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Abstract. A topological space is called submaximal if each of its dense
subsets is open and is called nodec if each of its nowhere dense subsets
is closed. Here, we study a variety of spaces some of which have al-

ready been studied in C(X). Among them are, most importantly, quasi
P -spaces and pointwise quasi P -spaces. We obtain some new useful topo-
logical characterizations of quasi P -spaces and pointwise quasi P -spaces.
Consequently, we obtain a close relation between these latter spaces and

submaximal and nodec spaces.
Keywords: Quasi P -space, pointwise quasi P -space, submaximal space,
nodec space, I-space.
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1. Preliminaries and introduction

Throughout this paper every topological space is Tychonoff. We denote by
C(X) (resp. C∗(X)) the ring of all (resp. bounded) real valued continuous
functions on X. For a space X we denote by βX and υX the Stone-Cech
compactification and the Hewitt realcompactification of X, respectively.

A subset A of a space X is called C-embedded (resp. C∗-embedded) if every
g ∈ C(A) (resp. g ∈ C∗(A)) is continuously extendable to X.

For each f ∈ C(X) we use the notations Z(f) for f−1{0}, Coz(f) forX\Z(f),
and Z(X) for {Z(f) : f ∈ C(X)}. We call every element of Z(X) a zero-set,
and its complement a cozero-set in X. A subset A of X is said to be z-embedded
in X (or z-embedded if there is no ambiguity) if for every F ∈ Z(A), there exists
a zero-set Z ∈ Z(X) such that F = Z∩A. It is evident that every C∗-embedded
subset is z-embedded. Also, every cozero-set and every Lindelöf subspace is
z-embedded, see [24, 10.7].
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For a point p ∈ βX, we denote by Mp(X) (or Mp(X) when p ∈ X) the
maximal ideal containing all f ∈ C(X) with p ∈ clβXZ(f), and we denote
by Op(X) (or Op(X) when p ∈ X) the ideal containing all f ∈ C(X) with
p ∈ intβXclβXZ(f). We use the notations Mp and Op instead of Mp(X) and
Op(X) if no ambiguity arises. For every f ∈ C(X), the notation Mf (resp. Pf )
denotes the intersection of all maximal (resp. minimal prime) ideals containing
f . The notions Pf and Mf and their properties were first introduced in [6, 7]
and [8].

We call I a z-ideal (resp. z◦-ideal) if I contains Mf (resp. Pf ) whenever
f ∈ I.1 The notations and terminology are those of [12].

A Tychonoff space X is called a quasi P -space if each prime z-ideal of C(X)
is either minimal or maximal. Because of the importance of of z-ideals in
the study of C(X), the notion quasi P -space (and other notions relevant to it)
have been previously studied in the literature (see e.g., Problems 4M, 4G of [12],
without being given any specific name, and [2], under the title MZD-spaces).
In fact, the first extensive study on quasi P -spaces has appeared in [16]. In
2002, a topological characterization for quasi P -spaces was given by the third
author of this paper in [18]. As a result, one can immediately conclude that:
“a free union of quasi P -spaces is a quasi P -space”, which is an affirmative
answer to Question 9.5 of Henriksen et al. in [16]. The article [20] shows
that lattices, specially algebraic frames, are strong tools for studying z-ideals.
In [20, Theorem 4.5] the spaces X for which dimz(X) ≤ k are characterized,
by a different method. As a related special result, in [21], Mart́ınez obtained
an answer to [16, Question 9.5].

Submaximal spaces were introduced in Bourbaki [9] as the spaces in which
every subset is locally closed; i.e., every subset is open in its closure. Hewitt
in [13] calls a submaximal space without isolated points an MI-space. In [13]
it is demonstrated that in a submaximal space without isolated points every
nowhere dense subset is closed and discret. After [5] got published in 1995,
submaximal spaces have received plenty of attention in the general topologists’
community.

The following theorem about submaximal spaces can be easily checked, see
[5, Theorem 1.2]. Recall that for a subset A of X, the boundary and the set of
accumulation points of A are denoted by ∂A and A′, respectively.

Proposition 1.1. For a space X the following are equivalent:

(a) X is a submaximal space;
(b) every subset A of X with empty interior is closed;
(c) every subset A of X with empty interior is discrete;
(d) ∂A is discrete for every subset A of X;
(e) if A ⊆ X and intA = ∅, then A′ = ∅;

1Most authors use the notation d-ideal in place of z◦-ideal.
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(f) A′ = (intA)′ for every subset A of X.

A topological space X is called a nodec space if every nowhere dense sub-
set of X is closed or equivalently, if every nowhere dense closed subset of X
is discrete. Originally, nodec spaces appeared in van Douwen’s article [10],
where these spaces played a main role in the construction of countable regular
maximal spaces. Because of the strong connection between nodec spaces and
submaximal spaces (every submaximal space is nodec), they are addressed in
many studies on submaximal spaces.

A spaceX is called an I-space if each of its points has a deleted neighborhood
consisting entirely of isolated points of X. In [5], I-spaces are defined as those
spaces X in which the derived set X ′ is closed and discrete. Obviously, the two
definitions of an I-space are equivalent. Also, X is an I-space if and only if X
is a scattered space of CB(X) ≤ 2. Clearly, every I-space is submaximal.

We need the following definitions which were first introduced in [11, 16, 17,
19,23] and [7].

Definition 1.2. (a) For a point p ∈ βX, we say that p is a

(i) P -point (with respect to X) if Mp(X) = Op(X).
(ii) quasi P -point (with respect to X) if prime z-ideals in Mp(X) are min-

imal prime ideals or Mp(X) itself.
(iii) almost P -point (with respect toX) if every f ∈ Mp(X) is a zero divisor.
(iv) cozero complemented point (with respect to X) whenever prime z◦-

ideals contained in Mp(X) are minimal prime ideals.
(v) quasi cozero complemented point (with respect to X) whenever every

prime z◦-ideal contained in Mp(X) is minimal prime or maximal ideal.

