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Abstract. In this paper, we propose an algorithm to obtain an approx-
imation set of the (weakly) nondominated points of nonsmooth multiob-
jective optimization problems with equality and inequality constraints.
We use an extension of the Wolfe duality to construct the separating

hyperplane in Benson’s outer algorithm for multiobjective programming
problems with subdifferentiable functions. We also formulate an infinitive
approximation set of the (weakly) nondominated points of biobjective op-

timization problems. Moreover, we provide some numerical examples to
illustrate the advantage of our algorithm.
Keywords: Multiobjective optimization, approximation algorithm, effi-
cient solution, nondominated point.
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1. Introduction

In multiobjective optimization, several objective functions have to be op-
timized simultaneously. The problem occurs in many applications, such as
finance, scheduling, engineering design, medical treatment, etc (see [7, 9, 17]).
A multiobjective programming problem (MOP) often has no optimal solution
that could optimize all objectives simultaneously. Therefore, the concept of
optimality has to be replaced by the concept of efficiency. An efficient solution
is a feasible point of MOP if there are not any other feasible points with the
same or smaller objective function values, such that there is a decrease in at
least one objective function value. The image of an efficient point in variable
space is a nondominated point in the objective space.

The fact that an improvement in one objective consequences a loss in another
is known as the trade-off between the solutions. The set of all efficient points
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and all nondominated points are called the efficient set and the nondominated
set, respectively.

The primary goal of multiobjective programming is to seek the efficient set
and/or the nondominated set of MOPs. Unfortunately, it is not easy to obtain
an exact description of the efficient set and the nondominated set that include
usually an infinite number of points. Therefore, an approximated description
(or a finite number) of the solution set is considered.

In the literature, there are a variety of approaches to obtain or approximate
the solution set of MOPs such as weighted sum method, ϵ-constraint method,
goal attainment method, etc (see [6, 10, 12, 14, 18]). Since in many practical
cases, it is not possible for a decision maker to choose a preferred solution
from the set of all efficient solutions, we aim to propose an algorithm to gener-
ate the nondominated set of nonconvex multiobjective optimization problems
(NMOPs). Since working in the lower dimensional space may require less com-
putational effort, it is more natural to compare the objective values rather than
the decision values.

Benson’s “outer approximation algorithm” [2] proposes an algorithm for
approximating the nondominated set of a multiobjective linear programming
problem. Ehrgott et al. [4] employ results from geometric duality theory for
multiobjective linear programmes (MOLPs) to derive a dual variant of Benson’s
outer approximation algorithm. In [16] a modification of Benson’s algorithm
is proposed to solve MOLPs by an inner and an outer approximations of the
nondominated set. An extension of Benson’s outer approximation algorithm
provides a set of weakly ε-nondominated points of convex multiobjective prob-
lems, see [5]. Recently, an extension of Benson’s outer approximation algorithm
and a dual variant of it are presented for convex MOPs in [11].

We modify the idea of Benson’s algorithm in order to solve a class of NMOPs
with equality and inequality constraints. In fact, our method is an extension
of [5] for MOPs with convexlike and nonsmooth objective functions. The sep-
arating hyperplane in Benson’s algorithm is constructed by an extension of
the Wolfe duality to solve some MOPs with subdifferentiable functions. This
method, similar to [11], often provides more (weakly) nondominated points
than the method explained in [5] without requiring any more computation. In
comparison with [11], our method is suitable for a class of nonconvex MOPs
with additional equality constraints. It is worth to mention that we do not
require any compactness assumptions on the feasible set. The other advantage
of our approach is that one can calculate the maximum error.

It is obvious that our method is also applicable for biobjective problems
(BOPs). There are some methods to obtain the efficient set of these problems,
see, e.g., [8]. We investigate that every weakly efficient solution generated
by the algorithm is an efficient solution of BOPs. However, this fact is not
true for three or more objective functions, see Section 7 for a counterexample.
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Moreover, a set of ε-nondominated points and a set of weakly ε-nondominated
points of BOPs are formulated.

The article is organized as follows. In Section 2, some definitions and nota-
tions are collected. We present some Wolfe duality Theorems in Section 4. An
algorithm for NMOPs and some details of the algorithm are proposed in Sec-
tion 5. In Section 6, we show that every weakly nondominated point generated
by the algorithm is a nondominated point in biobjective problems. We arrange
these points to construct a set of (weakly) ε-nondominated points. Finally, we
provide numerical examples in Section 7.

2. Preliminaries

Throughout this paper we use the following notations. A vector with only
1’s as components is denoted by e. Let x, y ∈ Rp and p ∈ N\{1}. The notations
≦,≤ and < are used for the vectors x and y as follows

x ≦ y ⇐⇒ xi ⩽ yi, ∀i = 1, ..., p,

x ≤ y ⇐⇒ x ≦ y and x ̸= y,

x < y ⇐⇒ xi < yi, ∀i = 1, ..., p.

Therefore, Rp
≧ is given by

Rp
≧ := {y ∈ Rp : y ≧ 0}.

Let C be a nonempty subset of Rn where n ∈ N. Clarke’s tangent cone (resp.
Clarke’s normal cone) to C at x ∈ C is defined as follows (see [3])

TC(x) = {v ∈ Rn : ∀tn ↓ 0, ∀xn → x with xn ∈ C,∃vn → vxn + tnvn ∈ C, ∀n}

(resp. NC(x) = {v ∈ Rn : ⟨v, w⟩ ⩽ 0, ∀w ∈ TC(x)}).

Let C be a convex set. A vertex of C is an element of C that cannot be
expressed in terms of a strictly convex combination of two distinct points of C.
The convex hull of C is the smallest convex set containing C. It consists exactly
of all convex combination of elements of C. The notations conv C, int C, vert C,
bd C and cl C denote the convex hull of C, the interior of C, the set of vertices
of C, the boundary of C and the closure of C, respectively.

