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ABSTRACT. We study harmonic analysis on cocommutative KPC-hyper-
groups, which is a generalization of DJS-hypergroups, introduced by Ka-
lyuzhnyi, Podkolzin and Chapovsky. We prove that there is a relationship
between the associated measures p and yu, where p is a Radon measure
on KPC-hypergroup @ and + is a character on Q.

Keywords: Cocommutative hypergroups, DJS-hypergroups, KPC-hyper-
groups, positive definite measures.

MSC(2010): Primary: 28C15; Secondary: 20N20.

1. Introduction

Hypergroups were introduced in a series of papers by Dunkle [3], Jewett [4],
and Spector [7] in the 70’s (we refer to this definition of hypergroups as DJS-
hypergroups). For more details about DJS-hypergroups we refer to [1].

In 2010, Kalyuzhnyi, Podkolzin, and Chapovsky [5] introduced new axioms
for hypergroups. This is an extension of DJS-hypergroups, on the one hand,
and generalizes a normal hypercomplex system with a basis unity to the nonuni-
modular case, on the other. We refer to this notion as KPC-hypergroup. They
studied harmonic analysis on these hypergroups and showed that there is an
example of a compact KPC-hypergroup related to the generalized Tchebycheff
polynomials, which is not a DJS-hypergroup [5]. Medghalchi and Tabatabaie [0]
have studied periodicity on locally compact commutative DJS-hypergroups.

In this paper we study harmonic analysis on locally compact cocommutative
KPC-hypergroups. In Section 2, we recall the definition and basic properties of
KPC-hypergroups. Periodicity of locally compact KPC-hypergroups and our
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The associated measure on KPC-hypergroups 2

main theorem is presented in Section 3. We show that there is a relationship
between the associated measures of p and yu, where p is a Radon measure on
KPC-hypergroup @ and = is a character of Q.

Let @ be a locally compact cocommutative KPC-hypergroup. We denote
the set of all complex Radon measures on @), bounded measures, compact sup-
ported measures and positive measures by M(Q), My(Q), M.(Q) and MT(Q),
respectively. We denote the spaces of all complex-valued bounded continu-
ous functions and continuous functions with compact supports by Cy(Q) and
C.(Q), respectively.

2. Cocommutative KPC-hypergroups

In this section we recall the definition and basic properties of locally compact
KPC-hypergroups and study positive definite functions and measures on them.

Definition 2.1. Let @ be a locally compact second countable Hausdorff space
with an involutive homeomorphism * : Q — @ and let e € @ satisfy e* = e.
Suppose the following conditions hold.

(Hy) There is a C-linear mapping A : Cp(Q) — Cp(Q % @) such that
1. A is coassociative, that is,
(2.1) (A xid)o A= (id x A) o A,

it. A is positive, that is, Af > 0 for all f € Cy(Q) such that f > 0;

iii. A preserves the identity, that is, (Al)(p,q) =1 for all p,q € Q;

iv. For all f,g € C.(Q) we have (1® f).(Ag) € Ce(Q x Q) and (f ®1).(Ag) €
Ce(@ x Q).

(Hz) The homomorphism € : C3(Q) — C defined on Cp(Q) by e(f) = f(e)
satisfies the counit property, that is,

(2.2) (e x id) o A = (id x €) 0 A = id,
in other words, (Af)(e,p) = (Af)(p,e) = f(p) for all p € Q.

