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ABSTRACT. A module M is lifting if and only if M is amply supple-
mented and every coclosed submodule of M is a direct summand. In
this paper, we are interested in a generalization of lifting modules by re-
moving the condition ”amply supplemented” and just focus on modules
such that every non-cosingular submodule of them is a summand. We call
these modules NS. We investigate some general properties of NS-modules.
Several examples are provided to separate different concepts. It is shown
that every non-cosingular NS-module is a direct sum of indecomposable
modules. We also discuss on finite direct sums of NS-modules.
Keywords: Non-cosingular submodule, amply supplemented module,
NS-module.
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1. Introduction

Throughout this paper R will denote an arbitrary associative ring with iden-
tity and all modules will be unitary right R-modules. A submodule N of a
module M is denoted by N < M. The notation N <g M, means that N is
a direct summand of M. Let M be a module and N a submodule of M. N
is called a small submodule of M (denoted by N <« M) if for any X < M,
M = N + X implies X = M. The module M is called hollow if every proper
submodule is small in M. Let M be a module and N, K < M. We say that
K is a (weak) supplement of N in M, provided (NNK <« M) NNK <« K
and M = N + K. M is called supplemented (weakly supplemented) if every
submodule of M has a supplement (weak supplement) in M. Following [7], M
is called @-supplemented if every submodule N of M has a supplement K that
is a direct summand of M (in this case we call K an @-supplement of N). As
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a generalization of supplemented modules, a module M is called amply supple-
mented if M = A+ B for submodules A, B < M, then B contains a supplement
of Ain M. A module M is called H-supplemented if, given any submodule A
of M, there exists a direct summand D of M such that M = A + X holds if
and only if M = D 4+ X. Equivalently, the module M is H-supplemented if
for every submodule IV of M there exists a direct summand D of M such that
(N+D)/N <« M/N and (N + D)/D < M/D (see [0]).

A module M is called small if there exist modules L < K such that M =
L < K. For a module M let Z(M) = Rej(M,S) = ({Kerf | f: M —
UU €S} =({K C M| M/K €S} where S denotes the class of all small
modules. If Z(M) = 0 (Z(M) = M), then M is called a cosingular (non-
cosingular) module (see [11]). In [11], Z"(M) is defined by ZO(M) =M,
7N M) = Z(Z°(M)) and Z°(M) = Ny Z° (M) if « is a limit ordinal.
Hence there is a descending chain M = 7O(M) D> Z(M) D 72(M) D... of
submodules of M.

It is obvious that every small module is cosingular but in general the converse
is not true (see [11, Remark 2.11(2)]). It is also clear that a module M is non-
cosingular if and only if every nonzero factor module of M is non-small. Let
M be a module and K < N < M. If NJK <« M/K , then K is called

a coessential submodule of N (denoted by K EN ) in M and N is called
coessential extegésion of K in M. A submodule N of M is called coclosed
(denoted by N — M) if N has no proper coessential submodule. K is called a

coclosure of N in M, if K E Nand K 5 M. Any module M is lifting if every

submodule N of M contains a direct summand K of M such that K <5 N.

Lifting modules and their generalizations have been studied extensively (see
for example [4-6,8,10]). A module M is lifting if and only if M is amply
supplemented and every coclosed submodule of M is a direct summand. If
we delete the assumption ” M is amply supplemented” and restrict coclosed
submodules to non-cosingular submodules, we can have a new generalization
of lifting modules.

In this paper we define and study modules whose non-cosingular submodules
are direct summand. We call these modules NS. In Section 2, we investigate
general properties of NS-modules and their relation with other types of mod-
ules. We show that the class of NS-modules contains properly the class of lift-
ing modules and H-supplemented modules (see Example 2.9). We show that a
non-cosingular NS-module can be expressed as a direct sum of indecomposable
modules (see Theorem 2.13).