(b) A Tychonoff space X is called a

(i) P -space (quasi P -space, almost P -space, cozero complemented space2

and quasi cozero complemented space, respectively) if every point of
βX is a P -point (quasi P -point, almost P -point, cozero complemented
point and quasi cozero complemented point, respectively) with respect
to X.

(ii) pointwise quasi P -space (pointwise cozero complemented space) if every
point of X is a quasi P -point (cozero complemented point) with respect
to X.

If there is no ambiguity, the phrase “with respect to X” may be omitted.
Also, for the sake of convenience, “quasi P -”, “almost P -” and “cozero com-
plemented” are referred to as “QP -”, “AP -” and “CC-”, respectively.

It is well-known that if X is a QP -space, then βX need not be a QP -space
(see [16]).

2 This concept was considered in [2] and [7] under the names “ MZ◦D” and “ M-space”,

respectively.
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The following proposition is an improved version of [4, Corollary 4.3].

Proposition 1.3. Let A be a neighborhood of p ∈ X. Then the prime z-ideals
(resp. z◦-ideals) of C(X) containing Op(X) are in a one-one correspondence
to prime z-ideals (resp. z◦-ideals) in C(A) containing Op(A).

Corollary 1.4. Let p be a point in X and A a neighborhood of p. The point
p is a P -point (AP -point, QP -point, CC-point, quasi CC-point, respectively)
with respect to X if and only if p is a P -point (AP -point, QP -point, CC-point,
quasi CC-point, respectively) with respect to A.

The following is [16, Lemma 2.4].

Lemma 1.5. Let X = D ∪ {a}, where D is an infinite P -space, and let a be
the unique non-P -point of X. Then,

(a) every prime z-ideal of C(X) properly contained in Ma is a minimal
prime ideal;

(b) every free maximal ideal of C(X) is a minimal prime ideal.

As a consequence, X is a QP -space.

The following lemma is well-known.

Lemma 1.6. Let P be a prime ideal in a reduced ring R. Then, P is a minimal
prime ideal if and only if (Ann(a), a) ⊈ P , for every a ∈ R.

Some of the results in this paper are close to some results in [16] and also
provide generalizations. Of course, the difference between them is mainly due
to the difference in the approaches; in this paper, it is mainly topological, unlike
in [16] which is mainly algebraic. We try to characterize quasi P -spaces only
by topological objects, such as the space βX (or X), zero-sets, cozero-sets and
closure or interior operators instead of algebraic objects, such as the ring C(X)
and its maximal and prime ideals.

This paper is organized in the following manner. Section 1 is devoted to the
introduction and preliminaries. Section 2 contains the main results of [18] and
some new ones and some improvements. Some properties of QP -points and a
number of necessary and sufficient conditions for a point to be a quasi P -point
will be presented in Section 3. At last, Section 4 is devoted to characterizing
QP -spaces and pointwise QP -spaces under natural conditions such as first
countability, pseudocompactness and countable compactness.

2. Topological characterization of QP -spaces

A variety of characterizations of QP -spaces and consequently answers to
some questions in [16] are derived in this section.

The following two results are counterparts of [7, Lemma 3.1] and [7, Theorem
3.2(ii)], respectively.
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Lemma 2.1. For every f ∈ C(X),∪
h∈Ann(f)

Mf2+h2 =
∑

h∈Ann(f)

Mf2+h2 ,

and consequently
∪

h∈Ann(f) Mf2+h2 is a z-ideal.

Proof. Obviously,
∪

h∈Ann(f) Mf2+h2 ⊆
∑

h∈Ann(f) Mf2+h2 . Now, Pick a g ∈∑
h∈Ann(f) Mf2+h2 . It is clear that, g =

∑n
i=1 gi, where gi ∈ Mf2+h2

i
and

hi ∈ Ann(f) for every i = 1, . . . , n. Clearly, h = h2
1 + h2

2 + · · ·+ h2
n ∈ Ann(f).

The inclusions Mf2+h2
i
⊆ Mf2+h2 imply that g ∈ Mf2+h2 . Thus,∑

h∈Ann(f)

Mf2+h2 ⊆
∪

h∈Ann(f)

Mf2+h2 .

Finally, since every Mf2+h2 is a z-ideal, it follows that
∑

h∈Ann(f) Mf2+h2 and

consequently
∪

h∈Ann(f) Mf2+h2 is a z-ideal too. □

Theorem 2.2. The point p ∈ βX is a QP -point if and only if for every
f, g ∈ Mp, there exist h ∈ Ann(f) and k /∈ Mp such that Mgk ⊆ Mf2+h2 .

Proof. (⇒) On the contrary, suppose that there exist f, g ∈ Mp such that
Mf2+h2 contains no Mgk for any h ∈ Ann(f) and k /∈ Mp. Set

S = {gnk : k /∈ Mp, n = 0, 1, 2, . . .} , I =
∪

h∈Ann(f)

Mf2+h2 .

Clearly, S is a multiplicatively closed set and I∩S = ∅. So, there exists a prime
z-ideal P ∈ Min(I) such that P ∩ S = ∅. Obviously, P ⊆ Mp, g ∈ Mp \ P and
(f,Ann(f)) ⊆ P . Therefore, P is a prime z-ideal contained in Mp which is
neither a minimal prime ideal nor a maximal ideal and this is a contradiction.