(H3) The function f~ defined by f~(¢) = f(¢*) for f € Cp(Q) satisfies
(2.3) (Af7) P, q) = (Af)(d,p")-

(Hy) there is a positive measure m on @, such that supp m = @, and

(2.4) /Q (AF) (. Q)a(a)dm(q) = /Q F(@)(Ag) (0, q)dm(q)

for all f € Cp(Q) and g € C.(Q), or f € C.(Q) and g € Cp(Q), where p € Q;
(such a measure m will be called a left Haar measure on @Q.)
Then (Q, *, e, A, m), or simply @, is called a locally compact KPC-hypergroup.
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Notation. In the above definition, we have used the following notations:

[[(A x id) o A(f)](p, g, 7)](-) == A(Af(p,-))(g,7),
[[(id x A) o A()](p, g, 7)](.) == AAS(-,9)) (D, 7),
(e x id) o A(f)](p) := e(Af(p,-) = Af(p,e),
[(id x €) o A(f)](p) := e(Af(-,p)) = Af (e, p),
(fe1)(p q).(Ag)(p,q) = f(p)L(a)-Ag(p, ),
(1® f)p.q)-(Ag)(p,q) == 1(p) f(a)-Ag(p, q)-

A KPC-hypergroup @ is called cocommutative if Af(p,q) = Af(q,p), for
all f € Cp(Q) and all p,q € Q and it is called Hermitian if ¢* = ¢ for all ¢ € Q;
By (Hj), every Hermitian hypergroup is cocommutative.

Throughout this paper @ is a locally compact cocommutative KPC-hyper-
group and m is a left Haar measure on Q).

Definition 2.2. Let p,v € M(Q) be such that the linear functional p * v
defined by

@5 )= [ APE e, (f Q)

is a measure. Then the measures p and v are called convolvable. In particular,
we have (0, * 04)(f) = (Af)(p, ¢), where p,q € Q.

If p,v € My(Q), then p and v are convolvable. [5, Lemma 3.3]

Definition 2.3. The convolution of f,¢g € C.(Q) is denoted by f x g and is
defined by (fm) * (gm) = (f * g)m, where the convolution of measures is given
by (2.5). For each f,g € C.(Q), we have fx g € C.(Q), and by [5],

(2.6) (f*9)(q /f (Ag)(p*, q)dm(p).

Similarly, we define f * g for f,g € Cy(Q).

Remark 2.4. If m is a left Haar measure and p € (), then m ¢, is a left Haar
measure. Since a left Haar measure is unique up to strictly positive scalar
mutiples, m * d,» = d(p)m for a positive number §(p). (This number does not
depend on the left Haar measure m). The function ¢ : Q — C is called the
modular function of the locally compact KPC-hypergroup Q.

Definition 2.5. A measure u € M(Q) is called positive definite if for any
g € C.(Q), we have [ g g*du > 0, where g*(p) = g(p*)d(p*), and § is the
modular function. The set of all positive definite measures on @ is denoted by
MP(Q). The set of all bounded positive definite measures is denoted by M} (Q).
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A function f € Cp(Q) is called positive definite if for any g € C.(Q), we
have f f(g*g*)dm > 0. We denote the set of all positive definite functions by

P(Q).

For each p € M(Q), we define u~ by fQ F@)dp=(t) = [ f(t*)du(t)
Definition 2.6. The convolution of f € C.(Q) and p € My(Q) is defined by

(2.7) (1 F)(a) = /Q A Q)dnp),  (4€Q)

if the integral exists.

Definition 2.7. A measure yu € M(Q) is called shift-bounded if p* f € C(Q)
for all f € C.(Q), and weakly shift-bounded if pu* f x f € Cy(Q) for all
feC(Q).

Lemma 2.8. i. For any p € Q, we have §(p) = 1, where ¢ is the modular
function of Q.

it. For each f,g € C.(Q), f*xg=gx* f.

Proof. i. Let f € C.(Q) and p € Q. Then

3(p)m(f) = (mx*dp-)(f) (by 2.5)

//Am £)dm(q)dd, (¢)

:/QAf(q,p*)dm(q) (Q is cocommutative)
= | 0% an@an() by 24

= [ Al(p,q)f(q)dm(q) (by Hi iii)
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Thus §(p) = 1 for any p € Q.
ii. If f,g € C.(Q), for any ¢ € @, we have

(f*g)(q) = /Q f(p)Ag(p*,q)dm(p) (by 2.3)
=/f@mmeM@ (by 2.4)

/Af q,p)9 (p)dm(p) (Q is cocommutative)

O

The proof of the following proposition is different from the case of DJS-
hypergroups.