In Section 3, we deal with (finite) direct sums of NS-modules. Let M has
(D*) and *-property. Let M = M; & ... d M, be a finite sum of relatively
projective modules. Then M is NS if and only if each M; is NS fori=1,...,n
(see Theorem 3.10).
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2. NS-modules

Let R be a ring and M a right R-module. Then every non-cosingular sub-
module of M need not be a direct summand of M. For example, let K be a
field and R = Hz1 K; where K; = K for all i. Then R is a von Nuemann
regular ring and by [13, 23.5(2)] and [l1, Corollary 2.6], every R-module is
non-cosingular. Let L = @;, K;. Then it is not hard to check that, L is not
a direct summand of R while L is non-cosingular (In fact, for every nonzero
submodule K of R, we have L N K # 0).

The above example leads us to study and investigate modules with every
non-cosingular submodule is a summand (we call these modules NS). This
new concept generalizes the definition of lifting modules. Obviously, every
module with no nonzero non-cosingular submodules is NS (for example, a
(small) cosingular module).

We first provide some examples of N.S-modules. Before that we need the
definition of a V-ring. Let R be a ring. Recall that R is a V-ring (cosemisimple
ring), if every simple R-module is injective. It is well-known that R is a V-ring
(cosemisimple) if and only if for every R-module M, Rad(M) = 0 (see [13,
23.1]).

Example 2.1. (1) Let R be a commutative domain which is not a field. It is
well-known from [3, Theorem 2] that Rp is a small module. So Ry is NS.

(2) Let R be aright V-ring. Then NS right R-modules are precisely semisim-
ple right R-modules. It follows from the fact that over a right V-ring, every
right R-module is non-cosingular (see [11, Corollary 2.6]).

(3) Since every non-cosingular simple submodule of a module M is a direct
summand, then if every non-cosingular submodule of M is simple, M is NS.

Following [10], the module M is said to have C*-condition, if for every
submodule N of M there exists a direct summand K of M such that K < N
and N/K is cosingular.

Remark 2.2. Let R be a ring. Then every right R-module is NS if and only
if every non-cosingular right R-module is injective. To prove the assertion, let
every right R-module be N.S and M a non-cosingular right R-module. Suppose
that M is contained in a right R-module N. Since N is NS, then M is a direct
summand of N. So, M is injective. For the converse, let M be an arbitrary
right R-module and K a non-cosingular submodule of M. Then, by assumption
K is injective and hence a direct summand of M.

The following introduces rings R for which every R-module is N.S.

Example 2.3. (1) Let R be a right Harada ring. By [2, 28.10], every right
R-module is a direct sum of an injective right R-module and a small right R-
module. It follows that every non-cosingular right R-module is injective. Now
by Remark 2.2, every right R-module is N S.



Modules for which every non-cosingular submodule is a summand 914

(2) Let R be a ring such that every right R-module has C*. Then by [10,
Theorem 2.9], every right R-module is a direct sum of an injective right R-
module and a cosingular right R-module. It follows from Remark 2.2 that
every right R-module is N S.

(3) Let R be a Dedekind domain which is not a field. By [8, Lemma 4.12],
every non-cosingular R-module is injective. Hence every R-module is NS by
Remark 2.2.

Example 2.4. (1) Let M be a module such that Z(M) is a semisimple direct
summand of M. Then clearly, M is NS.

(2) Let R be a semilocal ring (i.e. R/J(R) is semisimple) such that Soc(rR) =
Soc(RRr). Let P be a projective right R-module. By [12, Corollary 2.7],
Z(P) = Soc(P) is semisimple. If Z(P) is a direct summand of P, then P is NS
by (1). For example, let K be a field and R = K x K[[z]]. Then J(R) = 0x (z).
It follows that R/J(R) & K x (K][[z]]/(x)) is semisimple. Hence R is a com-
mutative semilocal ring with Z(R) = Soc(R) = K x 0. Clearly Z(R) is a direct
summand of R. Therefore, R as a module is NS by (1).