It is well known that Clarke’s directional derivative is usually defined for
lipschitzian functions. Here we recall an extension of it for non-lipschitzian
functions from [15].

Let f : Rn → R̄ (R̄ = R ∪ {±∞}) be an arbitrary function. The extended
Clarke directional derivative of f at point x ∈ Rn in direction v ∈ Rn, denoted
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by f◦(x; v), is defined as follows

lim sup
y→x,t↓0

f(y + tv)− f(y)

t
(∞−∞ = 0).

The set

∂f(x) = {ξ ∈ Rn :< ξ, v >⩽ f◦(x; v), ∀v ∈ Rn},
is called the subdifferential of f at x. If ∂f(x) ̸= ∅, the function f is called
subdifferentiable at x. The function f is called subdifferentiable on C ⊆ Rn if
it is subdifferentiable at all points of C. A vector function is subdifferentiable
if its components are subdifferentiable.

Let us recall the definition of convexlike functions from [1]. The function
f : Rn → R is called convexlike on C if for every x1, x2 ∈ C and λ ∈ (0, 1) there
exists x ∈ C such that

f(x) ⩽ λf(x1) + (1− λ)f(x2).

A vector function is convexlike on C if its components are convexlike on C.
Consider the following multiobjective programming problem:

(P)

min f(x) = (f1(x), ..., fp(x))

s.t. x ∈ X = {x ∈ C : g(x) = (g1(x), ..., gm(x)) ≦ 0, m ∈ N ∪ {0},
h(x) = (h1(x), ..., hq(x)) = 0, q ∈ N ∪ {0}},

where f(x) : A → Rp, g(x) : A → Rm and h(x) : A → Rq are subdifferentiable
functions on A. Here A is a nonempty open subset of Rn and C ⊆ A is a
nonempty set. The feasible set Y in the objective space Rp is defined by

Y = {f(x) : x ∈ X}.

The point zideal ∈ Rp is the ideal point of the problem (P) if it’s i-th component
is the optimal value of

min fi(x).

s.t. x ∈ X
Assume that zideal exists and P := Y + Rp

≧ is a closed set.

A point y ∈ Y is called weakly nondominated if ({y}− int Rp
≧)∩Y = ∅ and

it is called nondominated if ({y} − Rp
≧ \ {0}) ∩ Y = ∅. The set of (weakly)

nondominated points of Y is given by

(YWN := {y ∈ Y : ({y} − int Rp
≧) ∩ Y = ∅})

YN := {y ∈ Y : ({y} − Rp
≧ \ {0}) ∩ Y = ∅}.

A point x ∈ X is called (weakly) efficient solution, if f(x) is a (weakly) non-
dominated point of f(X ). Let ε ∈ Rp

≧. A point y ∈ Y is called (weakly) ε-

nondominated if there is no ŷ ∈ Y such that ŷ(<) ≦ y − ε.
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3. Benson’s algorithm

In this section, a summery of Benson’s algorithm is presented from [2] for
multiobjective linear problems. Benson has proposed an outer approximation
algorithm to solve the problem (P) with f(x) = Dx and X = {x ∈ Rn : Ax =
b, x ≧ 0}, named as (MOLP), where D is an p × n matrix, A is an m × n
matrix and b ∈ Rm. The set X is assumed to be a nonempty and compact
polyhedron.

Let ŷ ∈ Rp satisfy ŷi < maxy∈Y yi for i = 1, 2, ..., p and

Y = {y ∈ Rp : ŷ ⩽ y ⩽ Dx for some x ∈ X}.
Assume that v0 = ŷ and define vj ∈ Rp for each j = 1, 2, ..., p, such that

vji =

{
ŷi if i ̸= j,

β + ŷi − eT ŷ if i = j,
i = 1, 2, ..., p,

where β := min{eT y : y ∈ Y } is a finite number. In the outer approxi-
mation algorithm of MOLP, an initial simplex S containing Y is defined by
S = convV (S) where V (S) := {vj : j = 0, 1, ..., p}.

Suppose Y is a p-dimensional polyhedron with a finite number of faces. The
following proposition from [2] provides a meaning for finding a face of Y .

Proposition 3.1. Assume that w ∈ Rp is a weakly nondominated point of
MOLP and let (u∗T , v∗T ) denote any optimal solution for the dual linear pro-
gram of the following problem

(Q(w))

min z

s.t. Dx− ez ≦ w,

Ax = b,

(x, z) ≧ 0.

Here u ∈ Rp and v ∈ Rm correspond to the first and second constraints of
problem (Q(w)), respectively. Then H̄ := {y ∈ Y : yTu∗ = bT v∗} is a face of
Y containing w.

The outer approximation algorithm identifies the set of all efficient extreme
points in Y.

Starting with the simplex S, the outer approximation algorithm iteratively
generates a finite number of nonempty and compact polyhedra Sk, for k =
0, 1, 2, ...,K, such that S = S0 ⊇ S1 ⊇ . . . ⊇ SK−1 ⊇ SK = Y . For each
k ⩾ 0, the inequality yTuk ⩽ bT vk, which is appended to Sk in the step (k3),
is called an inequality cut. This kind of inequality allows Sk+1 to cut off a
portion of Sk containing sk. In a typical iteration k, a vertex sk of Sk will
be identified such that sk /∈ Y . Subsequently, the unique point wk in the
boundary of Y that lies on the line segment with end points p̄ ∈ int Y and sk,
will be identified. The boundary point wk is a weakly nondominated point of
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Algorithm 1 Outer approximation algorithm for MOLP

Initialization.
(i1) Compute p̄ ∈ int Y . Let S0 := S and k = 0.
Iteration steps.