(⇐) Let P ⊆ Mp be a prime z-ideal which is not minimal prime. It is enough
to show that Mp ⊆ P . Assume that g ∈ Mp. Lemma 1.6 implies the existence
of an f ∈ C(X) with (f,Ann(f)) ⊆ P . By hypothesis, there exist h ∈ Ann(f)
and k /∈ Mp such that Mgk ⊆ Mf2+h2 . Since P is a z-ideal, clearly, it follows
that gk ∈ P . Now, P is prime and k /∈ P , so g ∈ P . □

The previous theorem gives a characterization of QP -spaces. Yet, it is far
from our goal. The given characterization is not topological enough. Moreover,
we are going to obtain a new definition of QP -spaces which depends only on
X, not on βX. As a necessary step for our purpose, we need to know more
about QP -points.

Proposition 2.3. The following statements are equivalent for every point p ∈
βX:

(a) p is a QP -point with respect to X;
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(b) If p ∈ clβX(Z1∩Z2), then there exist A,B ∈ Z(X) such that X\A ⊆ Z1,
p /∈ clβXB and (Z1\Z2)∩A ⊆ B (if p ∈ X, then clβX may be omitted);

(c) If p ∈ clβX(Z1 ∩Z2), then there exists A ∈ Z(X) such that X \A ⊆ Z1

and p /∈ clβX((Z1 \ Z2) ∩A) (if p ∈ X, then clβX may be omitted).

Proof. If we put B = Z(k) in Theorem 2.2, then the proof is evident. □

Theorem 2.4. A space X is a QP -space if and only if for every Z1, Z2 ∈
Z(X) there exist A,B ∈ Z[X] such that X \ A ⊆ Z1, Z1 ∩ Z2 ∩ B = ∅ and
(Z1 \ Z2) ∩A ⊆ B.

Proof. (⇒) If Z1 ∩ Z2 = ∅, the proof is complete by B = Z1. Otherwise, for
every p ∈ clβX(Z1 ∩ Z2), applying Proposition 2.3, there exist Ap, Bp ∈ Z[X]
such that X \Ap ⊆ Z1 and (Z1 \ Z2) ∩Ap ⊆ Bp. Let Vp = βX \ clβXBp; then
we have

clβX(Z1 ∩ Z2) ⊆
∪

p∈clβX(Z1∩Z2)

Vp.

By compactness, there is a finite collection {Vpi : i = 1, 2, . . . , n} such that
clβX(Z1 ∩Z2) ⊆

∪n
i=1 Vpi

= βX \
∩n

i=1 clβXBpi
. Now, if we put B =

∩n
i=1 Bpi

and A =
∩n

i=1 Api , then X \A ⊆ Z1, Z1 ∩ Z2 ∩B = ∅ and (Z1 \ Z2) ∩A ⊆ B.
(⇐) This is an immediate conclusion of Proposition 2.3(b). □

The following corollary gives a positive answer to [16, Question 9.5], which
is also answered in [21] in a differenty way.

Corollary 2.5. Every free union of QP -spaces is a QP -space.

Proof. Let {Xα}α∈I be a family of QP -spaces and X =
∪̇
Xα denote the free

union ofXα’s. Suppose that Z1, Z2 ∈ Z(X). Let Z1α = Z1∩Xα, Z2α = Z2∩Xα

for all α ∈ I. By Theorem 2.4, for every α ∈ I, there exist Aα, Bα ∈ Z(Xα)
such that Xα \ Aα ⊆ Z1α, Z1α ∩ Z2α ∩ Bα = ∅ and (Z1α \ Z2α) ∩ Aα ⊆ Bα.
If we put A =

∪
α∈I Aα and B =

∪
α∈I Bα, clearly, we have X \ A ⊆ Z1,

Z1 ∩ Z2 ∩ B = ∅ and (Z1 \ Z2) ∩ A ⊆ B. Now, by Theorem 2.4, X is a quasi
P -space. □

Corollary 2.6. For any space X, the following statements are equivalent:

(a) X is a QP -space.
(b) For every Z1, Z2 ∈ Z(X) there exists A ∈ Z(X) such that X \ A ⊆ Z1

and (Z1 \ Z2) ∩A ∈ Z(X).

Proof. (a)⇒(b) For given Z1, Z2 ∈ Z(X), by Theorem 2.4, there exist A,B ∈
Z(X) such that

X \A ⊆ Z1 , Z1 ∩B ⊆ X \ Z2 and (Z1 \ Z2) ∩A ⊆ B.

Therefore, (Z1 \ Z2) ∩A = Z1 ∩ (X \ Z2) ∩A ∩B = Z1 ∩A ∩B ∈ Z(X).
(b)⇒(a) This is obvious. □
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Corollary 2.7. For a z-embedded (C∗-embedded, cozero or Lindelöf) subspace
Y of X,

(a) if p ∈ Y is a QP -point in X, then it is a QP -point in Y ;
(b) Y is a pointwise QP -space if X is so;
(c) Y is a QP -space if X is so.

Proof. (a) Let p ∈ Z ′
1 ∩ Z ′

2 for Z ′
1, Z

′
2 ∈ Z(Y ). By hypothesis, there exist

Z1, Z2 ∈ Z(X) such that Z ′
1 = Z1 ∩ Y and Z ′

2 = Z2 ∩ Y . By Proposition 2.3,
there exist A,B ∈ Z(X) such that X \ A ⊆ Z1, p /∈ B and (Z1 \ Z2) ∩ A ⊆ B.
Obviously, if we take A′ = A ∩ Y and B′ = B ∩ Y , then we have Y \A′ ⊆ Z ′

1,
p /∈ B′ and (Z ′

1 \ Z ′
2) ∩A′ ⊆ B′. So, by Proposition 2.3, p is a QP -point in Y .