Example 2.5. An NS-module need not be cosingular. Consider Z-modules
M = Z(p>) and T = Q/Z. Then, M and N are NS by Example 2.3(3). In
fact, they are non-cosingular.

Proposition 2.6. Let M be an R-module. Then the following are equivalent:
(1) M is NS;
(2) For every non-cosingular submodule N of M, there is a decomposition
M = My ® Ms, such that My < N and N N My < My;
(3) For every non-cosingular submodule N of M, there is a direct summand

K of M such that K <5 N';
(4) Every non-cosingular submodule N of M can be written as N = A® S
where A <g M and S < M.

Proof. 1t is straightforward. 0

Let M be a module, a submodule N of M is called fully invariant if for
every h € Endg(M), h(N) C N. The module M is called duo module, if every
submodule of M is fully invariant.

Some examples of duo modules are presented in [9]. We bring here examples
of a non-duo module and a duo module.

Example 2.7. (1) The Z-module Q is not a duo module. In fact, the sub-
module Z of Q is not fully invariant. Consider Z-homomorphism f : Q — Q
defined by f(x) = %, for all x € Q. It is clear that f(Z) € Z.

(2) Let K be a field and let V' be a two-dimensional vector space over K. Let
the ring R be the trivial extension of V' by K. Thus R is the K-vector space
K @V and multiplication is defined in R as follows: (a,u)(b,v) = (ab, av + bu)
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for all a,b € K and u, v in V. The R-module R is a duo module (see [9, P.
535)).

Proposition 2.8. For a module M consider the following conditions:

(1) M is lifting;

(2) M is H-supplemented;

(3) M is ®-supplemented;

(4) M is C*;

(5) M is NS.

Then (1) = (2) = (3), (1) = (4) = (5), (2) = (5) and if M is a duo-
module, then (3) = (5). Moreover, if M is non-cosingular amply supplemented,
then they are equivalent.

Proof. (1) = (2) = (3) It is easy by definitions.

(1) = (4) It follows from [10, Proposition 2.3].

(4) = (5) Let N < M be a non-cosingular submodule. By assumption, N
contains a direct summand K of M such that N/K is cosingular. Since N is
non-cosingular, N/K is non-cosingular. Hence N = K is a direct summand of
M. So M is NS.

(2) = (5) Let X < M be non-cosingular. By assumption there exists a direct

summand D of M such that X <5 (X+ D) and D & (X 4+ D). Since X is
non-cosingular, then (X + D)/D is non-cosingular. Hence (X + D)/D is both
non-cosingular and cosingular. Therefore, we get X < D and consequently

X & D. Set M = D®D'. Then D/X is a direct summand of M /X, however
it is a small submodule of M/X. Then we have D = X. This implies that M
is NS.

(3) = (5) Let K < M be non-cosingular. There is N <g M such that M =
N+K and NNK < N. Since M is ®-supplemented, it is weakly supplemented
and NN K <« K. Since M is a duo module, we get N = (NNK) @ (NNK').
Accordingly, we have N = NN K’ and N C K'. Tt follows that M = N ¢ K,
and we conclude that K <q M and M is NS.

(5) = (1) Let X be a coclosed submodule of M. Then by [I1, Lemma
2.3(3)], X is non-cosingular. So every coclosed submodule of M is a direct
summand. Hence by [7, Proposition 4.8], M is lifting. |

The following example will show that NS-modules are proper generalizations
of small modules, lifting modules and H-supplemented modules.

Example 2.9. (1) Let M = Z(p>°) ®Z/Zq as an Z-module, where p and q are
primes. Then M is NS by Example 2.3(3). Note that M is neither lifting nor
small.

(2) Let M; be an H-supplemented module with a finite composition series
0= XO é X1 S S Xm = M. Let MQ = Xm/Xm—l @@Xl/XO
By [6, Proposition 4.3], M = M; & M, is H-supplemented. Then it is NS. But
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M is not lifting in general. In particular, M @& (U/V) is an NS-module but it
is not lifting. (see [4, Corollary 2]).