(k1) If V (Sk) ⊆ Y , stop and put Y = Sk. Otherwise, choose any
sk ∈ V (Sk) \ Y and continue.

(k2) Find the unique value λk ∈ (0, 1) such that λksk + (1− λk)p̂ ∈
bd Y and set wk = λksk + (1− λk)p̂.

(k3) Set Sk+1 = Sk ∩ {y ∈ Rp : yTuk ⩽ bT vk}, where (ukT
, vk

T
) is

any dual optimal solution to the linear program (Q(wk)).

(k4) Using V (Sk) and the definition of Sk+1 given in the step (k3),
determine V (Sk+1). Set k = k + 1 and go to the step (k1).

MOLP. Benson [2] proves that the algorithm is finite and it terminates with
finding all the nondominated extreme points of Y .

4. Nonsmooth Wolfe duality

In this section, we state the Wolfe duality theorems for the single objective
problem (P), where p = 1. For x0 ∈ X , let

I0 = {i : gi(x0) = 0} and J0 = {I, ...,m} \ I0.

Relative to the problem (P), the following constraint qualification is used

(R)

{
∃v ∈ Rn : g◦I0(x0; v) ≤ 0, h◦(x0; v) = 0,

∃δ > 0, Ux0 ,∀x ∈ Ux0 , 0 < λ < δ : gJ0(x+ λv) ≦ 0, h(x+ λv) = 0,

where Ux0 is a neighborhoods of x0. Here g◦I0(x0; v) is the vector of components
g◦i (x

0; v), ∀i ∈ I0, and h◦(x0; v) = (h◦
1(x

0; v), ..., h◦
q(x

0; v)).
Mititelu [15] extended the known theorems of Wolfe’s duality for nonsmooth

problems. This section summarizes these extensions relating to the program
(P). Let us consider the function ϕ : A× Rm × Rq → R̄, defined by

ϕ(x, u, v) = f(x) + Σm
i=1uigi(x) + Σq

j=1vjhj(x).

The Wolfe type dual of the problem (P) is

(DW) max
(x,u,v)∈Ω

ϕ(x, u, v)

where Ω ⊆ C × Rm × Rq is defined by

Ω = {(x, u, v) : 0 ∈ ∂f(x) + Σm
i=1ui∂gi(x) + Σq

j=1vj∂hj(x) +NC(x), u ≧ 0}.

Let us recall the following theorems from [15], which are called weak duality
and direct duality theorems, respectively.
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Theorem 4.1. Let the domains X and Ω of problems (P) and (DW) be nonempty
and

ϕ(t, u, v) = min
x∈C

ϕ(x, u, v),

for every (t, u, v) ∈ Ω. Then

inf(P ) ⩾ sup(DW ),

where
inf(P ) := inf{f(x) : x ∈ X}

and
sup(DW ) := sup{ϕ(x, u, v) : (x, u, v) ∈ Ω}.

Theorem 4.2. Let x0 be a local solution to the problem (P) and h◦(x0, .) be
finite on Rn. Suppose that

(w1) the domain X satisfies the constraint qualification (R),
(w2) (t, u, v) ∈ Ω =⇒ ϕ(t, u, v) = minx∈C ϕ(x, u, v).

Then there are vectors u0 ≧ 0 and v0 ∈ Rq (as the optimal Lagrange multipliers),
such that the point (x0, u0, v0) is a global solution to the dual program (DW)
and, in addition, one has

f(x0) = ϕ(x0, u0, v0).

5. An approximation algorithm

In this section, we propose an algorithm to obtain the (weakly) nondomi-
nated set of Y. We use the Wolfe duality to extend Benson’s algorithm for the
problem (P). First, we propose an assumption on objective functions which is
equivalent to the convexity of P.

Proposition 5.1. The objective function f of the problem (P) is convexlike on
X if and only if P is convex.

Proof. Suppose y1, y2 ∈ P and f is convexlike on X . This means that there
are x1, x2 ∈ X such that f(x1) ≦ y1 and f(x2) ≦ y2. Due to the convexlikeness
of f there is x ∈ X such that f(x) ≦ λy1 + (1 − λ)y2, for all λ ∈ (0, 1). Thus
P is convex. Conversely, let x1, x2 ∈ X and λ ∈ (0, 1). Due to the convexity
of P we have λf(x1) + (1 − λ)f(x2) ∈ P. It means that there is x ∈ X such
that f(x) ≦ λf(x1) + (1 − λ)f(x2). Therefore the objective function f of the
problem (P) is convexlike on X . □

Now we present some properties of P and the connections between two sets
P and Y.

Proposition 5.2. Let the objective function f of the problem (P) be convexlike
on X and let P be a closed set. The following statements hold.

1. The set P⊆Rp is nonempty and Rp
≧-bounded from below.
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2. YN = PN .
3. PWN = bd P.

Proof. According to Proposition 5.1, P is convex. Therefore the proofs of
assertions 1 and 3 are similar to those in [5, Proposition 4.1]. To prove 2, first
we show that YN ⊆ PN . Suppose, to the contrary, that there is y ∈ YN such
that y /∈ PN . We conclude that there are ȳ ∈ P and ŷ ∈ Y such that ŷ ≦ ȳ ≤ y.
This is a contradiction which leads to YN ⊆ PN .