Proposition 2.9. If f € C.(Q) and p € My(Q), then ux* f € C(Q).

Proof. Since Q) is a second countable space, we can use sequences for the proof.
Let (¢5,)22; be a sequence in @, such that ¢, — ¢. We should show (pxf)(g,) —
(u=* f)(q). By [5, Lemma 3.1], A is a continuous mapping from C»(Q) to
Cy(Q x Q). Thus for any f € C.(Q), Af(p*,qn) — Af(p*,q). Also, since
Af(v q) € Cb(@)v we have

[ 1876 a)laue)] < sup A" )Ll < o
pe
So by the dominated convergence theorem, we have

/Af(p*,qn)du(p) - /Af(p*,q)du(p)
Therefore (p* f)(gn) — (1 * f)(q), and hence pu* f € C(Q). O
Proposition 2.10. If p is a bounded positive definite measure on Q and f €
C.(Q), then pux* f* f € Pp(Q).

Proof. Let € My(Q) and f € C.(Q). By [5, Lemma 5.2] we have f x f €
C.(Q). So by Proposition 2.8, pux (f * f) € C(Q). By [5, corollary 5.3], C(Q)
is an involutive algebra with the multiplication and involution defined by (2.6)
and f*(p) = f(p*)d(q*), respectively. Define g := f % f. Then
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(e *9)(q)| = \/Ag(piq)du(p)l
< [ 189" a)dl)

< l1agl [ dinl(w)
< |Allllgl[l[(@) (5, Lemma 3.1)
= ||gl[|u[(Q) < oo.
Therefore uu % (f * f) is bounded. Now we have
Jtws 15 D@@x 9@imta) = [ [ 5P 0@+ 9 @dn(t)mia)

- / / A(f * P (@ 1)@ * 9) @ du(t)dm(q)
- / (G 9) % (f * ) )(0)du(t)
- / ((F~ % g) = (f~ * ) ()dpu(t).

Since u € MP(Q), the last integral is nonnegative. So by [5, Lemma 8.3,
wx (f = f) is positive definite which completes the proof. O

Definition 2.11. A function x € C,(Q) is called a character of the KPC-
hypergroup @ if (Ax)(p, ¢) = x(p)x(g) and x(p*) = x(p), for all p,q € Q.

Definition 2.12. For any f € LY(Q) and u € M(Q), the Fourier-Stieltjes
transform i of u and the Fourier transform f of f are defined by

(€)= /Q E@dp(t) and f(€) = /Q @ (t)dm(t),

respectively, where ¢ € Q, [7].

Definition 2.13. Let f € L'(Q) and p € M(Q). The inverse Fourier trans-
form f and i of f and p are defined by

/5 &) and fi(p /f Ydp (€

respectively, where p € Q.
Note that p is the Plancherel measure and ¢ = supp p.

In fact Q is not a KPC-hypergroup in general. But under some conditions
it is a KPC-hypergroup (see Theorem 3.7)
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Lemma 2.14. For any f € C.(Q), (f*) = f.

Proof. Let € € Q. Then

(f)E) = [ E@)f*(p)dm(p)

Q
= Qg(p)f(p*)ts(p*)dm(p) (Lemma 2.87)
= QE(p)f(p*)dm(p) (p:=p")

=wawmw>@mmmn

Lemma 2.15. For any f,g € C.(Q), (f xg9) = f§.