(3) Consider the Z-module Z. Since Z is indecomposable, it is not H-
supplemented by [6, Proiposition 2.9]. But Z is NS by Example 2.3(3).

Using [8, Remark 4.20], there exists a (an) non-cosingular (injective) Z-module
M such that M is not C*. So NS-modules are the proper generalization of
C*-modules.
It is not hard to check that every non-cosingular H-supplemented module is
c*.

So using the above results we have the following implications:

Lifting —> H — supplemented
I I
C* — condition — NS

Remark 2.10. (1) Let M be an NS-module such that every submodule N of
M with Z(N) # N is small in M. Then M is lifting.

(2) Let M be an NS-module such that every submodule of M has a coclosure.
Then every non-cosingular submodule of M is lifting.

(3) Let M be an H-supplemented module such that every submodule of M
has a coclosure. Then every non-cosingular submodule of M is lifting.

Proposition 2.11. Let M be an NS-module such that Z(M) has a coclosure
in M. Then M = Z°(M)@® M’ with Z (M) and M’ are NS and Z(M') < M.

Proof. Since Z(M) has a coclosure in M, using [1 1, Corollary 3.4], Vi (M) is
non-cosingular in M. Hence there exists a direct summand M’ of M such

that M = Z (M) @ M’ with Z°(M) and M’ are NS. By [11, Corollary 3.4],

Vi (M) is unique coclosure of Z(M). So we get ZQ(M) & Z(M). We also have
Z(M) =Z*(M) & Z(M"). This implies that Z(M') < M". O

Corollary 2.12. Let M be an amply supplemented NS-module. Then M =
72(M) & M’ with 72(M) and M' are amply supplemented NS and Z(M') <

M.

Let X =) ,c4 X be a direct sum of submodules X (A € A) of a module
M. Then X is called a local summand of M if ), X is a direct summand
of M for each finite subset I of A. If X = 3, , X is a summand of M, we
say that local summand is a direct summand (see [7, Definition 2.15]).

Theorem 2.13. Every non-cosingular NS module is a direct sum of indecom-
posable modules. If Moreover, M is supplemented, then M can be expressed as
a direct sum of hollow modules.

Proof. Let M be a non-cosingular NS module and X = > X; a local summand
of M. Since each X; is a direct summand of M, and X; = Z(X;) < Z(X), then
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X < Z(X). So X is non-cosingular. It follows that X <4 M. Hence every
local summand is summand. Therefore by [7, Theorem 2.17] , M is a direct
sum of indecomposable modules. The last statements follows from the fact that
every NS non-cosingular supplemented indecomposable module is hollow. [

Recall that an epimorphism f : P — M of R-modules is a (projective)
small cover of M, if (P is projective and) Kerf < P. A ring R is perfect
(semiperfect) if every R-module (finitely generated R-module) has a projective
cover (see [13]).

Proposition 2.14. If R is a right perfect (semiperfect) ring, then every (finitely
generated) projective right R-module is NS.

Proof. Let R be a right perfect ring and M a projective R-module. Let A
be a non-cosingular submodule of M. Consider the canonical epimorphism
w: M — M/A. Since M/A has a projective cover, using [l, Lemma 17.17],
there exists a decomposition M = P; @ P, such that P, C Kerp = A and
(¢ |p): PL = M/A — 0 a projective cover. Hence, we get A =P, & (AN Py)
where A N Py is both cosingular and non-cosingular. Therefore A = P, is a
direct summand of M. |

The converse of Proposition 2.14 does not hold. Consider the ring of integers
R = 7. Then every (projective) R-module is NS by Example 2.3(3). However,
R is not perfect (semiperfect) (note that R/J(R) = R is not semisimple).

A ring R is a right max ring, if every nonzero right R-module M has at least
one maximal submodule.