To prove the opposite side, let y ∈ PN , i.e., there is no ȳ ∈ P such that
ȳ ≤ y. Since Y ⊆ P, there is no ȳ ∈ Y such that ȳ ≤ y. To justify PN ⊆ YN ,
it remains to show that y ∈ Y. On the contrary, Let y ∈ P \ Y. Hence there is
ỹ ∈ Y such that ỹ ≤ y. Therefore, we get ỹ ∈ P and ỹ ≤ y which contradicts
y ∈ PN . □
5.1. Constructing a boundary point. According to Proposition 5.2, every
(weakly) nondominated point of the problem (P) is a boundary point of P.
Hence we aim to obtain a boundary point by solving the following problem.
Assume that s ∈ Rp \ int P and d ∈ Rp such that s+ d ∈ int P. If P is convex
and closed, the problem

(5.1) min{z ∈ R : s+ zd ∈ P}.
has an optimal solution. Now let us consider the following problem

(P(s)) z∗ = min{z ∈ R : x ∈ X , f(x) ≦ s+ ze},
where s ∈ Rp \ int P. Note that e can be replaced by any d ∈ int Rp

≧. Since

P = Y + Rp
≧, there exists z0 ∈ R such that s + z0e ∈ P. Therefore (P(s)) is

equivalent to problem (5.1) provided that d = z0e. Assume that f is convexlike
on X and P is closed. Then, according to Proposition 5.1, an optimal solution
to (P(s)) exists for every s ∈ Rp \ int P.

The following proposition shows that every optimal solution to (P(s)) yields
a weakly efficient solution to the problem (P) and a weakly nondominated point
of P.

Proposition 5.3. Let the objective function f of the problem (P) be convexlike
on X and P be a closed set. Assume that s∗ ∈ Rp \ int P. Then an optimal
solution (x∗, z∗) to problem (P(s∗)) exists and x∗ is a weakly efficient solution
to the problem (P). Furthermore, it results y∗ = s∗ + z∗e ∈ PWN .

Proof. The existence of an optimal solution (x∗, z∗) to (P(s∗)) follows from
above discussion. In the case of s∗ /∈ P, according to [5, Proposition 4.4], x∗

is a weakly efficient solution to the problem (P) and y∗ = s∗ + z∗e ∈ PWN . If
s∗ ∈ P \ int P, then s∗ ∈ bd P. We conclude that there is x∗ ∈ X such that
f(x∗) ≦ s∗ and there is no x ∈ X such that f(x) < s∗. Therefore, (x∗, z∗) is
an optimal solution to the problem (P) when z∗ = 0. According to Proposition
5.2, this implies that y∗ = s∗ is a weakly nondominated point of P. □
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5.2. Constructing a separating hyperplane. In this part, a new method
is presented to construct a hyperplane separating the point s from P at a
boundary point of P. We introduce the following primal and dual pair (P(s))
and (DW(s)) depending on s ∈ Rp \ int P to obtain the required supporting
hyperplane. Let

(P(s))

min
(x,z)

z

s.t. f(x)− ze− s ≦ 0,

g(x) ≦ 0,

h(x) = 0,

x ∈ C,

and

(DW(s))

max z + λT
1 g(x) + λT

2 (f(x)− ze− s) + µTh(x)

s.t. 0 ∈ Σm
i=1λ

i
1∂gi(x) + Σp

i=1λ
i
2∂fi(x) + Σk

i=1µi∂hi(x) +NC(x),

1− λT
2 e = 0,

λ = (λ1, λ2) ≧ 0.

In the following theorem we show that an optimal solution to the dual prob-
lem exists and the hyperplane H, separating the point s∗ from the convex set
P at a boundary point of P, is obtained by the optimal Lagrange multipliers
of (P(s∗)).

Theorem 5.4. Suppose that (x∗, z∗) is an optimal solution to (P(s∗)) and
y∗ = s∗ + z∗e under the assumptions of Proposition 5.3. Furthermore, suppose
that h◦(x∗; .) is finite on Rn, and assumptions (w1) and (w2) in Theorem 4.2,
hold for (P(s∗)). Then there are λ∗ ≧ 0 and µ∗ ∈ Rq such that (x∗, z∗, λ∗, µ∗)
is an optimal solution to (DW(s∗)) and

(i) y∗Tλ∗
2 = λ∗

1
T g(x∗) + λ∗

2
T f(x∗);

(ii) yTλ∗
2 ⩾ λ∗

1
T g(x∗) + λ∗

2
T f(x∗), ∀y ∈ P.

This means that the set H := {y ∈ Rp : yTλ∗
2 = λ∗

1
T g(x∗) + λ∗

2
T f(x∗)} is a

supporting hyperplane of P at y∗.

Proof. According to Theorem 4.2, an optimal solution (x∗, z∗, λ∗, µ∗) to the
dual problem (DW(s∗)) exists.

(i). It follows from Theorem 4.2 that

z∗ = z∗ + λ∗
1
T g(x∗) + λ∗

2
T (f(x∗)− z∗e− s∗) + µ∗Th(x∗).

Since (x∗, z∗, λ∗, µ∗) is a feasible solution to (DW(s∗)), we have

y∗Tλ∗
2 = (s∗ + z∗e)Tλ∗

2

= λ∗
1
T g(x∗) + λ∗

2
T f(x∗).
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(ii). Let s be a boundary point of P. Therefore there exists xs ∈ X such that
f(xs) ≦ y and (xs, 0) is a feasible solution to (P(s)) with the objective value
zs = 0. On the other hand, the point (x∗, z∗, λ∗, µ∗) is feasible for (DW(s)).
According to Theorem 4.1, the objective value of (DW(s)) at (x∗, z∗, λ∗, µ∗) is
nonpositive, i.e.,

z∗ + λ∗
1
T g(x∗) + λ∗

2
T (f(x∗)− z∗e− y) + µ∗Th(x∗) ⩽ 0,

and therefore we get

yTλ∗
2 ⩾ λ∗

1
T g(x∗) + λ∗

2
T f(x∗).

□

5.3. Approximation algorithm for the problem (P). In this section we
introduce our algorithm. Let ϵ > 0 be an approximation error and p̂ be a point
in Rp. Decision makers should choose p̂ as an upper bound according to their
need. The algorithm starts with polyhedron S0 = zideal +Rp

