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ABSTRACT. We derive a formula for the maximum number of edges
in a strongly multiplicative graph as a function of its order.

Recently, L.W. Beineke and S.M. Hegde [3] introduced the notion of
a strongly multiplicative graph.

Definition (Beineke, Hegde [3]). A graph with n vertices is said to be
strongly multiplicative if its vertices can be labeled 1,2, ...,n, so that the
values on the edges, obtained as the product of labels of the end vertices,
all are distinct.

An interesting problem is to obtain a formula for the maximum num-
ber of edges A(n) for a strongly multiplicative graph of order n. In [3],
Beineke and Hegde gave an upper bound for A(n). In [2], C. Adiga et
al. obtained a sharper upper bound for A(n). Then in [1], Adiga et al.
established a formula for A(n) in terms of the divisor function. We quote
their result now.
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Theorem (Adiga et al. [1]).

where

g(k) = min{1, f(k)},

ey it 1<k<n,
f(k) =19 ‘b -
[S2] —dn(k) if n<k<n(n-1)
and where d(k) denotes the number of distinct divisors of k, [x] denotes
the largest integer less than or equal to z, and d,, (k) denotes the number

of divisors of k greater than n.

In this note we derive the following formula for A(n).

Theorem.
-1 K& 0(m, k)
M) === +m:2 ;[_ [Vmk —1] — k + i
where
[Vmk—1] [m_k:]
O(m.k)= Y [
s=k+1 S

Proof. Let §(n) = A(n) — A(n — 1). Then

An) =Y 6(m). (2.1)

Thus, in view of (2.1) it is enough to obtain a formula for §(m). Con-
sider the array of products
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1.2 1.3 1.4 1.(n—1) 1.n
23 24 2.(n—1) 2.m

3.4 3.(n—1) 3.m
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(n—1).n.
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Let A; denote the set of all elements of the k" row. We count the
number of terms in the last column which appear in other rows. If k.n
is divisible by s (k < s — 1), then there exists an m < n such that
k.n = s.m, and hence k.n repeats in the s row, i.e. kn € A;. Ob-
serve that k.n may belong to A,, where s is the largest integer such that
k+1 < s < Vkn. Thus the number of repetition of k.n in these rows is

[Vkn—1] [M]
On.k)= > [
s=k+1 s

By the definition of 0(n, k), it is clear that

0<0(n,k)<[Vkn—-1]—k+1.
Thus
Vkn—1
f(n, k) = ~1 if kne J A4,
[Vnk—1]—k+1 s=k+1
0

otherwise.

L_

This implies that

5(n) = (n — 1) +n§[— b(n, k)
— [Vnk—-1]-k+1

On using (2.2) in (2.1), we complete the proof.

]. (2.2)
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