Proof. Let f,g € C.(Q). For any £ € Q
kab/ﬁﬁﬂm@m@
Q
=//ammmmmwmmmm
QJQ
:/f@df@MWMWMWMQ(M)
Q Q
=/ﬂw/£mm@M@mm>um
Q Q
=/ﬂM/MW@MWMMM@
Q Q
=/ﬂM/ﬂﬁWﬂWMMMMM)
Q Q

:/ g(q*)f(q)dm(q)/ £(p*)g(p)dm(p)
Q Q
= f(©)a()-

O

Lemma 2.16. For any g € C.(Q) and o € M(Q), we have 5 *(|g|*) = (|g]%0).
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Proof. By Lemma 2.15, for any g € C.(Q), (g * g*) = |§|*>. We define h :=
(g * g*). For any p € @ we have

(p)h(€)do(€)

(13120} (p) = (o) (p)

— [
Q

— [ o) E@hlayin(a)io(e)
Q Q

- / / £0)E(*)h(@)dm(q)do (€)
QJIQ

://Af(p,q*)h(q)dm(q)da(f) (Q is cocommutative)
QJQ

- / / AE(, p)h(q)dm(q)do(€) (Hs)
QJQ

- / / AE(p, " )h(q)dm(q)do (€) (Hy)
QJQ

=//Ah(p7Q)§(q)dm(q)d0(£) (q:=q")
QJQ

- / / Ah(p, q*)(a)8(q")dm(g)do(€)  (Lemma 2.8)
QJQ

= [ [ snte* pieyimiayioe
QRJQ

_ /Q &(g)Ah(q*, p)dm(q))
= (6 * h)(p).

O

Theorem 2.17. Every p € MP(Q) corresponds to a unique o € M+(Q) such
that for all g,h € C.(Q) and p € Q,

i. []g]*do < o,

ii. (e gxg*)(p) = o EW)9(&)[do(§),

where & € Q

The measure o is called the associated measure of p.

Proof. In Proposition 2.10 we proved that u * (¢ *x §) € Py(Q). Therefore
by [5, Theorem 10.4], there is a 0, € M (Q) satisfying pu (g * §) = . By
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Lemma 2.16,
(191%0f) = o5 * (131°)
= o+ (9% 9))
=(uxfxf)*(g*xg*) (Lemma 2.8)
= (nxgxg") = (f*f")
=g+ (/%)
= (If\2095
By the uniqueness of the inverse Fourier transform, we have
(2:5) 9207 = |f20,.

For any o € M, (Q) satisfying (i) and (i), we should have |j|?0c = o, where
g € C.(Q) and define o accordingly. We will show that o is well defined.
Choose g € C.(Q) such that § # 0 on supp(h) [2], so that

h
é ¢ 19l

where 2 is defined to be zero where §(¢) = 0. By (2.8), fc} hdo is independent

lg]?
from the choice of g. Clearly h — fQ hdo is positive and linear on C.(Q), and
o€ M(Q). O

Definition 2.18. Let p € M(Q). If there is ¢ € M, (Q) such that for all

fel(Q)
212 n % £* _ 72
/Qlflda<oo and /Qf [rdu /Qlfldo,

then Fu := o is called the generalized Fourier transform of p.

Corollary 2.19. Let Q be a cocommutative KPC-hypergroup. If p € MY (Q),

and o € M (Q), then following statements are equivalent
1. 0= Fpu; R
ii. [o9%g*du= [51(g7)|>do (g € Ce(Q)).

Proof. The proof is similar to the case of DJS-hypergroups. Let ¢ = Fu. By
using polarization, we have

[ £rgan= [ o (rgecuQ).
Q Q
If we replace f by d, * f, and g by f, we get

(x £ £)(p) = /Q £)|F(6)2do(©).
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Thus o is the associated measure of p. Now if we replace p by e,
/Qf(e)|(f_ / [(f &)do(&) (Theorem 2.17 ii)
(s 7= (f7)")(e)  (by 2.7)
/Af* Vs e)dulp)  (by H)

=/Qf* ) (p*)dulp)  (by Hs)

= /Q (/= «(f))" (@)du(p) (by Lemma 3.1)
= [ (" 0o (o Lemma 25 )

- / (f * 1) (p)dulp).