≧ containing P. In

the k-th iteration, solving (P(sk)) yields a boundary point yk of the closed set

P, where sk is a vertex of Sk and sk ≦ p̂. If sk ≦̸ p̂, the point sk is added to O
and another vertex is selected. Since, using Proposition 5.3, the boundary point
yk is a weakly nondominated point of P, the algorithm obtains weakly efficient
solutions to the problem (P). The set of these points is denoted by XWE . If
d(sk, yk) ⩽ ϵ, we add the point sk to the outer approximation O. Otherwise, we
determine a hyperplane separating sk from P at yk using the optimal solution
of (P(sk)) and it’s optimal Lagrange multipliers. Then we update Sk by using
this hyperplane to obtain Sk+1 and the procedure is repeated. Let I denote all
boundary points which are obtained by the algorithm. The best approximation
error is the maximum distance between every vertex sk of total Sk with sk ≦ p̂
and it’s corresponding boundary point yk.

This algorithm constructs an inner approximation (Pi) and an outer ap-
proximation (Po) of P such that Pi ⊆ P ⊆ Po. Both Pi and Po are convex
polyhedrons and the distance between corresponding vertices are at most ϵ,
i.e., for every s ∈ vert Po with s ≦ p̂ there exists a vertex v ∈ vert Pi such that
d(v, s) ⩽ ϵ. Another property is that the number of common points of Pi and
Po are more than or equal to the number of hyperplanes obtained in Algorithm
2. It shows that every point of IN ∩ (p̂ − Rp

≧) is a weakly ϵe-nondominated

point of P. We summarize the result in the following theorem.

Theorem 5.5. Let Pi be an inner approximation of P in Algorithm 2 and
ε = ϵe. Then Pi

N ∩ (p̂− Rp
≧) is a set of weakly ε-nondominated points of P.

Proof. It is easy to check that Pi, P and Po are convex and the points of
(vert Po) ∩ (p̂ − RP

≧) has a one to one corresponding relationship with some
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Algorithm 2 Approximation algorithm for NMOP

Initialization.

(i1) Let S0 := zideal + Rp

≧. Then vert S0 = {zideal}.
(i2) Let ϵ > 0 be an approximation error and p̂ ∈ Rp be an upper

bound.
(i3) Let O := ∅, I := ∅, XWE := ∅, ϵ0 := 0 and k := 0.
Iteration steps.

(k1) If vert Sk ⊆ O stop. Otherwise, choose sk ∈ vert Sk \ O.

(k2) If sk ≦̸ p̂ add sk to O and go to (k1).

(k3) Solve (P(sk)). Set XWE = XWE ∪ {xk : (xk, zk) is an optimal
solution to (P(sk))} and yk = sk + zke. Add yk to I.

(k4) If d(sk, yk) ⩽ ϵ, add sk to O. Set ϵ0 = max {ϵ0, d(sk, yk)} and
go to (k1).

(k5) If d(sk, yk) > ϵ, determine a separating hyperplane H := {y ∈
Rp : yTλk

2 = λk
1
T
g(xk) + λk

2
T
f(xk)}, where (λk, µk) are the

optimal Lagrange multipliers to (P(sk)) and set Sk+1 := Sk ∩
{y ∈ Rp : yTλk

2 ≥ λk
1
T
g(xk) + λk

2
T
f(xk)}.

(k6) Determine vert Sk+1 and set k = k + 1. go to (k1).
Results
(r1) XWE is a set of weakly efficient solution and f(XWE) is a set of

weakly nondominated points for the main problem (P).
(r2) I is a set of finite number of weakly non-dominated points of P.
(r3) Pi = conv I + Rp

≧ is an inner approximation for P.

(r4) Po = Sk is an outer approximation for P.
(r5) ϵ0 is the maximum error in this approximation.

vertices of polyhedron Pi. Note also that the most distances between all cor-
responding vertices is ϵ. Therefore the proof is similar to [5, Theorem 4.3]
and [16, Theorem 5]. □

Defining the approximation error ϵ0 in the algorithm has some advantages.
The value ϵ0 shows minimum approximations error. It means that we have
the same results for every approximation error between ϵ0 and ϵ when ϵ0 < ϵ.
Therefore, using an approximation error less than ϵ0 gives results that are more
accurate. Moreover, we have Pi ∩ (p̂ − Rp

≧) = P ∩ (p̂ − Rp
≧) = Po ∩ (p̂ − Rp

≧)

where ϵ0 = 0. It follows that Pi
N ∩ (p̂−Rp

≧) = PN ∩ (p̂−Rp
≧) = YN ∩ (p̂−Rp

≧).

As discussed above, according to Theorem 5.5, Algorithm 2 constructs Pi
N ∩

(p̂−Rp
≧) as a set of weakly ε̄-nondominated points of the problem (P) for every

ε̄ ∈ Rp with ε0 ≦ ε̄ ≦ ε.
The following theorem proves the convergence of Algorithm 2.
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Theorem 5.6. Assume that zideal exists. Under the assumptions of Theorem
5.4 Algorithm 2 works correctly: It terminates finitely and returns the results
(r1)− (r5).

