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Abstract. A finite group G is called a CC-group (G ∈ CC) if the cen-
tralizer of each noncentral element of G is cyclic. In this article we deter-
mine all finite CC-groups.
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1. Introduction

Throughout this paper G is a finite group. By Z(G) and G′ we mean the
center of G and the derived subgroup of G, respectively. We will use usual
notation, for example Cn, D2n and Q2n denote respectively the cyclic group of
order n, the dihedral group of order 2n and the generalized quaternion group
of order 2n; Sn and An stand for the symmetric and the alternating group
on n letters, respectively; SL(2, pn), GL(2,n ), PSL(2, pn) and PGL(2, pn)
denote the special linear group, the general linear group, the projective special
linear group and the projective general group of degree 2 over the field with pn

elements where n is a positive integer and p is a prime, respectively. The rest
of our notation and terminology are standard for which the reader may refer
to [14].

It is well-known that the centralizers of elements play an important role in
the group theory. Hence many authors investigated the influence of centralizers
of elements on the structure of groups. Some authors have determined the
structure of some finite group G by the number of the centralizers of its element.
(See [2–4,9–11,19] and [18].)

Another approach in classification of finite groupsG is based on the structure
of centralizers of the elements in G. In 1961 Suzuki [16] clarified the structure
of nonsolvable groups in which the centralizer of any nonidentity element is
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nilpotent. Schmidt [15] determined all CA-groups, consisting of groups in
which all proper centralizers are abelian. In 1953, Ito [8] investigated the class
of F -groups, consisting of finite groups G in which for every x, y ∈ G \ Z(G),
CG(x) ≤ CG(y) implies that CG(x) = CG(y). Also Ito [8] studied I-groups in
which all centralizers of noncentral elements have the same order. In [6], Dolfi,
Herzog and Jabara investigated all CH-groups in which noncentral commuting
elements have centralizers of equal size.

In this paper we call a group G a CC-group if all noncentral centralizers
are cyclic. It is clear that a finite CC-group G is abelian if and only if G is
cyclic. It is well-known that CC ⊂ CA ⊂ CH ⊂ F . In Section 2 we classify all
nonabelian CC-groups. (See Theorem 2.13.) In the sequel m is an odd integer,
n is a positive integer and p is a prime.

2. The structure of CC-groups

Since every CC-group is a CA-group, we will use Theorem A of [6] in the
proof of the main result. For convenience we bring this theorem in the following.

Theorem 2.1. Let G be a nonabelian group and write Z = Z(G). Then G is
a CA-group if and only if it is of one of the following types:

(I) G is nonabelian and has an abelian normal subgroup of prime index.
(II) G

Z is a Frobenius group with Frobenius kernel K
Z and Frobenius comple-

ment L
Z , where K and L are abelian.

(III) G
Z is a Frobenius group with Frobenius kernel K

Z and Frobenius comple-

ment L
Z , such that K = PZ, where P is a normal Sylow p-subgroup of

G for some p ∈ π(G), P is a CA-group (F-group), Z(P ) = P ∩ Z and
L = HZ, where H is an abelian p′-subgroup of G.

(IV) G
Z

∼= S4 and if V
Z is the Klein four group in G

Z , then V is nonabelian.
(V) G = P × A, where P is a nonabelian CA-group (F-group) of prime-

power order and A is abelian.
(VI) G

Z
∼= PSL(2, pn) or PGL(2, pn) and G′ ≃ SL(2, pn) where p is a prime

and pn > 3.
(VII) G

Z
∼= PSL(2, 9) or PGL(2, 9) and G′ is isomorphic to the Schur cover

of PSL(2, 9).

First we deal with the structure of Sylow subgroups of a CC-group.

Lemma 2.2. Let G be a CC-group. If P is a Sylow p-subgroup of G, then P
is either cyclic or a generalized quaternion.

Proof. By hypothesis, P is a CC-group. It follows that P has no noncyclic
abelian subgroup and we get the result by [14, Theorem 5.3.6].

□
By Lemma 2.2, we obtain the structure of nonabelian nilpotent CC-groups.

(In fact we investigate the condition (V) of Theorem 2.1.)
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Corollary 2.3. Let G be a nonabelian nilpotent group. Then G is a CC-group
if and only if G ∼= Q2n × Cm for some positive integers m and n.