Therefore [, |( o )|2do = /. o [ f*dp. The converse is proved similarly by using
the polarlzatlon O

Corollary 2.20. The following statements are equivalent
i. u € MP(Q).
it. There ezists 0 € M, (Q) such that
m

/ g% grdu = / (g )12de (g€ CQ)).
Q Q

3. Main results
In this section we present the main theorem of this paper.
Lemma 3.1. Let f,g € C.(Q). Then (fxg)” =g~ * f~.
Proof. Let f,g € C.(Q). We have
(f*x9)"(p) = (fx9)P") (by 2.6)

/f YAg(g*,p*)dm(q) (by 2.3)
= /f 9)Ag~ (p,q)dm(q) (by 2.4)
- / o (@AF@* dm(q)  (by 2.3)

- / g (@AS (" p)dm(g)  (by 2.6)
= (¢ f) ).
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Therefore (fxg)” =g~ * f~. O

Lemma 3.2. Let f,g,h € C.(Q). Then (fxg)xh=f=(g*h).

Proof. For f,g,h € C.(Q) by [5, Proposition 3.4] we have (fm x gm) x hm =
fmx (gm * hm). On the other hand by Definition 2.3, we have

(fmx gm) * hm = (f  g)m « b = [(f * g) * hlm,

fmox (gm s hm) = fmx (g hym = [f (g % h)]m.

Thus by uniqueness in the Riesz representation theorem, (f *x g) x h = f * (g
h). O

Theorem 3.3. Let f,g,h € C.(Q). Then

[t = lam= [ sx g™ yim.

Proof. By Definition 2.1, we have e* = e. Thus by Hos,
16 «ahiw)ime) = [ (7« o)) Am(e,phamr) by 23 and e =

- /Q (f +9) () A", e)dm(p) (by 2.6)

=[(fxg)*xh7](e) (Lemma 3.2)
=[f*(g*xh7)](e) (Lemma 3.1)

—[fx(heg)Ne) (by 26)
- / F®)AM )~ (0" e)dm(p)  (by 2.3)

/ f)A(hxg™)(e*,p)dm(p) (by Hy and e* = ¢)

where f,g,h € C.(Q). O

Lemma 3.4. Let n be a character of Q. Then for any f € Cy(Q) and q € Q,
we have

(3.1) (n+TF)(a) = /Q @)D ") dm(p).
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Proof. By (2.6) for any ¢ € Q

(n+F)a) = /Q WD) AF (", q)dm(p) (by 2.3)

- /Q nP)AF) (g% p)dm(p) (by 2.4)

- /Q An(a,p)(F)~(p)dm(p) (by Hs)

O

Remark 3.5. In the following theorem, we will assume that the approximate
identity (e;,) (which is introduced in [5, Theorem 5.9]) satisfies the following
properties: e, € C.F(Q) and supp(e,) C V,,, where (V;,)nen is a fundamental
system of open relatively compact neighborhoods of e such that N,enV,, = {e}
and V,, D V41.

We recall the following lemma and theorem from [5] without proof. In the
following lemma, we denote the space of bounded characters on @ by Xp.

Lemma 3.6. Let x1.x2 be a positive definite function on Q for all x1,x2 € Q
Then there exists a nonnegative finite regular Borel measure py, , on Xy such
that

(3.2) x1(p)xa(p) = /X X(P)dpxy x (X)-

Theorem 3.7. Let QQ be a cocommutative hypergroup satisfying the following
properties:

(1) the character € defined in (Hy) belongs to Q;

(2) the product of two characters x1,x2 € Q is a positive defnite function,
and the support of the measure py, , defined by (3.2) is contained in Q;
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(3) the comultiplication A : Cp(Q) — Cy(Q x Q) defined by
AF)0 1) = [ FOdpyal0. F € GlQ)

satisfies aziom (H,)(iv). Then Q is also a locally compact cocommutative KPC-
hypergroup, called dual hypergroup, that satisfies the conditions of this theorem,

and the hypergroup Q coincides with Q. The dual of a compact hypergroup
is a discrete hypergroup, and the dual of a discrete hypergroup is a compact
hypergroup.