Proof. It is obvious that S0 exists. According to Proposition 5.3, the optimal
solution to (P(sk)) exists for all sk ∈ vert Sk \ O and hence the step (k3),
Result (r1) and Result (r2) are true. Theorem 5.4 proves that the hyperplane
H presented in the step (k5) exists and separates sk from P at yk. Therefore,
we have P ⊆ Sk in each iteration which yields Result (r4). Since every Sk is
a convex polyhedron (the intersection of a finite number of half space), then
the number of all vertices of Sk is finite. On the other hand, in each iteration
where d(sk, yk) > ϵ, a set of points containing {y ∈ Rp : sk ≤ y ≦ yk} is
removed from Sk to obtain Sk+1. Therefore Algorithm 2 stops at the finite
number of iterations, by the existence of upper bound p̂. It is easy to see that
the convexity of P yields Result (r3). The last Result (r5) is true because we
have d(sk, yk) ⩽ ϵ0 for all vertices sk of the total Sk. □

It should be noticed that we have more boundary points in I, the same
as [11], in the comparison with the algorithm presented in [5]. These additional
boundary points are those yk which their distance with their corresponding sk is
at most ϵ. Therefore we often have a better inner approximation. For instance
in [5, Example 5.7], we add 7 boundary points to I (instead of 3 boundary
points obtained by [5, Algorithm 4.2]) with the same approximation error at
no additional cost. Moreover, at the end of algorithm we have three additional
results namely (r1, r2 and r5).

Algorithm 1 proposed in [11] is an extension of Benson’s algorithm for convex
MOPs. It is worth mentioning that problem (P(s)) in our proposed algorithm
has the same form as the primal problem P2(v) in [11, Algorithm 1]. Therefore,
the cost of two algorithms is the same. But Algorithm 2 is also suitable for
a class of nonconvex problems. We require the convexlikeness of the objective
funtion f on X which is weaker than the convexity of the problem (P).

Note that [11, Algorithm 1] use Slater’s condition (which requires the con-
vexity of functions and a point x0 ∈ X such that g(x0) < 0) to prove direct
duality. Thus equality constrains cannot be treated with [11] by writing them
as two inequality constrains. Algorithm 2 is applicable for a class of NMOPs
with equality and inequality constraints via Wolfe duality. Another advantage
is that we don’t require any compactness assumptions on the feasible set X of
the problem (P). In fact, we suppose the point p̂ in the algorithm to stop the
algorithm at a finite number of iterations. Calculating the minimum approxi-
mation error is another preference of our algorithm.
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6. (Weakly) ε-nondominated set in BOPs

In this section, we consider weakly nondominated points for BOPs. We sort
all points of I in Algorithm 2 to construct an approximation set of (weakly)
nondominated points for BOPs. In the following theorem we prove that all
yk ∈ I are nondominated points when p = 2.

Theorem 6.1. Let p = 2 in the problem (P), then every yk is a nondominated
point of Y in Algorithm 2.

Proof. Suppose on the contrary that there exist k ∈ N ∪ {0} and sk ∈ vert Sk

such that yk = sk+zke and yk /∈ PN . We conclude that there exists ȳ ∈ P such
that ȳ ≤ yk. By Theorem 5.2 we get yk ∈ PWN and hence yk ≯ ȳ. Without
loss of generality, assume that yk = [yk1 , y

k
2 ]

T , ȳ = [ȳ1, ȳ2]
T , α := yk1 = ȳ1 and

yk2 > ȳ2. Since yk ∈ bd P and ȳ ≤ yk, due to the convexity of P = Y +R2
≧, we

have zideal1 = α and therefore sk = yk. Thus sk is a linear combination of two
points of Sk (e.g. ȳ and yk+ȳ). This contradicts the fact that sk ∈ vert Sk. □

Note that above theorem is not true for the problem (P) with p > 2. We
present a counterexample showing that Algorithm 2 obtains a weakly nondom-
inated point which is not nondominated point when p = 3.

In the following, we arrange the points of I to approximate a set of non-
dominated points and a set of weakly nondominated points of a BOP, for the
case of p = 2.

Let y1, y2 ∈ R2
≧. Define y1 ≺ y2 when y11 < y21 . Therefore we have a relation

“≺” for every two points of I, according to Theorem 6.1. Let I = {y1, ..., yr}
where r ∈ N, is sorted by I = {ȳ1, ..., ȳr} such that ȳi ≺ ȳi+1, i = 1, ..., r−1 and
let ȳ0 := [ȳ01 , ȳ

0
2 ]

T such that ȳ01 = zideal1 and ȳ02 = min{f2(x) : x ∈ X , f1(x) =
z1}. Assume that ȳr+1 = [ȳr+1

1 , ȳr+1
2 ] such that ȳr+1

2 = zideal2 and ȳr+1
1 =

min{f1(x) : x∈X , f2(x) = ȳr+1
2 }. The set of all nondominated points of inner

approximation Pi is given by

Pi
N = {λȳi + (1− λ)ȳi+1 : λ ∈ [0, 1], i = 0, 1, ..., r}.

It is easy to see that for every y ∈ YN , there exists a point p ∈ Pi
N such that

d(y, p) ⩽ ϵ. Thus Pi
N is an approximation for YN , i.e., every point of Pi

N is an
ε-nondominated point to the problem (P). We define the following points to
obtain Pi

WN . Let t := max{f2(x) : x ∈ X , f1(x) = z1} and r := 1, provided that
max{f2(x) : x ∈ X , f1(x) = z1} exists; otherwise let t := ȳ0 + [0, 1]T and r :=
∞. Similarly let t′ := max{f1(x) : x ∈ X , f2(x) = ȳr+1

2 } and r′ := 1, provided
that max{f1(x) : x∈X , f2(x) = ȳr+1

2 } exists; otherwise let t′ := ȳr+1 + [1, 0]T

and r′ := ∞. Thus the set of weakly nondominated point of Pi is formulated
as follows.
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Pi
WN =

Pi
N ∪ cl{

[
ȳ01

λȳ02 + (1− λ)t

]
,

[
λ′ȳr+1

1 + (1− λ′)t′

ȳr+1
2

]
: λ ∈ (0, r), λ′ ∈ (0, r′)}.