In what follows we determine nonabelian CC-groups whose Sylow subgroups
are all cyclic.

Lemma 2.4. Suppose that G is a nonabelian group whose Sylow 2-subgroup
is not isomorphic to the generalized quaternion. Then G is a CC-group if and
only if G = ⟨a, b|al = 1 = bk, b−1ab = ar⟩ where rk ≡ 1(mod l), l is odd,
0 ≤ r < l, gcd(l, k(r − 1)) = 1 and G

Z(G) is a Frobenius group with the cyclic

kernel and complement.

Proof. Suppose that G is a CC-group and P is a Sylow p-subgroup of G where
p is an arbitrary prime divisor of |G|. Then P is cyclic by Lemma 2.2. Now
[14, Theorem 10.1.10] yields G = ⟨a, b|al = 1 = bk, b−1ab = ar⟩ where rk ≡
1(mod l), l is odd, 0 ≤ r < l, and l and k(r − 1) are coprime.

Now assume that K and H are maximal abelian subgroups of G such that
⟨a⟩ ⊆ K and ⟨b⟩ ⊆ H. Then K = CG(a) and H = CG(b). By [14, Theorem
10.1.7], we have Z(G) = Z2(G) is the hypercenter of G. Since G = CG(a)CG(b),

we see that CG(a) ∩ CG(b) = Z(G). It follows that G
Z(G) = CG(a)

Z(G) ⋊ CG(b)
Z(G) is

a Frobenius group with cyclic kernel and complement which gives the desired
result.

Conversely, let CG(x) be a proper centralizer of G. Then CG(x) is abelian
by part (II) of Theorem 2.1. Hence CG(x) is the direct product of its Sylow
subgroups. But Sylow subgroups ofG are cyclic which gives CG(x) is cyclic. □
Remark 2.5. We notice that if all Sylow subgroups of a group G are cyclic,
then we can not say that G is necessarily a CC-group. For instance, it can
be checked by GAP [17], that all sylow subgroups of G := SmallGroup(300, 6)
are cyclic, but G contains some nonabelian centralizers of order 12.

In the following we give the structure of a CC-group G such that G
Z(G) is

Frobenius. (In fact we investigate two conditions (II) and (III) of Theorem
2.1.)

Lemma 2.6. Suppose that G is a finite group such that G
Z(G) is Frobenius.

Then G is a CC-group if and only if it is of one of the following types:

(I) G = ⟨a, b|al = 1 = bk, b−1ab = ar⟩ where rk ≡ 1(mod l), l is odd,
0 ≤ r < l and gcd(l, k(r − 1)) = 1.

(II) G ∼= Q8 ⋊ C3m for some m and G
Z(G)

∼= A4.

Proof. Let K
Z(G) and L

Z(G) be the Frobenius kernel and complement of G
Z(G) ,

respectively. Suppose, first, that G is a CC-group. If K is abelian, then L is
abelian too by Theorem 2.1. Then the result follows by Lemma 2.4.

Now assume that K is not abelian. It is well-known that the Frobrnius
kernel is always nilpotent. It follows that K is nilpotent and so K = QC where
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Q is the normal Sylow 2-subgroup of G and C is the normal cyclic subgroup
of G of odd order by Corollary 2.3. Also, we have Q ∼= Q2n for some n ≥ 3
and Z(G) = Z(K) = IC where |I| = 2. It follows from Theorem 2.1 that
L = HZ(G) for some abelian 2′-subgroup H of G and so L is abelian. Since
G is a CC-group, L is cyclic. Therefore G = QL = Q⋊ T for some nonnormal
cyclic subgroup T of G. It follows that Q ∼= Q8. Since Aut(Q8) ∼= S4, we
conclude that | T

T∩Z(G) | = 3 and then G
Z(G)

∼= A4.

Conversely, if G satisfies (I) of our lemma, then G is a CC-group by Lemma
2.4. Now assume that G satisfies (II). Then we have Z(G) ∼= C2 × Cm, K ∼=
Q8 × Cm and L ∼= C2 × C3m.