Theorem 3.8. Let (Q be as above and p be a shift-bounded positive definite
measure on Q with associated measure o. For every v in Q, the measure yu is
also a positive definite measure with associated measure 0 * 0.

Proof. Let g € CF(Q) and put h™ := g * §. For each f € C.(Q), we have

/Q b (f * ) * h(0)dua(p)

/ / )(f * F)(@Ah(a", p)dm(q)du(p)

Z/’Y(Q)(f*f q / Ah(q*, p)du(p)dm(q) (by 2.3)
Q Q

=/7(q)(f*f)(fJ)/ AL™ (p*, q)du(p)dm(q) (by 2.7)
Q Q

= /Q (@) (f * ) (@) (1 *h™)(q)dm(q)
/ Y@)(f * (@) *g*§)(@)dm(g) (Theorem 2.17)

/ / 0)15(6)*do(€)dm(q)

- / / 9(€) / « P)(@)1(@)dm(q)dpq¢(n)do(€) (Theorem 3.3)
QLJIQ Q

= [ [P [ 1@+ @dn@dp, smas(e)
QJ/RQ Q

- / / 962 / (@) * P)(@)dm(g)dps ¢ (mdo(€) (by 3.1)

/ / Gk / / (nf) (@) (" dm(p)dm(g)dp- e (n)do (€)
/ / 9(6) 1)) dpa e (r)dor(€)

= [ [19©F 1 i) 1 dpr ctdoe
QJ/Q
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If we put j(n) =| (nfj( 1) |2, then by Theorem 3.7 (iii), we have

//|g L | (1)1 12 dp e ()do(e /|g A (,€)do(€).

Now we replace g by e, in the above relations (the net (e,) has been intro-
duced in [5, Theorem 5.9]). By Urysohn’s lemma, there is an hy € C.(Q)
such that hg =|| f || on the compact set supp(f) * U , where U is a com-
pact neighborhood of the identity e € ) that contains a fundamental system
of neighborhoods {V,,} as in the above remark. By [5, Lemma 4.5] we have
|| f1*en |loo<|| f llooll €n [li=|| f |lco- Since (e, ) is an approximate identity,
by [5, Theorem 5.9] e = e, and | €, |= e,. Now since @ is a cocommutative
KPC-hypergroup, by Lemma 2.8, we have

‘7(f*f)*(en*én)‘§|’Y|(‘f|*‘f|)*(en*én)

< (|flxen) * (If]*en)”
< ho x hy € L'(Q,m).

For any £ € Q,
6915 [ 10| ealplam(e) <l en lh=1
Thus for any ¢ € Q, we have | €,(€) | Aji(7,€) < Aj(7,€). Also
Aj(v,€)do( do(&)d
360 = [ [ i+ Hag@in©int)

- /Q 1(@)(f * P@)5(@)dmlg) < oo,

since & € C(Q), and so that v(f * f)& € Co(Q). Thus Aj(v,&) € L'(Q,0).
Therefore, applying the dominated convergence theorem in both sides of the
equality

/ (f )+ (en  65))(P)d(p) — / | 6a(6) 2 Aj(7.£)do ().
Q Q

we have
/ W * Plw)d / Aj(,E)do(€) (by 2.5)
Q
- / J(@)d(6, ) (q).
Q
Thus

- / F@n()dm(p) = / (") dm(p*)
Q Q
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/f dm(p) = (F)(n).
. 2
Therefore j(n) =| (nf)(1) [*=| (f7)(n) [* . Thus
/(f Pty = [ 107 0, )
This completes the proof. |
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