Proposition 2.15. Let R be a ring such that every right NS-module is semisim-
ple. Then R is a right mazx ring.

Proof. Since every small R-module is an NS-module, so by hypothesis every
small R-module is semisimple. Since for a module M, Rad(M) is the sum of all
small submodules of M (see [1, Proposition 9.13]), so Rad(M) is a semisimple
submodule of M. In contrary, let M be a nonzero right R-module with no
maximal submodule. Hence, Rad(M) = M. It follows that M is semisimple.
This yields M = Rad(M) = 0, that contradicts M # 0. Therefore, for every
nonzero module M, we have Rad(M) # M. Consequently, R is a right max
ring,. |

As an example of above proposition, we can focus on V-rings. Because, over
a V-ring, NS-modules are precisely the semisimple ones. It is clear that a
V-ring is a max ring.

Proposition 2.16. Let M and N be two modules. Then
(1) The module M is NS if and only if for every f : M — N with Kerf
non-cosingular, Imf is NS.
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(2) If M is NS, then for every nonzero f : M — N with Kerf non-
cosingular, Imf is not small in M.

Proof. (1) (=) Let M be NS and f: M — N a homomorphism with Kerf
non-cosingular. Then I'mf = M/Kerf. Since M is NS, there exists a decom-
position M = Kerf @ N. It follows that Imf is isomorphic to a submodule of
M. Therefore, Imf is N.S. For the converse, it suffices to choose the identity
isomorphism ¢ : M — M. Since Keri = 0 is non-cosingular, M = Imf is
NS.

(2) Since Imf is isomorphic to a direct summand of M, I'mf is not a small
submodule of M. O

Proposition 2.17. Let f : M — M’ be a small cover and M’ an NS module
such that Rad(K) = 0 for every non-cosingular submodule K of M. Then M
is NS.

Proof. Let K < M be non-cosingular. Then clearly f(K) is non-cosingular.
Since M" is NS, f(K)@® f(L) = M’ for some submodule L of M. Then M = K+
L+Kerf. Since f is a samll cover, we get M = K+ L and KNL C Kerf < M.

Let (K NL)+T = K for a submodule T of K. Therefore we have qugf = %

It follows that % is both small and non-cosingular (since % is a homomorphic

image of both K and KN L). Therefore, K = T, yields that K N L <« K. Now,
using assumption K N L =0. Hence M = L & K. O

3. Direct Sums of NS-Modules

In this section we define the (D*)-property. Using this concept we prove
that under some assumptions a finite direct sum of NS-modules is NS. We also
give a sufficient condition for an arbitrary direct sum of NS-modules to be NS.

Proposition 3.1. Let M = My & My with My semisimple and Mo NS. If every
direct summand of a homomorphic image of M lifts to a direct summand of
M, then M is NS.

Proof. Let N < M be non-cosingular. Since M; is semisimple, M; = (N N
M) @ M’ for some M’ < Mjy; we thus get M = [(NNMy)@® M'] @& M,. Using
modularity law, N = (NNM;) @ [(M' & M;)NN]. Set A= (M'& M>)NN and
consider the submodule (A+M")/M’ of (Ma®M')/M’. Since (A+M')/M' is a
homomorphic image of N and N is non-cosingular, it follows that (A+M')/M’
is a direct summand of (My @& M’)/M’. So we get (A+ M')/M' & X/M' =
(My ® M")/M’'. Hence A+ X = My @ M'. Tt follows that N + X = A +
X+N=(MaeM)+N=M. So M/A = N/A+ (X + A)/A. Since
NN(X+A)=A+(XNN) C A, therefore N/A is a direct summand of M/A.
Using assumption there exists a direct summand T of M containing A such
that T/A = N/A. Hence N <g M. So M is NS. O
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Definition 3.2. We say that a module M has (D*) property if for every sub-
module N of M there exists a non-cosingular submodule K of M such that

K <N and K p_e) N. In this case we call K, a quasi-coclosure of N in M.