Suppose that g ∈ G \ Z(G). Then g ∈ K or g ∈ Lk for some k ∈ K
because G = G

Z(G) = K
Z(G) ⋊

L
Z(G) is Frobenius. Then either CG(g) ≤ K or

CG(g) ≤ Lk. If CG(g) ≤ K, then CG(g) ̸= K because G is a CA-group. But
every proper subgroup of K is cyclic and so CG(g) is cyclic. If CG(g) ≤ Lk,
then CG(g) is cyclic because L is cyclic. Therefore G is CC-group and the
proof is complete. □

For an element g in the group G and a subgroup H of G, we shall write g and
H to denote the images of g and H in the quotient group G

Z(G) , respectively.

In the following we give a necessary and sufficient condition for a CC-group G
to satisfy (I) of Theorem 2.1.

Lemma 2.7. Let G be a nonabelian group and A be an abelian normal subgroup
of index 2 in G. Then G is a CC-group if and only if G satisfies one of the
following conditions.

(I) G ∼= Cm ⋊ Q2n for some m and G
Z(G)

∼= D2t such that t = 2n−2k and

k is odd;
(II) G ∼= Cm ⋊ C2n for some m and n and G

Z(G)
∼= D2t such that t is odd.

Proof. Suppose that G is a CC-group of order 2nm such that n ≥ 1 and m
is an odd integer. Then A is cyclic by hypothesis and so G is supersolvable.
Therefore all elements of odd order in G form a characteristic subgroup, say B.
Since B ≤ A, we have B is cyclic. If Q is a Sylow 2-subgroup of G, then Q is
cyclic or a generalized quaternion of order 2n by Lemma 2.2 and G = B⋊Q. It

follows that G = G
Z(G) = B⋊Q where B = BZ(G)

Z(G) and Q = QZ(G)
Z(G) . So B = ⟨b⟩

for some b ∈ G. Now we consider the following two cases.
Case 1. Suppose that Q is the generalized quaternion group. Then Z(Q) ⊆

Z(G) and so Q = ⟨r, s|r2
n−2

= s2 = 1, rs = r−1⟩ is the dihedral group of order
2n−1. Now if NG(Q) = L

Z(G) for some subgroup L of G, then Z(G) = Z(L),

since G is CC-group. Therefore L is nilpotent by the normality of all Sylow
subgroups of L

Z(L) . It follows from Corollary 2.3 that L
Z(L) is a 2-group and
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so NG(Q) = Q. Note that A ∩ Q = ⟨r⟩ and so rb = br. Now we claim that

G = G
Z(G) is a dihedral group.

Since s is an involution in G and Q = NG(Q), the induced inner automor-

phism by s on B is a fixed-point free automorphism of order 2. Therefore
sbs = (b)−1. Since G = A⋊ ⟨s⟩ = (⟨b⟩⟨r⟩)⋊ ⟨s⟩, G = G

Z(G) is a dihedral group.

Case 2. Suppose that Q is cyclic. Then Z(G)∩Q = A∩Q is cyclic of order
2n−1 and so |Q| = 2. A similar argument as in Case 1 gives the result.

Conversely, suppose that G satisfies one of the conditions (I) or (II) of our
lemma. Then CG(x) is abelian for each x ∈ G \ Z(G) by Theorem 2.1 (I). It
follows that CG(x) is cyclic by the structure of G. This completes the proof. □

Among all groups of order 24, the only CC-groups are C3 ⋊C8 = ⟨a, b|a8 =
b3 = 1, a−1ba = b−1⟩, SL(2, 3), C3 ×Q8 and C3 ⋊Q8 = ⟨a, b|a6 = b2 = (ab)2⟩.
In the following we investigate condition (IV) of Theorem 2.1.

Lemma 2.8. Let G be a nonabelian group such that G
Z(G)

∼= S4. Then G is

a CC-group if and only if G = G′Z(G)⟨a⟩ where a2 ∈ Z(G), G′ ∼= SL(2, 3),
G′Z(G) ∼= SL(2, 3) × Cm, gcd(m, 6) = 1 and a Sylow 2-subgroup of G is
isomorphic to Q16.

Proof. Suppose that G is a CC-group. It follows from [14, Theorem 11.4.18]
that the central extension Z(G) ↣ G ↠ G

Z(G) determines a homomorphism

δ : M( G
Z(G) ) → Z(G) where M( G

Z(G) ) is the Schur multiplier of G
Z(G) . We

conclude with the aid of [14, Exercise 11.4.10] that Im(δ) = G′ ∩ Z(G). This
implies that |Z(G) ∩ G′| = 1 or 2 since Shur multiplier of S4 is isomorphic to

C2. Now ( G
Z(G) )

′ = G′Z(G)
Z(G)

∼= G′

G′∩Z(G)
∼= A4 and since A4 is not a CC-group,

|G′ ∩ Z(G)| = 2. Next, let V
Z(G) be the normal subgroup of G

Z(G) of order 4.