(b) This part is clear by (a).
(c) Let Z ′

1, Z
′
2 ∈ Z(Y ). By hypothesis, there exist Z1, Z2 ∈ Z(X) such that

Z ′
1 = Z1 ∩ Y and Z ′

2 = Z2 ∩ Y . By Corollary 2.6, there exists an A ∈ Z(X)
such that X \A ⊆ Z1, and (Z1 \Z2) ∩A ∈ Z(X). If we take A′ = A ∩ Y , then
Y \ A′ ⊆ Z ′

1 and (Z ′
1 \ Z ′

2) ∩ A′ ∈ Z(Y ). Therefore, by Corollary 2.6, Y is a
QP -space. □

3. QP -points and pointwise QP -spaces

A pointwise QP -space is the localization of a QP -space. In this section, we
study some properties of QP -points and pointwise QP -spaces.

Lemma 3.1. Let D ⊆ X be a countable discrete set consisting of non P -points.
Then there exists an f ∈ C(X) such that D ⊆ ∂Z(f).

Proof. Set D = {x1, x2, . . .}. Since D is discrete and each xi is not a P -point,
we can find a Zi ∈ Z(X) such that D ⊆ Zi and xi /∈ intZi. Put Z =

∩∞
i=1 Zi,

obviously, D ⊆ Z and xi /∈ intZ, for every i ∈ N. Therefore, D ⊆ ∂Z. □

Definition 3.2. If p ∈ βX has a deleted neighborhood (in βX) consisting
entirely of P -points, then we say p is a locally essential P -point or briefly an
LEP -point with respect to X. The space X is said to be a (pointwise) locally
essential P -space or briefly (a pointwise) an LEP -space if every (p ∈ X) p ∈ βX
is a locally essential P -point with respect to X. If there is no ambiguity, we
may omit the phrase “with respect to X”.

We call V ⊆ X an X-neighborhood of p ∈ βX if there exists an open neigh-
borhood W ⊆ βX of p such that W ∩X ⊆ V . One can easily see that p ∈ βX
is an LEP -point if and only if p has a deleted X-neighborhood entirely of
P -points. We recall that a space which contains at most one non-P -point is
called an essential P -space (see [1]). Obviously, every essential P -space is an
LEP -space and every LEP -space is a pointwise LEP -space.

Theorem 3.3. (a) If p ∈ υX is a limit point of a countable discrete set D of
non-P -points of X, then p is not a QP -point.
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(b) Let V be an X-neighborhood of p ∈ βX \ X consisting entirely of P -
points in X. Then p is a P -point, with respect to X (i.e., every LEP -point
p ∈ βX \X is a P -point).

Proof. (a) By Lemma 3.1, there exists a Z1 ∈ Z(X) such that D ⊆ ∂Z1. On
the other hand, if D = {x1, x2, . . .}, then for every xn ∈ D, we can find a
Zn ∈ Z(X) such that p ∈ clβXZn and xn ∈ X \ Zn. If we put Z2 =

∩
n∈N Zn,

then D ⊆ X \ Z2 and since p ∈ υX, evidently, we get

p ∈
∩
n∈N

clυXZn = clυX(
∩
n∈N

Zn) = clυXZ2.

Now, suppose that A ∈ Z(X) and X \ A ⊆ Z1. Obviously D ⊆ Z1 ∩ A. Thus,
D ⊆ (Z1 \ Z2) ∩ A and consequently p ∈ clβX((Z1 \ Z2) ∩ A). Hence, by
Proposition 2.3, p is not a QP -point.

(b) Suppose that Z1 ∈ Z(X) and p ∈ clβXZ1. Since V is an X-neighborhood
of p, there exists a Z2 ∈ Z(Op(X)) such that Z2 ⊆ V . Thus, Z1∩Z2 is a zero-set
in the P -space V and hence Z1 ∩ Z2 is open in V and consequently is open in
X. Therefore, Z1∩Z2 is clopen in X and hence clβX(Z1∩Z2) is clopen in βX.
Since p ∈ clβX(Z1 ∩ Z2) ⊆ clβXZ1, it follows that Z1 ∈ Z(Op(X)). Therefore,
Mp(X) = Op(X). In conclusion, p is a P -point with respect to X. □

It is easy to see that part (b) is not true for p ∈ X, even if p is the only
non-isolated point of X. For instance, take X = N∗ = N ∪ {p} to be the one
point compactification of N.

By the above theorem and Proposition 1.3, we immediately have the follow-
ing corollary.

Corollary 3.4. Every LEP -point is a QP -point and so every (pointwise)
LEP -space is a (pointwise) QP -space.

Example 3.5. Theorem 3.3(a), is not valid when p /∈ υX. To see this, let
N∗ = N∪{p} be the one point compactification of N and {N∗

m}m∈N be a family
of mutually disjoint copies of N∗. If we take X =

∪
m∈N N∗

m as the free union
of N∗

m’s, then A = {pm} is a countable discrete set of non-P -points and has a
limit point p ∈ βX \υX (X is countable, so υX = X), whereas p is a QP -point
by Corollary 2.5.

Example 3.6. The countable condition in part (a) of Theorem 3.3 is necessary.
For example, let X = W ∗ = {α : α is an ordinal ≤ ω1} where ω1 is the first
uncountable ordinal. Let A be the set of all limit ordinals less than ω1, then ω1

is the limit point of A \A′ that is an uncountable discrete set of non-P -points,
but we know that ω1 is a P -point. This example also shows that the set of
non-P -points of a space need not be closed, even if it is discrete.

Example 3.7. The converse of Corollary 3.4 does not hold. Let X be an
infinite countable maximal completely regular space which is nodec as well (as
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it is shown in [10, Example 3.3], this space exists). Such a space is a perfectly
normal submaximal space satisfying Theorem 3.15. Therefore, X is a QP -
space. But, since every point of that is a Gδ point, no point of X is a P -point.
Hence, X is not an LEP -space. This is also an example of a QP -space with
no P -points.