By the definition every quasi-coclosure is a coclosure. But the converse does
not hold as the following example shows.

Example 3.3. Let M = Z/Zp ® Z/Zp®. Since M is artinian, it is amply
supplemented. So by [5, Proposition 1.5], Z/Zp has a coclosure. Since Z/Zp is
simple, it is a coclosure of itself, though it is not non-cosingular. In fact Z/Zp
is a small module.

It is clear that every hollow module has (D*) property. Also every non-
cosingular amply supplemented (lifting) module has D*.

Proposition 3.4. Let M be a module with (D*). Then the following state-
ments hold:

(1) Every factor module of M has (D*).

(2) Every non-cosingular submodule of M has (D*).

Proof. (1) Let N < M and K/N < M/N. Using assumption, K has a quasi-
closure L in M. Tt follows that L <5 K and L is non-cosingular. So we get
K . KN _ MN _ M
L+N (L+N)/N S(L+N)/N L+N’

where clearly (L + N)/N is non-cosingular. Hence (L + N) & K and this
completes the proof.

(2) Let N < M be non-cosingular and K < N. By assumption, there exists
a non-cosingular submodule L of M such that L E K in M. Since N /L is

non-cosingular, L EKinN by [11, Lemma 2.3(1)]. Hence N has (D*). O

Definition 3.5. Let M = M; & M5 be a module. We say M has *-property, if
the sum of a non-cosingular submodule L and a direct summand T of M with
L+ T # M, is a direct summand of M.

Lemma 3.6. Let M = My & Ms be a module with *-property. Suppose that
every non-cosingular submodule N of M with the property M = N + My or
M = N+ Ms, is a direct summand of M. Let K be a non-cosingular submodule
in M such that (K +M;)/K has a quasi-coclosure in M/K fori € {1,2}. Then
K is a direct summand of M.

Proof. We consider the submodule (K + M;)/K of M/K. Then there exists a
non-cosingular submodule N/K of M/K such that N/K < (K + M;)/K and

N& (K4 My). It follows that K +M; = N+M; and M = N+ M,. Since N is
non-cosingular in M, by hypothesis, we get M = N @& N’ for some submodule
N’ of M and then we have (K + N') + My = M. If K + N' = M, we get
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K = N and so we get K <g M. Otherwise, by hypothesis, K + N’ is a direct
summand of M. Let M = (K + N’) @ K’ for some K’ < M. It follows that
N =(K+N')N(N'+K')and NN(K+N')N(N'+K') = KN(N'+K') = 0.
Therefore we get M = K @ (N’ + K'), as claimed. O

The following proposition introduces equivalent conditions for a module M =
M, @& My under some assumptions to be NS.

Proposition 3.7. Let M = M, ® My has (D*) and *-property. Then following
statements are equivalent:

(1) M is NS;

(2) Every non-cosingular submodule K of M such that M = K + My or
M = K + Ms is a direct summand of M;

(3) Every non-cosingular submodule K of M such that K LK + My or
K<C—6>K+M2 or M = K+ My, = K + M; is a direct summand of M.

Proof. Follows from Lemma 3.6 and [5, Theorem 2.1]. O

Let M; and M5 be modules. The module M is small Ms-projective if every
homomorphism f : M; — Msy/A where A < My and Imf < My/A, can
be lifted to a homomorphism ¢ : M; — Ms. The modules M; and M are
relatively small projective if M; is small Mj-projective, for every ¢,j € {1,2},
1 # j. It is clear that if My is Ms-projective then M; is small Ms-projective.

Lemma 3.8. Let My be any module, My an NS-module and M = My ® M. If
My is small Ms-projective, then every non-cosingular submodule N of M such

that N &5 (N + M) is a direct summand.