Then V is nonabelian nilpotent and so V = QC where Q and C are normal
subgroups of G such that Q ∼= Q8, C ∼= Cm and m is odd. Also, we have
Z(G) = Z(V ) = Z(Q)C. Since G′ is a nonnilpotent CC-group of order 24
with the normal Sylow 2-subgroup, we conclude that G′ ∼= SL(2, 3). Therefore

G′Z(G) = G′Z(Q)C = G′C ∼= SL(2, 3)× Cm.

Also, since every abelian subgroup ofG is cyclic, we have gcd(m, |SL(2, 3)|) =
1, as required. Now let aZ(G) ∈ G

Z(G) \
G′Z(G)
Z(G) be an element of order 2. Then

G = G′Z(G)⟨a⟩ where a2 ∈ Z(G). Finally, if P is a Sylow 2-subgroup of G,
then P is a nonabelian CC-group and so P ∼= Q16 by Lemma 2.2.

Conversely, first we prove that G is a CA-group. If V
Z(G) is the normal

subgroup of order 4 of G
Z(G) , then

V
Z(G) ≤

PZ(G)
Z(G) for some Sylow 2-subgroup P

of G. Therefore V = Z(G)(P ∩ V ). Since P ∼= Q16, every abelian subgroup of
P is cyclic and so V = Q8 × A where A is a cyclic subgroup of Z(G) of index
2. Therefore G is a CA-group by Theorem 2.1(IV).
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If g ∈ G \Z(G), then CG(g) is abelian and so CG(g)∩P is cyclic. Also, it is
clear that any Sylow p-subgroup of G is cyclic for each odd prime p. Therefore
CG(g) is cyclic and the proof is complete. □
Remark 2.9. Note that the last sentence of the above lemma can not be re-
moved. For example if G = GL(2, 3) is the general linear group, then we have

G
Z(G)

∼= S4 and G′Z(G) = SL(2, 3), but G is not a CC-group.

In view of Theorem 2.1 and the previous results, it remains to investigate
two conditions (VI) and (VII) of Theorem 2.1.

Lemma 2.10. Let G be a finite group such that G
Z(G)

∼= PSL(2, pk), pk > 3

and G′ ∼= SL(2, pk). Then G is a CC-group if and only if k = 1 and G ∼=
Cm × SL(2, p) such that gcd(m, |SL(2, p)|) = 1.

Proof. Suppose that G is a CC-group. If all Sylow subgroups of G are cyclic,
then G is solvable by [14, Theorem 10.1.10], which is a contradiction. So a
Sylow 2-subgroup Q of G is isomorphic to Q2n for some positive integer n by
Lemma 2.2. From [7, Satz 8.2] we know that Sylow p-subgroups of PSL(2, pk)

are elementary abelian. Hence k = 1. Since G′Z(G)
Z(G)

∼= PSL(2, p), we must

have G = G′Z(G). On the other hand since Z(G) ∩ Q ≤ Z(Q), we have
|Z(G) ∩ Q| = 2. So Z(G) = IA where |I| = 2 and A is cyclic of odd order
m. Now since G′ ∼= SL(2, p), we see that |G′ ∩ Z(G)| = 2. It follows that
G = G′Z(G) = G′A ∼= SL(2, p) × Cm. Since all Sylow r-subgroups of G are
cyclic for any odd prime r by Lemma 2.2, we must have gcd(m, |SL(2, p)|) = 1.

Conversely, assume that G has the stated property. Then we show that G is
a CC-group. By hypothesis, Z(G) = AI where A is cyclic of odd order m and
I = Z(G′) has order 2. If a ∈ G\Z(G), then CG(a) = Z(G)CG′(a) = ACG′(a),
since G = Z(G)G′. So it is enough to show that CG′(a) is cyclic.

It follows from Theorem 2.1 (VI) that CG(a) is abelian. Now we claim that
every Sylow r-subgroup R of CG′(a) is cyclic for each prime r.