Example 3.8. Theorem 3.3 motivates to ask the following: Assuming that the
set of P -points is a dense subset ofX, isX aQP -space? The answer is negative,
because βN\N is a space with a dense set of P -points which is not a QP -space
(see [16, Proposition 2.7]). Also, the space W = {α : α is an ordinal < ω1} is
not a pointwise QP -space (since the point ω2

0 is the limit of a countable discrete
set of non-P -points), but every point in W is a Gδ-point and the set of isolated
points is a dense subset of W .

Part (c) of the following proposition generalizes [16, Lemma 2.4].

Proposition 3.9. (a) In a pointwise QP -space, every countable discrete
set of non-P -points is closed.

(b) The set of non-P -points of X is discrete if and only if X is a pointwise
LEP -space and in this case, X is a pointwise QP -space.

(c) If the set of non-P -points of X is finite, then X is an LEP -space and so
is a QP -space; in fact, X is a finite free union of essentially P -spaces.

Proof. This is easily checked by Theorem 3.3 and Corollary 3.4. □

Corollary 3.10. If x ∈ X is a QP -point and X has a countable basis at x,
then x is an LEP -point. Thus, a first countable space is pointwise QP -space
if and only if it is a pointwise LEP -space.

Proof. This immediately follows from parts (a) of Theorem 3.3 and Proposition
3.9. □

Recall that a point x in a space X is said to be of countable tightness if for
every A ⊆ X and x ∈ clA there exists a countable set B ⊆ A for which x ∈ clB.
A space is countably tight if it is of countable tightness at each of its points.
Example 3.7 shows that we cannot replace the first axiom of countability in
Corollary 3.10 by countable tightness.

Question 3.11. Does the converse of part (a) of Proposition 3.9 hold?
In other words, does the assumption that “every countable discrete set of non-
P -points of X is closed” imply that X is a pointwise QP -space?

At the end of this section, we consider some conditions which makes a point-
wiseQP -space into aQP -space. First, we need a definition and some assertions.

Definition 3.12. A space X is called an SZ-space, whenever for every Z ∈
Z(X) we have cl(X \ Z) ∈ Z(X).
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Obviously, every perfectly normal space is an SZ-space. But, the converse
is not true. For example, W is an SZ-space and not a perfectly normal space.

Lemma 3.13. A space X is an SZ-space if and only if for every Z ∈ Z(X)
there exists an A ∈ Z(X) such that X \A ⊆ Z and Z ∩A = ∂Z.

Proof. (⇒) For Z ∈ Z(X), take A = cl(X \ Z). Now we get X \ A ⊆ Z and
Z ∩A = Z ∩ cl(X \ Z) = ∂Z.
(⇐) Suppose that Z ∈ Z(X), then there exists anA ∈ Z(X) such thatX\A ⊆ Z
and Z ∩ A = ∂Z. Thus, we have A ∩ intZ = ∅ and so A ⊆ cl(X \ Z) ⊆ A.
Therefore, cl(X \ Z) = A ∈ Z(X). □

Lemma 3.14. If X is a pointwise QP -space and also is an SZ-space, then for
every Z1, Z2 ∈ Z(X) there exist A ∈ Z(X) and an open set V ⊆ X containing
Z1 ∩ Z2 such that X \A ⊆ Z1 and V ∩ Z1 ∩A ⊆ Z2.

Proof. Since X is a pointwise QP -space, by Proposition 2.3, for every x ∈
Z1 ∩ Z2, there exist Ax, Bx ∈ Z(X) such that X \ Ax ⊆ Z1, x /∈ Bx and
(Z1 \ Z2) ∩ Ax ⊆ Bx. This implies that for every x ∈ Z1 ∩ Z2, there exist a
cozero-set neighborhood Vx of x and an Ax ∈ Z(X) such that X \Ax ⊆ Z1 and

(3.1) Z1 ∩Ax ∩ Vx ⊆ Z2.

Since X is an SZ-space, by Lemma 3.13, there exists an A ∈ Z(X) such
that X \ A ⊆ Z1 and Z1 ∩ A = ∂Z1. Also, for every Ax we have ∂Z1 ⊆
Z1 ∩ Ax. Consequently, using (3.1), for every x ∈ Z1 ∩ Z2, we can write
Z1 ∩A∩Vx = ∂Z1 ∩Vx ⊆ Z1 ∩Ax ∩Vx ⊆ Z2. The proof is complete, by taking
V =

∪
x∈Z1∩Z2

Vx. □

Theorem 3.15. The following assertions hold.

(a) If X is a normal pointwise QP -space and is also an SZ-space, then X
is a QP -space.

(b) If X is a Lindelöf pointwise QP -space, then X is a QP -space.

Proof. (a) Since X is normal, for every Z1, Z2 ∈ Z(X) in Lemma 3.14, there
exists a cozero-set W such that Z1∩Z2 ⊆ W ⊆ V . Therefore, Z1∩A∩W ⊆ Z2

and consequently, by Theorem 2.4, X is a QP -space.
(b) Assume Z1, Z2 ∈ Z(X), analogous to part (a), for every x ∈ Z1 ∩ Z2,

there exist a cozero-set neighborhood Vx of x and an Ax ∈ Z(X) for which
X\Ax ⊆ Z1 and (1) holds. Clearly, Z1∩Z2 ⊆

∪
x∈Z1∩Z2

Vx. SinceX is Lindelöf
and Z1∩Z2 is a closed subset of X, there exists a countable subset D of Z1∩Z2

such that Z1 ∩ Z2 ⊆
∪

x∈D Vx. It is clear that if we take V =
∪

x∈D Vx and
A =

∩
x∈D Ax, then clearly, V is a cozero-set containing Z1∩Z2 and A ∈ Z(X).