It is easy to check that every point of Pi
WN is a weakly ε-nondominated

point of Y.

7. Examples

Now we present some examples to illustrate the obtained results. The algo-
rithm was implemented in Matlab 8.0 (R2012b) using Optimization Toolbox
to compute optimal solutions and the tests were run on a processor Intel(R)
Core(TM) i5 CPU with 2.67GHz and 3GB RAM.

We start with a counterexample for Theorem 6.1 for the case of p = 3. This
example also illustrates that all nondominated points of a problem sometimes
can be found by Algorithm 2 for small approximation errors.

Example 7.1. Consider the following multiobjective problem:

min f1(x) = x1,

f2(x) = 2− x1,

f3(x) = x2

s.t. g1(x) = x1 − 2 ⩽ 0,

g2(x) = −x1 ⩽ 0,

g3(x) = −x2 ⩽ 0.

Let ϵ ∈ (0,
√
2) and p̂ ∈ Rp be arbitrary. Algorithm 2 starts with s0 =

zideal = [0, 0, 0]T and construct the hyperplane H = {(y1, y2, y3) : y1 + y2 = 2}
separating s0 from P at y0 = s0 + z0e = [1, 1, 1]T , where x0 = [1, 0.5]T and
z0 = 1 is an optimal solution to (P(s0)). As shown in Figure 1, the weakly
nondominated point y0 is not a nondominated point because [1, 0] ∈ X and
f([1, 0]) = [1, 1, 0]T ≤ [1, 1, 1]T . the algorithm returns ϵ0 = 0 and Pi = P = Po.
Therefore Pi

N = PN = YN .
In the next example we show that Algorithm 2 is applicable for nonsmooth

multiobjective problems. This example is taken from [5] and it was used as an
example which can not be solved by the algorithm provided in [5]. Since we do
not require differentiability in our algorithm, this example can be solved.

Example 7.2. Consider the following nonsmooth problem:

min f1(x) = |x1|+ |x2|,
f2(x) = |x1 − 2|+ |x2|

s.t. g(x) = x2
1 + x2

2 − 100 ⩽ 0.
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Figure 1. Objective space, P, ideal point, interior point and
boundary point in Example 7.1

Figure 2. First cut in the objective space in Example 7.2

We know that S0 = R2
≧ and hence s0 = (0, 0). Algorithm 2 computes the

optimal solution x0 = (1, 0) and z0 = 1 to problem (P(s0)) and the boundary
point y0 = s0 + z0e = (1, 1) of P at the first iteration. According to Theorem
5.4, there are λ0 = (λ0

1, λ
0
2, λ

0
3) ≧ 0 such that

0 ∈ λ0
1∂f1(x

0) + λ0
2∂f2(x

0) + λ0
3∂g(x

0)

λ0
1 + λ0

2 = 1

λ0
3g(x

0) + (λ0
1, λ

0
2)

T (f(x0)− z0e− s0) = 0

The structure of ∂f and ∂g is as follows.

∂f1(x
0) = {(1, α) : −1 ⩽ α ⩽ 1},
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∂f2(x
0) = {(−1, β) : −1 ⩽ β ⩽ 1},

∂g(x0) = {(2, 0)}.
Therefore we have λ0 = (0.5, 0.5, 0) which yeilds thatH = {(y1, y2)|y1+y2 = 2}
separates the point s0 from P at y0 = (1, 1) for every ϵ ∈ (0, 1). At the end
of the first iteration, we have O = ∅ and I = {(1, 1)}. Some details of this
example and the first cut are shown in Figure 2.

In the second iteration, S1 is equal to P. Hence vert S1 = {(2, 0), (0, 2)}. If
p̂ ∈ (2, 2) + R2

≧, since y1 = s1 = (2, 0) and d(s1, y1) = 0 < ϵ, the algorithm

adds the point (2, 0) to O and I. Similarly, the point (0, 2) is added to O and
I at the third iteration. Therefore XWE = {(1.0), (0, 1), (0, 0)}, ϵ0 = 0 and
Pi = P = Po. Thus Pi

N is exactly equal to all nondominated points of this
example.

In the following example we consider a convexlike multiobjective problem.

Example 7.3. Consider the following nonconvex problem:

min f1(x) = x− π,

f2(x) = sinx+ 1

s.t. g(x) = π − x ⩽ 0.

Figure 3. First three cutting planes in Example 7.3

We set the approximation error ϵ = 0.025 and p̂ = 105. It is clear that the
ideal point is s0 = zideal = (0, 0). In iteration k-th, solving the primal problem
(P(sk)) depending on a vertex sk of Sk yields the optimal solution (xk, zk).
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Table 1. Some details of Algorithm 2 for Example 7.3

k sk xk yk Cutting planes
0 (0, 0) 3.6526 (0.5110, 0.5110) (0.4659, 0.5341, 0.5110)
1 (0, 0.9567) 3.1633 (0.0217, 0.9783) (0.5000, 0.5000, 0.5000)
2 (1.0968, 0) 4.3159 (1.1743, 0.0776) (0.2786, 0.7214, 0.3831)
3 (0, 1.0000) 3.1416 (0.0000, 1.0000) d(sk, yk) ⩽ ϵ
4 (0.3397, 0.6604) 3.4846 (0.3430, 0.6637) d(sk, yk) ⩽ ϵ
5 (1.3752, 0) 4.5329 (1.3913, 0.0161) d(sk, yk) ⩽ ϵ
6 (0.8756, 0.1929) 4.0412 (0.8996, 0.2169) (0.3835, 0.6165, 0.4787)
7 (0.7201, 0.3286) 3.8685 (0.7270, 0.3354) d(sk, yk) ⩽ ϵ
8 (1.0407, 0.1292) 4.1876 (1.0461, 0.1345) d(sk, yk) ⩽ ϵ