Proof. Let N be a non-cosingular submodule of M such that N & (N + My).
By [5, Lemma 2.4], there exists a submodule N’ of N such that M = N’ @
Ms. Clearly, M/N' is NS. Since N is non-cosingular, N/N’ is non-cosingular.
Therefore N/N' is a direct summand of M/N’. Hence N is a direct summand
of M. O

Proposition 3.9. Let My and My be NS-modules such that M = My & My
has (D*) and *-property. If one of the following conditions holds, then M is
NS.

(1) My is small Ms-projective and every non-cosingular submodule N of M
such that M = N + My is a direct summand.

(2) My and Ms are relatively small projective and every non-cosingular sub-
module N of M such that M = N + My, = N + M is a direct summand of
M.

(3) My is My -projective and M is small Ms-projective.

(4) My is semisimple and small Ms-projective.

Proof. The conclusion follows from Lemmas 3.6, 3.8 and [5, Theorem 2.8]. O
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Theorem 3.10. Let M has (D*) and *-property. Let M = M1 & ... ® M, be
a finite sum of relatively projective modules. Then M is NS if and only if each
M; is NS fori=1,...,n.

Proof. The necessity is clear. Conversely, it is enough to prove that M is NS
for n = 2. This follows from Proposition 3.9. O

Corollary 3.11. Let R be a hereditary ring. Let My and Ms be R-modules
such that M = My ® My has (D*) and *-property. Then M is NS if and only
if My and My is NS and every non-cosingular submodule N of M such that
M = N + My is a direct summand.

Proof. Use [5, Lemma 2.3] and Proposition 3.9. |

Definition 3.12 ([6]). Let M and N be two modules. Then N is called radical-
M -projective if, for any K < M and any homomorphism f : N — M/K there
exists a homomorphism h : N — M such that Im(f — 7h) < (M/K), where
m: M — M/K is the natural epimorphism.

Proposition 3.13 ([6]). Let M = M1®M,. Consider the following conditions:
(1) My is radical-Ms-projective;
(2) For every K < M with K + My = M, there exists Ms < M such that
M = M, & M; and (K + Ms)/K < (M/K).
Then (1) = (2) and if M is amply supplemented, then (2) = (1).

Proposition 3.14. Let M = My & Ms such that My and Ms are NS. If M,
is radical-My-projective, then every non-cosingular submodule K of M with
K+ My =M, is a direct summand of M.

Proof. Let K be a non-cosingular submodule of M such that K + My = M.
Then by Proposition 3.13, there exists M3 < M such that M = M, @& M3 and
(K + M3)/K <« (M/K). Consider the submodule (K + Ms)/Ms of M/Ms.
Since (K + M3)/Mj is non-cosingular and M /M3 2 My is NS, it follows that
(K + Ms)/Ms & L/Ms = M/Mj for a submodule L of M containing Ms. We
thus get K4+ L = M. On the other hand, from M3 < L and the modularity law
we have L = (LN M) @® M5 and hence we get K 4+ (LNMz)+Ms = M. Now we
have (K +Ms)/K+ ((LNM3)+ K)/K = M/Ms. Since (K + M3)/K < M/K,
it implies that (LN M)+ K = M. Further, by the above direct decomposition
of M/Ms, we get (LN M) N K C (MyN Ms) =0. We thus arrive at M =
K& (LN M). O

We conclude the paper with a rather obvious remark that is a sufficient
condition for a direct sum of NS-modules to be NS.

Remark 3.15. Let M = @,
if and only if each M; is NS.

M; be a duo module. Then M = p,_; M; is NS

i€l



Modules for which every non-cosingular submodule is a summand 922

Proof. Let M = @,.; M; be such that each M; is NS and let N < M be
non-cosingular. Since M is a duo module, N = @, ;(N N M;) and for each 4,
NN M; is non-cosingular. By assumption, for each i, we get M; = (NNM;)DN;
for some N; < M;. Then

M= M =FINnM)sN)] =[PNnM) e PN]=NaN,

where N' = @, .; N;. Hence M is NS, as required. The converse is clear. 0O
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