsin?0

- —ix 2 :
(4.24) O(z,0) = ( e~ "X cos* 0 cosfsinb > sech 2,

which is a soliton solution of the unperturbed mNLS equation with initial
amplitude r = 1 and initial position zy = 0. Here

(4.25)  Fy = —6r° ("X cos® 0, cosfsinb, cos O sin b, eXsin®h)T sech® rz.
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Substituting this Fy into dynamical equations for r, v, x and 6, we find that

dr dv dx df
Similarly, we find that ‘fl—’g = 0, and hence the position of this soliton does not
change. Its phase equation (4.16) can be calculated through simple algebra to
be

do

_ 2 2 _ 2
(4.27) =" + 6er= = (14 6¢)r-.
Thus
(4.28) B(t) = a(t) = r(1 + 6e)t.

To calculate the form W, notice from dynamical equations (4.13)—(4.14) that
% =0, and % = r2. Tt is noted that (4.26)—(4.16) are exactly the same as
results in [4] where an adiabatic perturbation theory has been applied with only
a difference of factor 6e and 4e, as the perturbed term in (4.23) is replaced by 4e
in [4]. Also, we note that the model (1.1) is invariant under the transformation
(Q,x,t) = (rQ, %, T%), so without loss of any generality we assume r = 1 in all
the results presented below and in next section. Thus

W = Fo+ ¢opV = 6(e~X cos? 6, cos 0 sin 8, cos § sin 0, X sin” §) 7

(4.29) sech (1 — sech® z),

and performing integration by Residual theorem gives

<~F7’Yl> <f772> <]:v73> <]:v74> 3m 212 mk
= = = = — — 1 k S hi
cos? cosfsind  cosfsinf sinZ 0 2( + k)7 sec 2’
<‘F7’Y5> <‘F776> <‘F7’Y7> <‘F778> 3m 2\2 mk
= = = = —_— 1 k‘ S hi
cos2 cosfsinf  cosfsinf sinZ 6 2( + k%) sec 2’
SO
—1 2 .
(1) e "X cos* 0 cqs951n9
e = ( cosfsinf  eXsin?6 x
/OO st S“h%k(k? 1+ 2ik tanh o + 2 sech®z)dk
Ty ik tanh z sech” x
e Xcos?0 cosfsinh \ 3
(4.30) = ( cosOsing X sin? g ) 5 sech z(1 — 2ztanh x),
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Q(z,t) — ei(1+6€)t{ sechx + ge sech z(1 — 2z tanh x)} X

—ix 2 .
(4.31) ( e~ "X cos* 0 cosfsinb )7

cosfsinf  eXsin?0
and

; 3
Qz,t) —»  UH09 (1 4 e){ sechz + 2€ sech z(1 — 2z tanh 1:)} X

—ix 2 .
(4.32) ( e "X cos*f cosfsinb ) .

cosfsinf  eXsin?0

More importantly, when the condition (3.3) is not exactly satisfied, the above
results can be also obtained.

5. Numerical comparisons

To show validity of the evolution results for soliton parameters under pertur-
bation, we compare the numerical simulations and analytical results obtained
from soliton perturbation theory.

Here, the perturbed equation (4.23) is solved by pseudospectral method
for spatial variable x, and fourth-order Runge-Kutta procedure for temporal
variable t. The spatial and temporal discretizations are Ax = 0.14648, At =
1 x 10~*, respectively. The initial solution is a soliton (2.5) with r = 1. As
the mNLS equation (1.1) is the Galilean invariant we can choose v = 0. The
perturbed parameter is also e = 0.1.

Figure 1 shows the numerical evolution of the mNLS soliton (2.5) as an
initial solution for (4.23). Shown is the comparison between the initial solution
(2.5) and the numerical solution of (4.23) for ¢ = 10 for different components
of Q The other parameters are § = 7/3 and x = 0. The distinction is
negligible, i.e., the amplitude and velocity of the soliton remain constant due
to the perturbation. This fact has been predicted in (4.26).

Figure 2 explains the comparisons between the phase numerical and analyt-
ical predictions up to ¢ = 10. The parameters are § = w/4 and x = 0. The
comparison is excellent especially for smaller times. For instance, the analytical
prediction for phase in (4.28) for ¢ = 9.5 is 15.2 whilst its numerical value is
about 15.988 with a difference about 5%.

Figure 3 shows the solitary wave tail amplitude versus x for different com-
ponents of @), for ¢ = 10. For numerical solutions considered in these figures,
the quantity e ! \st —Q~05 , for s = &£, 0 is plotted, where Qg is the initial mNLS
soliton solution (2.5). The parameters are the same as Figure 1. This quan-
tity represents the appropriate comparison with perturbation solution ®() in




677 Ahmadi Zeidabadi and Hoseini

ol
o
%

FIGURE 1. Comparison of the initial soliton (4.24) (solid line)
and the numerical solution of (4.23) (dot line) versus x. The
initial and perturbation parameters are in the text.

phase(q)

FI1GURE 2. Comparison between the analytical and numerical
results for phase shifts: solid line is (4.28) and “*” are numer-
ical solution. The initial and perturbation parameters are in
the text.