Then the boundary point of P is generated. If d(sk, yk) > ϵ, the algorithm
construct the hyperplane H. Figure 3 shows the first three cutting planes and
the computational data can be seen in Table 1. Note that the last column
is the parameters of the hyperplanes, i.e., λk

2 is the first two components and

the last component is equal to λk
1
T
g(xk) + λk

2
T
f(xk). Finally, the algorithm

returns ϵ0 = 0.0227, which means that we should select ϵ < 0.0227 to have
more cutting planes and more vertices.

The following example is a problem where the algorithms proposed in [5,11]
does not terminate for some approximation error.

Example 7.4. Consider the following problem:

min f(x) = (x1, x2, x3)

s.t. g(x) =
1

9.0601− (x1 − 3)2 − (x2 − 3)2
− 1

9.0601
− x3 ⩽ 0,

x1, x2 ⩾ 0,

x ∈ A = {(x1, x2, x3) ∈ R3 : (x1 − 3)2 + (x2 − 3)2 − 9.0601 < 0}.
This example has an unbounded feasible set and an additional constraint

x ∈ A where A is an open unbounded set in R3. Therefore the assumptions of
the algorithm proposed in [5,11] is not true for this example. Defining p̂ helps
Algorithm 2 to terminates at the finite number of iterations.

We set the approximation error ϵ = 0.9 and p̂ = 102. Algorithm 2 starts with
the ideal point s0 = zideal = (0, 0, 0). Table 2 shows some computational data
of the algorithm and Figure 4 shows the first three cutting planes formulated
as follows.

H1 = {(y1, y2, y3) : 0.4530y1 + 0.4530y2 + 0.0941y3 = 0.9820},
H2 = {(y1, y2, y3) : 0.4995y1 + 0.4995y2 + 0.0009y3 = 0.8913},
H3 = {(y1, y2, y3) : 0.5125y1 + 0.0877y2 + 0.3998y3 = 0.5748}.
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Figure 4. First three cutting planes in Example 7.4

Table 2. Some details of Algorithm 2 for Example 7.4

k sk xk = yk Cutting planes
0 (0, 0, 0) (0.9820, 0.9820, 0.9820) H1

1 (0, 0, 10.4407) (0.8819, 0.8819, 11.3223) H2

2 (0, 2.1679, 0) (0.3847, 2.5526, 0.3847) d(sk, yk) ⩽ ϵ
3 (2.1679, 0, 0) (2.5526, 0.3847, 0.3847) d(sk, yk) ⩽ ϵ
4 (0, 1.7809, 1.8638) (0.2358, 2.0167, 2.0996) d(sk, yk) ⩽ ϵ
5 (1.7809, 0, 1.8638) (2.0167, 0.2358, 2.0996) d(sk, yk) ⩽ ϵ

The last example is a multiobjective problem which is neither smooth nor
convex.

Example 7.5. Consider the following convexlike, nonsmooth problem:

min f1(x) = x1,

f2(x) =


− 3x+ 2 if x ⩽ 0.5,

2

9
(x− 2)2 if 0.5 < x ⩽ 2,

[x− 2] if 2 < x

s.t. g(x) = −x ⩽ 0.
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Table 3. Some details of Algorithm 2 for Example 7.5

k sk xk yk Cutting planes
0 (0, 0) 0.5000 (0.5000, 0.5000) (0.4000, 0.6000, 0.5110)
1 (0, 0.8333) 0.2917 (0.2917, 1.1250) (0.7500, 0.2500, 0.5000)
2 (1.2500, 0) 1.3453 (1.3453, 0.0953) (0.2254, 0.7746, 0.3770)
3 (0, 2.0000) 0 (0.0000, 2.0000) d(sk, yk) ⩽ ϵ
4 (0.5000, 0.5000) 0.5000 (0.5000, 0.5000) d(sk, yk) ⩽ ϵ
5 (1.6726, 0) 1.6935 ( 1.6935, 0.0209) d(sk, yk) ⩽ ϵ
6 (0.9226, 0.2182) 0.9496 (0.9496, 0.2452) d(sk, yk) ⩽ ϵ

Some computational data of Algorithm 2 with ϵ = 0.1 and p̂ = 107 is
reported in Table 3. Although the function f2(x) isn’t differetiable at the first
weakly efficient solution x0 = (0.5, 0.5), Algorithm 2 generates the separating
hyperplane at this iteration.

Summarizing information comparing the results of Algorithm 2 with various
values of ϵ is given in Table 4. The number of points of the set (vert Po) ∩
(p̂ − Rp

≧) (# Opt) and the number of cutting planes (# H) are shown in the

third and the fifth columns. The fourth column (# Out) shows the number of
points of the set (vert Po) \ (p̂− Rp

≧).

Table 4. Different values of ϵ for three examples

Example ϵ # Opt # Out # H ϵ0 Time(s)
7.3 0.1 5 0 2 0.0339 0.173559

0.01 11 0 5 0.0097 0.383144
0.001 41 0 20 6.8538e-04 1.449901

7.4 0.9 6 1 2 0.6663 0.387581
0.1 80 15 30 0.0995 5.206289
0.02 182 48 66 0.0496 21.267091

7.5 0.2 5 0 2 0.1347 0.114457
0.02 11 0 5 0.0101 0.334783
0.002 29 0 14 0.0019 0.969401
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