Suppose that r = 2. Since a Sylow 2-subgroup of SL(2, p) is isomorphic to
a generalized quaternion and CG(a) is abelian, R is cyclic. If r ̸= 2, then every
Sylow r-subgroup of SL(2, p) is cyclic and so R is cyclic. This completes the
proof.

□
Lemma 2.11. Let G be a finite group such that G

Z(G)
∼= PGL(2, pk), pk > 3

and G′ ∼= SL(2, pk). Then G is a CC-group if and only if k = 1, G′Z(G) ∼=
SL(2, p) × Cm such that gcd(m, |SL(2, p)|) = 1 and if L

Z(G) is a dihedral sub-

group of G
Z(G) of order 2(p ± 1), then L ∼= Cml ⋊ Q2n for a positive integer n

and an odd integer l.

Proof. Suppose that G is a CC-group. By an argument similar to the proof of
the Lemma 2.10, we have k = 1, a Sylow 2-subgroup Q of G is a (generalized)
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quaternion, Z(G) ∼= C2 × Cm for some odd integer m and |G′ ∩ Z(G)| = 2.
Therefore G′Z(G) ∼= SL(2, p)× Cm such that gcd(m, |SL(2, p)|) = 1.

Now let L
Z(G)

∼= D2(p±1). Since L is a CC-group and p± 1 is even, we have

L ∼= Cml ⋊Q2n for some integer n by Lemma 2.7.
To establish the converse we have G is a CA-group by Theorem 2.1(VI).

It follows that Π = {CG(x)
Z(G) : x ∈ G \ Z(G)} is a partition of G

Z(G) . Since
G

Z(G)
∼= PGL(2, p), we have |CG(x)

Z(G) | ∈ {p− 1, p, p+ 1} for every x ∈ G \ Z(G).

(See [7, pp. 185–187].)

If |CG(x)
Z(G) | = p, then CG(x) is cyclic. But if |CG(x)

Z(G) | ∈ {p − 1, p + 1} for

some x ∈ G \ Z(G)}, then CG(x)
Z(G) is contained in some subgroups of dihedral

type of order 2(p ± 1) of G
Z(G) , say L

Z(G) . Since G is a CA-group, we will

have Z(G) = Z(L) and so L is a CC-group by assumption and Lemma 2.7.
Therefore CG(x) is cyclic, as required. □

Remark 2.12. Note that we can not delete the last part of the above lemma. For
example if G = GL(2, 7), then we have G

Z(G)
∼= PGL(2, 7) and G′ = SL(2, 7),

but G is not a CC-group.

Now we are ready to characterize nonabelian CC-groups.

Theorem 2.13. Let G be a nonabelian group. Then G is a CC-group if and
only if it is of one of the following structures.

(1) G = ⟨a, b|al = 1 = bk, b−1ab = ar⟩ where rk ≡ 1(mod l), l is odd,
0 ≤ r < l, gcd(l, k(r− 1)) = 1 and also G

Z(G) is a Frobenius group with

the cyclic kernel and complement.
(2) G ∼= Cm ⋊ C2n for some m,n and G

Z(G)
∼= D2t for some odd t.

(3) G ∼= Q8 ⋊ C3m for some integer m and G
Z(G)

∼= A4.

(4) G ∼= Q2n × Cm for some m,n and G
Z(G)

∼= D2n−1 ;

(5) G ∼= Cm⋊Q2n for some intgers m,n and G
Z(G)

∼= D2t where t = 2n−2k.

(6) G = G′Z(G)⟨a⟩, a2 ∈ Z(G), G′Z(G) ∼= SL(2, 3)× Cm, gcd(m, 6) = 1,
a Sylow 2-subgroup of G is isomorphic to Q16 and G

Z(G)
∼= S4.

(7) G ∼= SL(2, p)×Cm where p > 3 is a prime and gcd(m, |SL(2, p)|) = 1.
(8) G = G′Z(G)⟨a⟩, a2 ∈ Z(G) and G′Z(G) ∼= SL(2, p) × Cm where p

is prime, gcd(m, |SL(2, p)|) = 1 and if L
Z(G) is a dihedral subgroup of

G
Z(G) of order 2(p ± 1), then L ∼= Cml ⋊Q2n for some positive integer

n and odd number l .

Proof. The result follows from Theorem 2.1, Corollary 2.3, and Lemmas 2.6,
2.7, 2.8, 2.10, and 2.11. □
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