It is obvious that X \ A ⊆ Z1 and by (1), Z1 ∩ Z2 ∩ V ⊆ Z2. Therefore, by
Theorem 2.4, X is a QP -space. □
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Example 3.8 shows that in the above theorem, the condition that X is a
pointwise QP -space cannot be omitted, even if X has a dense subset of P -
points.

Question 3.16. Is there an example of a space which is a non-normal SZ-space
and a pointwise QP -space but not a QP -space?

4. Further characterizations for nodec and submaximal spaces

In this section, we will characterize QP -spaces and pointwise QP -spaces
under some further conditions, such as being perfectly normal, first countable,
pseudocompact, countably compact and locally compact. Also, the strong
relation between QP , pointwise QP , submaximal and nodec spaces and their
similarities under some conditions will be shown.

Lemma 4.1. The following assertions hold.

(a) For a pseudocompact QP -space X, the set of non-isolated points is
finite and every P -point is isolated.

(b) For a countably compact pointwise QP -space X, the set of non-isolated
points is finite and every P -point is isolated.

Proof. (a) If the set of non-P -points of X is infinite, then it contains an infinite
countable discrete subset D. By Theorem 3.3, no limit point of D in βX = υX
is a QP -point, which is a contradiction. Hence, the set of non-P -points of X
is finite. To complete the proof, it is enough to show that every P -point is
isolated. To see this, assume that x ∈ X is a P -point in X. Thus, x has a
zero-set neighborhood Z consisting only of P -points. Since Z is clopen, so it is
C-embedded in X, which implies that it is a pseudocompact P -space. Hence,
Z must be finite; i.e., x is an isolated point.

(b) Let D be as in (a). Since X is a pointwise QP -space, it follows that
D is closed in X, which contradicts the countable compactness. Thus, the set
of non-P -points of X is finite. Hence, every P -point x ∈ X has a zero-set
neighborhood which is a countably compact P -space and consequently it is
finite. Therefore, x is an isolated point. □

Example 4.2. In part (a) of the preceding lemma we cannot replace QP -space
with pointwise QP -space. For instance, consider the space Ψ in [12, Problem
5.I] which is a pseudocompact pointwise QP -space (indeed, it is an I-space)
but the set of its non-isolated points is infinite. This also shows that the space
Ψ, as mentioned in [16], is a pointwise QP -space but not a QP -space.

The following theorem improves [16, Theorem 4.1].

Theorem 4.3. For a space X, the following statements are equivalent:

(a) X is a compact QP -space;
(b) X is a pseudocompact QP -space;
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(c) X is a countably compact QP -space;
(d) X is a countably compact pointwise QP -space;
(e) X is a finite topological union of a number of the one point compacti-

fication of discrete spaces.

Proof. (e) ⇒ (a) ⇒ (b) and (e) ⇒ (c) ⇒ (d) are clearly true.
(b) ⇒ (e) By Lemma 4.1, there exists a finite family of mutually disjoint

open sets {Vi}ni=1 such that X =
∪n

i=1 Vi and Vi has only one non-isolated
point σi. It is enough to show that for every σi, 1 ≤ i ≤ n, there is a local
base of neighborhoods consisting of cofinite subsets of Vi. To do so, let Gi be
an open neighborhood of σi. If Vi \ Gi is infinite, then Vi has a C-embedded
copy of N which contradicts the pseudocompactness of Vi.

(d) ⇒ (e) This is similar to (b) ⇒ (e). □

In the theory of C(X), most properties may be expressed in terms of zero-
sets. Thus, we present, inspired by Proposition 1.1, the following definition
which helps us find good connections between submaximal spaces and quasi
P -spaces.

Definition 4.4. (a) A point a ∈ X is a ∂Z-D (resp. Z-lol) point if for
every Z ∈ Z(X), whenever a ∈ ∂Z (resp. a ∈ Z ′), a is an isolated point
of ∂Z (resp. a ∈ (intZ)′);

(b) We say that X is a ∂Z-D-space (resp. Z-lol-space) if every x ∈ X is a
∂Z-D-point (resp. Z-lol-point);

Clearly, X is a ∂Z-D-space (resp. Z-lol-space) if and only if ∂Z is discrete
(resp. (intZ)′ = Z ′) for every Z ∈ Z(X).

It is easy to see that for every open subset U of X and every point x ∈ U ,
x is a ∂Z-D-point (resp. Z-lol-point) in X if and only if it is a ∂Z-D-point
(resp. Z-lol-point) in U .

Lemma 4.5. Consider a family {Xλ}λ∈Λ of mutually disjoint non-void spaces.
For every λ ∈ Λ, pick a point xλ ∈ Xλ. Suppose that X is the quotient space
of the disjoint union of Xλ’s by identifying xλ’s as a point σ.

(a) The point σ is a ∂Z-D-point in X if and only if for every λ ∈ Λ, σ is
a ∂Z-D-point in Xλ.

(b) If σ is a Z-lol-point in X, then it is a Z-lol-point in Xλ0 for some
λ0 ∈ Λ. Conversely, assume that σ is a Z-lol-point and not a Gδ-point
in Xλ0 for some λ0 ∈ Λ, then σ is a Z-lol-point in X.

Proof. The proof is easy and follows from the definitions. □

Note that, in part (b) of the above lemma, if σ is a Z-lol-point in Xλ0

for some λ0 ∈ Λ, then σ need not be a Z-lol-point in X. For instance, let
N∗ = N ∪ {x1} be the one point compactification of N and Σ = N ∪ {x2} be
the space which is introduced in [12, 4M]. Now, put Λ = {1, 2}, X1 = N∗ and
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X2 = Σ. Suppose that X is the space induced by X1 and X2 as in Lemma 4.5.
One can easily see that σ is a Z-lol-point in X2 while it is not a Z-lol-point in
X.