(4.30), in tail regions, away from the solitary wave, located at © = 0. It can
be seen that the perturbation and numerical solutions are near the same to
graphical accuracy, which confirms the validity of analytical results of soliton
perturbation to the nearly integrable GP equation. It is noted that a similar
figure happens in left tail region with a similar accuracy which has not been
shown here.



Solitons for nearly integrable bright spinor Bose-Einstein Condensate 678

x10”

0009 as
0008 4
0007 as
0005 3

0005 225

o

0.004 2

0,003 15

0,002 1

0.001 05

(] 5 10 15 20 2 4 6 8 10 12 14 16 18 20
x x

2 4 6 8 10 12 14 16 18 20
x

FIGURE 3. The amplitude of the right solitary wave tail, &),
versus x for different components. Shown are the analytical
(4.30) (green curve) and numerical (blue curve).

6. Conclusion

In this paper, we have explained the details of the soliton perturbation the-
ory for a matrix version of nonlinear Schrédinger (mNLS) equation, which is
related to Bose-Einstein condensate (BEC). Condition (2.3) is a necessary con-
dition for integrability i.e., when (2.3) is satisfied, all N-soliton solutions can
be determined. This paper provides all details to determine nearly soliton so-
lution for BEC, when (2.3) is not exactly satisfied. For a future research, the
analysis reviewed in this paper could be extended to obtain the discrete soliton
to

(6.1) (hl(hn))wy + hn+1 —2h, + hp1 = EH(hn_l, hy, hn+1).

Where € = 0, (6.1) determines the integrable two-dimensional Toda lattice sys-
tem. This lattice has close connection to Tzitzeica and Fordy-Gibbons systems
which are both solitonic systems.
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7. Appendix A

In this Appendix, we just give the explicit forms of L’s eigenfunctions Z; in

(3.7).
—cos?O sech’®rz

—cos®fsinf sech’rz

—cos® fsinf sech?rz

— cos? fsin® 0 sech?rz irkz
(ik — 1+ cos?0 e~ "% sechrz)(ik — 1 — cos? § " sechrz)
% sechrz (ik — 1 — cos® 0 €™ sechrz)

—cos2fsin? 0 sech’®rz

Z

cosfsinf e

—cos?fsinf sech’rz
—cos20sin?0 sech®rz
—cos? 0sin? 0 sech’rz
— cosfsin® 0 sech?rz .
cosfsin® e sechrz(—ik +1—cos?f e™"* sechrz)
—cos?0sin? 0 sech’rz
(—ik +1 —cos?# e~ sechrz)(—ik — 14 sin?f % sechrz)
cosfsin® e~ sechrz(ik 4+ 1 —sin® @ " sechrz)

Zy

—cos® fsin 6 sech?rz
—cos? 0sin? 0 sech?rz
—cos?0sin? @ sech?rz
2, = —cos 6 si1.13 0 sech®rz .
cosfsinf e sechrz(ik + 1 — cos? 6 €™ sechrz)
(ki —1+sin?6 e "% sechrz)(ik + 1 — cos? § €™ sechrz)
—cos? 0sin? 0 sech?rz
cos@sinf e sechrz(—ik 4+ 1 —sin® 6@ " sechrz)

i

. 2

— cos2 0sin® 0 sech’®rz
. 2

—cosfsin® 6 sech?rz
. 2

—cosfsin® 6 sech?rz

2= —cos?fsin’ 0 sech®rz
cos@sinf e sechrz(—ik 4+ 1 —sin®6 e~ "% sechrz)
cos@sinf e~ sechrz(ik + 1 —sin?@ e"* sechrz)
(ik +1 —sin?@ e"* sechrz)(ik — 1 +sin?6 e~ "% sechrz)

—sin* @ sech®rz .

irkz

kz

irkz
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(ik +1 —cos? 0 e sechrz)(ik — 1+ cos? 6 e"* sechrz)
cosfsin® e~ sechrz(—ik + 1 — cos? @ e"* sechrz)
cosfsin® e sechrz(ik + 1 — cos? 0 e~ sechrz)

—cos?20sin® 0 sech?rz irks
25 = —cos* f sech®rz € ’
—cos® fsinf sech®rz
—cos fsinf sech?rz
—cos?fsin? @ sech® rz

cosfsin® e™ sechrz(ik + 1 —cos? e~ sechrz)
—cos?fsin? @ sech?(rz)
(ik — 14 sin? 6 "% sechrz)(ik + 1 — cos? @ e~ "% sechrz)
cos@sinf e~ sechrz(—ik + 1 —sin? @ ¢"* sechrz) irkz
26 = —cos fsinf sech®rz ¢ ’
—cos?fsin? @ sech® rz
—cos?fsin® @ sech® rz
—cosfsin® sech? 7z

cosfsin® e~ sechrz(—ik + 1 — cos? @ e"* sechrz)
(ik +1 —sin? 0 e~ sechrz)(ik — 14 cos? "% sechrz)
—cos? fsin? @ sech?rz

cosfsin@ e™* sechrz(ik + 1 —sin?@ e~ sechrz) vk
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—cos? 0sin® 6 sech®rz
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