Before proceeding further, it is worth making clear the relation between the
above notions and submaximal (nodec) spaces. Obviously, every submaximal
(nodec) space is a ∂Z-D-space and every ∂Z-D-space is a Z-lol-space. As the
following examples show, the converse of these implications is not valid.

Example 4.6. Let λ be an ordinal and

Yλ = {α < λ : α is a non-limit ordinal} ∪ {λ}.
Paste to every x ∈ Yλ\{λ} a copy of Yλ at the end point λ. Denote the resulted
quotient space by Xλ. For more information about such a topological structure
see [3]. Clearly, if we take λ = ω1 (i.e., the first uncountable ordinal), then Xλ

is a ∂Z-D-space which is not submaximal.

Example 4.7. Let Xλ be the space introduced in Example 4.6. Suppose that
X is the quotient space of the disjoint union of Xω1 and Xω by identifying
{ω, ω1} to a point. By Lemma 4.5, X is a Z-lol-space which is not a ∂Z-D-
space.

Below, we give some relations between some foregoing concepts.

Proposition 4.8. In every basically disconnected space X, the two concepts
of ∂Z-D-space and Z-lol-space are equivalent.

Proof. Let X be a basically disconnected Z-lol-space and x ∈ ∂Z where Z ∈
Z[X]. Since intZ is closed, we have x /∈ (intZ)′. Therefore, x /∈ Z ′ and it is an
isolated point of ∂Z. The converse is true, in general. □
Proposition 4.9. Every point of a Z-lol-space (consequently, a submaximal
space) X is either a Gδ-point or an AP -point.

Proof. Suppose that x ∈ X is not a Gδ-point and x ∈ Z ∈ Z(X). Hence,
x ∈ Z ′ and since X is a Z-lol space, it follows that Z◦ ̸= ∅. Therefore, x is an
AP -point. □

It is obvious that every QP -point is a quasi CC-point. Now, if p ∈ βX is not
an AP -point (i.e., Mp(X) is not a z◦-ideal), then the notions quasi CC-point
and CC-point are equivalent. Hence, we obtain the following two results.

Lemma 4.10. Let X be a pointwise QP -space, then every point of X is either
an AP -point or a CC-point.

Obviously, Proposition 4.9 and Lemma 4.10 are also true for submaximal
spaces, nodec spaces and ∂Z-D-spaces.

Proposition 4.11. Assume that X is a pointwise QP -space and every x ∈ X
is a Gδ-point. Then X is a pointwise CC-space.
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Proof. Since every point is a zero-set, every AP -point is isolated and so is a
CC-point. Thus, by Lemma 4.10, every element of the space is a CC-point. □

Theorem 4.12. Every ∂Z-D-point p ∈ X is a QP -point. The converse is true
when p is a Gδ-point of X.

Proof. Let p be a ∂Z-D-point of X. If p ∈ intZ(f), then there exists an
h ∈ Ann(f) such that p ∈ Coz(h) ⊆ intZ(f). Thus, A = B = Z(h) satisfies the
part (b) of Proposition 2.3. Otherwise, p ∈ ∂Z(f) and by assumption, there
exists a k ∈ C(X) such that Coz(k) ∩ ∂Z(f) ⊆ {p}. Define h ∈ Ann(f) by
h(x) = g(x)k(x) where x ∈ intZ(f), and h(x) = 0 where x /∈ intZ(f). We can
see that h is a continuous function and

[Z(h) ∩ Z(f) ∩ Coz(g)] ∩ Coz(k) = [Z(h) ∩ ∂Z(f) ∩ Coz(g) ∩ Coz(k)] ∪ [Z(h) ∩
intZ(f) ∩ Coz(g) ∩ Coz(k)] = ∅ ∪ [Z(gk) ∩ Coz(gk)] = ∅.

Therefore, A = Z(h) and B = Z(k) satisfy Proposition 2.3.
Conversely, let p be a Gδ-point and also a QP -point of X and p ∈ ∂Z(f)

for some f ∈ C(X). Then {p} is a zero-set in X, namely Z(g) and hence, by
Proposition 2.3, there ex ist h ∈ Ann(f) and k ∈ C(X) such that p ∈ Coz(k)
and Z(h) ∩ Z(f) ∩ Coz(g) ∩ Coz(k) = ∅. Therefore, ∂Z(f) ∩ Coz(k) = {p} and
p is an isolated point in ∂Z(f). □

Corollary 4.13. Every ∂Z-D-space X is a pointwise QP -space. The converse
is true when every point of X is a Gδ-point. Therefore, if every point of X is
a Gδ-point, then X is a ∂Z-D-space if and only if X is a pointwise QP -space.

Corollary 4.14. The following statements hold.

(a) Any nodec (consequently, submaximal) space is a pointwise QP -space.
(b) In a nodec (consequently, submaximal) space, any countable discrete

subset of non-P -points is a closed set.

So, the following question may arise:

Question 4.15. Suppose that every point ofX is a Gδ-point. Are the concepts
of pointwise QP -space and nodec space equivalent?

Suppose that x ∈ Rn and A = {y ∈ Rn : x1 ≤ y1}. Clearly, x is a
Gδ-point, A ∈ Z(X) and x ∈ ∂A. Since x is not an isolated point in ∂A, by
Theorem 4.12, it is not a QP -point. Thus, Rn has no QP -points, whereas Rn is
a perfectly normal CC-space. This fact shows that although every QP -space is
a quasi CC-space, the quasi CC-space is so far from even pointwise QP -space.
This also shows that the condition of pointwise QP -space in Theorem 3.15 is
necessary. In addition, it is good to mention that Theorem 4.12 is not satisfied
by a Z-lol-point or even by a Z-lol-space. For example, consider the Z-lol
space in Example 4.7 and let σ be the juncture point. Then σ is a Z-lol-point
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and a limit point of a countable discrete set of non-P -points, so it cannot be a
QP -point.

However, the following result can be asserted:

Lemma 4.16. Let X be a Z-lol-space (∂Z-D-space, nodec space). If I is any
non-maximal z-ideal in C(X) which contains Ox for some x ∈ X, then every
element of I is a zero divisor.

Proof. Suppose that for some f ∈ I, intZ(f) = ∅. Since X is a Z-lol-space,
Z(f) is discrete. Therefore, there exists g ∈ Ox such that Z(g) ∩ Z(f) = {x}.
Since I contains f and g, it follows that {x} ∈ Z(I) and hence I = Mx, which
is a contradiction. □

Proposition 4.17. If X is a Z-lol- and a CC-space, then X is a pointwise
QP -space.

Proof. Let P be a prime non-maximal z-ideal in Mx. By Lemma 4.16, every
element of P is a zero divisor. Since X is a CC-space, by [17, Theorem 1.3] P
is a minimal prime ideal. □

If X is scattered, then the concepts of I-space, submaximal and nodec space
are equivalent. Also, by the foregoing discussions, every nodec space is a ∂Z-
D-space and every ∂Z-D-space is a pointwise QP -space. The spaces X and Y ,
in the following example, respectively, show that the converse is not true, even
if X is scattered.

Example 4.18. (a) Let Yω1 be the space defined in Example 4.6 (for λ =
ω1). Paste a copy of Yω1 at the point ω1 to each isolated point of N∗

and denote the resulted quotient space by X. The space X has the
following properties:
(i) X is scattered and it is not an I-space. Hence, it is neither sub-

maximal nor nodec.
(ii) X is a ∂Z-D-space.

(b) Paste a copy of N∗ at the point ω0 to each isolated point of Yω1 to
obtain the space Y . The space Y has the following properties:
(i) ω1 is a QP -point in Y , but it is neither a Gδ-point nor an LEP -

point.
(ii) Y is scattered.
(iii) Y is a Lindelöf pointwise QP -space and hence it is a QP -space.
(iv) Y is not a ∂Z-D-space (consider the zero-set Yω1).

Proposition 4.19. Let X be a perfectly normal space, then the following state-
ments are equivalent:

(a) X is a QP -space;
(b) X is a pointwise QP -space;
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(c) X is a ∂Z-D-space;
(d) X is a Z-lol-space;
(e) X is a nodec space.

Proof. The implications (a)⇒(b), (c)⇒(d) and (e)⇒(b) are clear.
(b)⇒(c) Every {x} is a zero-set in X and so x is a Gδ-point. This then

follows from Corollary 4.13.

(d)⇒(e) Let A ⊆ X and A
◦

= ∅. Since A is a zero-set andX is a Z-lol-space,

we have ∅ = (A
◦

)′ = (A)′ = A′. Therefore, A is a closed set.
(b) ⇒(a) Since every perfectly normal space is an SZ-space, by Theorem

3.15, the proof is clear. □
Since every countable space is perfectly normal, the following corollary is an

immediate consequence of the above theorem.

Corollary 4.20. Every countable nodec (consequently, submaximal) space X
is a QP -space.

Theorem 4.21. (a) If X is countably compact, then the following state-
ments are equivalent:
(i) X is a finite disjoint union of one point compactification of some

discrete spaces;
(ii) X is an I-space (equivalently, X is scattered of CB(X) ≤ 2);
(iii) X is submaximal;
(iv) X is a nodec space;
(v) X is a ∂Z-D-space;
(vi) X is a pointwise QP -space;
(vii) X is a QP -space.

(b) If X is also a CC-space, then the above statements are equivalent to:
(viii) X is a Z-lol-space.

(c) If X is a perfectly normal pseudocompact space, then all the above
statements are equivalent.

Proof. (a) The implications (i) ⇒ (ii) ⇒ (iii) ⇒ (iv) ⇒ (v) ⇒ (vi) and (i) ⇒
(vii) ⇒ (vi) are obtained easily by Proposition 1.1, Theorem 4.3 and Corollary
4.13. Also, the implication (vi) ⇒(i) is deduced from Theorem 4.3.

(b) The implication (v) ⇒ (viii) is obvious. Since X is a CC-space, then
the converse follows from the part (a) and Proposition 4.17.

(c) We know every pseudocompact normal space is a countably compact
space. Therefore, by the part (a) and Proposition 4.19 we are done. □
Corollary 4.22. Every normal pseudocompact pointwise QP -space is a QP -
space.

Theorem 4.23. If X is either a first countable, or a locally compact space,
then the following statements are equivalent:
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(a) X is an I-space;
(b) X is submaximal;
(c) X is a pointwise QP -space.

Proof. The implications (a)⇒ (b) ⇒ (c) are evident.
(c) ⇒ (a) At first, suppose that X is first countable. By Corollary 3.10, X

is a pointwise LEP -space. Note that every Gδ-P -point is an isolated point, so
every x ∈ X has a deleted neighborhood entirely of isolated points. In the case
of locally compact, the proof is easy using the fact that every compact subspace
of X is C∗-embedded and applying Corollary 2.7 and Theorem 4.21. □

Corollary 4.24. If X is a normal locally compact pointwise QP -space, then
it is a QP -space.

Proof. This is a conclusion of the above theorem and [16, Theorem 4.3]. □
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